| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694 | 
							- /* dgelsd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__6 = 6;
 
- static integer c_n1 = -1;
 
- static integer c__9 = 9;
 
- static integer c__0 = 0;
 
- static integer c__1 = 1;
 
- static doublereal c_b82 = 0.;
 
- /* Subroutine */ int dgelsd_(integer *m, integer *n, integer *nrhs, 
 
- 	doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
 
- 	s, doublereal *rcond, integer *rank, doublereal *work, integer *lwork, 
 
- 	 integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
 
-     /* Builtin functions */
 
-     double log(doublereal);
 
-     /* Local variables */
 
-     integer ie, il, mm;
 
-     doublereal eps, anrm, bnrm;
 
-     integer itau, nlvl, iascl, ibscl;
 
-     doublereal sfmin;
 
-     integer minmn, maxmn, itaup, itauq, mnthr, nwork;
 
-     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebrd_(
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     integer *);
 
-     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 
- 	    dlalsd_(char *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *), dlascl_(char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *, doublereal *, integer *, integer *), dgeqrf_(
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, integer *), dlacpy_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *), xerbla_(char *, 
 
- 	    integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *);
 
-     integer wlalsd;
 
-     extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer ldwork;
 
-     extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer minwrk, maxwrk;
 
-     doublereal smlnum;
 
-     logical lquery;
 
-     integer smlsiz;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGELSD computes the minimum-norm solution to a real linear least */
 
- /*  squares problem: */
 
- /*      minimize 2-norm(| b - A*x |) */
 
- /*  using the singular value decomposition (SVD) of A. A is an M-by-N */
 
- /*  matrix which may be rank-deficient. */
 
- /*  Several right hand side vectors b and solution vectors x can be */
 
- /*  handled in a single call; they are stored as the columns of the */
 
- /*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
 
- /*  matrix X. */
 
- /*  The problem is solved in three steps: */
 
- /*  (1) Reduce the coefficient matrix A to bidiagonal form with */
 
- /*      Householder transformations, reducing the original problem */
 
- /*      into a "bidiagonal least squares problem" (BLS) */
 
- /*  (2) Solve the BLS using a divide and conquer approach. */
 
- /*  (3) Apply back all the Householder tranformations to solve */
 
- /*      the original least squares problem. */
 
- /*  The effective rank of A is determined by treating as zero those */
 
- /*  singular values which are less than RCOND times the largest singular */
 
- /*  value. */
 
- /*  The divide and conquer algorithm makes very mild assumptions about */
 
- /*  floating point arithmetic. It will work on machines with a guard */
 
- /*  digit in add/subtract, or on those binary machines without guard */
 
- /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 
- /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of A. M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of A. N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X. NRHS >= 0. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, A has been destroyed. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the M-by-NRHS right hand side matrix B. */
 
- /*          On exit, B is overwritten by the N-by-NRHS solution */
 
- /*          matrix X.  If m >= n and RANK = n, the residual */
 
- /*          sum-of-squares for the solution in the i-th column is given */
 
- /*          by the sum of squares of elements n+1:m in that column. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,max(M,N)). */
 
- /*  S       (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The singular values of A in decreasing order. */
 
- /*          The condition number of A in the 2-norm = S(1)/S(min(m,n)). */
 
- /*  RCOND   (input) DOUBLE PRECISION */
 
- /*          RCOND is used to determine the effective rank of A. */
 
- /*          Singular values S(i) <= RCOND*S(1) are treated as zero. */
 
- /*          If RCOND < 0, machine precision is used instead. */
 
- /*  RANK    (output) INTEGER */
 
- /*          The effective rank of A, i.e., the number of singular values */
 
- /*          which are greater than RCOND*S(1). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK must be at least 1. */
 
- /*          The exact minimum amount of workspace needed depends on M, */
 
- /*          N and NRHS. As long as LWORK is at least */
 
- /*              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, */
 
- /*          if M is greater than or equal to N or */
 
- /*              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, */
 
- /*          if M is less than N, the code will execute correctly. */
 
- /*          SMLSIZ is returned by ILAENV and is equal to the maximum */
 
- /*          size of the subproblems at the bottom of the computation */
 
- /*          tree (usually about 25), and */
 
- /*             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
 
- /*          For good performance, LWORK should generally be larger. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, */
 
- /*          where MINMN = MIN( M,N ). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  the algorithm for computing the SVD failed to converge; */
 
- /*                if INFO = i, i off-diagonal elements of an intermediate */
 
- /*                bidiagonal form did not converge to zero. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
 
- /*       California at Berkeley, USA */
 
- /*     Osni Marques, LBNL/NERSC, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --s;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     minmn = min(*m,*n);
 
-     maxmn = max(*m,*n);
 
-     mnthr = ilaenv_(&c__6, "DGELSD", " ", m, n, nrhs, &c_n1);
 
-     lquery = *lwork == -1;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,maxmn)) {
 
- 	*info = -7;
 
-     }
 
-     smlsiz = ilaenv_(&c__9, "DGELSD", " ", &c__0, &c__0, &c__0, &c__0);
 
- /*     Compute workspace. */
 
- /*     (Note: Comments in the code beginning "Workspace:" describe the */
 
- /*     minimal amount of workspace needed at that point in the code, */
 
- /*     as well as the preferred amount for good performance. */
 
- /*     NB refers to the optimal block size for the immediately */
 
- /*     following subroutine, as returned by ILAENV.) */
 
-     minwrk = 1;
 
-     minmn = max(1,minmn);
 
- /* Computing MAX */
 
-     i__1 = (integer) (log((doublereal) minmn / (doublereal) (smlsiz + 1)) / 
 
- 	    log(2.)) + 1;
 
-     nlvl = max(i__1,0);
 
-     if (*info == 0) {
 
- 	maxwrk = 0;
 
- 	mm = *m;
 
- 	if (*m >= *n && *m >= mnthr) {
 
- /*           Path 1a - overdetermined, with many more rows than columns. */
 
- 	    mm = *n;
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, 
 
- 		    n, &c_n1, &c_n1);
 
- 	    maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "DORMQR", "LT", 
 
- 		    m, nrhs, n, &c_n1);
 
- 	    maxwrk = max(i__1,i__2);
 
- 	}
 
- 	if (*m >= *n) {
 
- /*           Path 1 - overdetermined or exactly determined. */
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, "DGEBRD"
 
- , " ", &mm, n, &c_n1, &c_n1);
 
- 	    maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "DORMBR", 
 
- 		    "QLT", &mm, nrhs, n, &c_n1);
 
- 	    maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, "DORMBR", 
 
- 		     "PLN", n, nrhs, n, &c_n1);
 
- 	    maxwrk = max(i__1,i__2);
 
- /* Computing 2nd power */
 
- 	    i__1 = smlsiz + 1;
 
- 	    wlalsd = *n * 9 + (*n << 1) * smlsiz + (*n << 3) * nlvl + *n * *
 
- 		    nrhs + i__1 * i__1;
 
- /* Computing MAX */
 
- 	    i__1 = maxwrk, i__2 = *n * 3 + wlalsd;
 
- 	    maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	    i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1,i__2), 
 
- 		    i__2 = *n * 3 + wlalsd;
 
- 	    minwrk = max(i__1,i__2);
 
- 	}
 
- 	if (*n > *m) {
 
- /* Computing 2nd power */
 
- 	    i__1 = smlsiz + 1;
 
- 	    wlalsd = *m * 9 + (*m << 1) * smlsiz + (*m << 3) * nlvl + *m * *
 
- 		    nrhs + i__1 * i__1;
 
- 	    if (*n >= mnthr) {
 
- /*              Path 2a - underdetermined, with many more columns */
 
- /*              than rows. */
 
- 		maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, 
 
- 			&c_n1);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * 
 
- 			ilaenv_(&c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(&
 
- 			c__1, "DORMBR", "QLT", m, nrhs, m, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * 
 
- 			ilaenv_(&c__1, "DORMBR", "PLN", m, nrhs, m, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- 		if (*nrhs > 1) {
 
- /* Computing MAX */
 
- 		    i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
 
- 		    maxwrk = max(i__1,i__2);
 
- 		} else {
 
- /* Computing MAX */
 
- 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
 
- 		    maxwrk = max(i__1,i__2);
 
- 		}
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "DORMLQ", 
 
- 			"LT", n, nrhs, m, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + wlalsd;
 
- 		maxwrk = max(i__1,i__2);
 
- /*     XXX: Ensure the Path 2a case below is triggered.  The workspace */
 
- /*     calculation should use queries for all routines eventually. */
 
- /* Computing MAX */
 
- /* Computing MAX */
 
- 		i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 =
 
- 			 max(i__3,*nrhs), i__4 = *n - *m * 3;
 
- 		i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + max(i__3,i__4);
 
- 		maxwrk = max(i__1,i__2);
 
- 	    } else {
 
- /*              Path 2 - remaining underdetermined cases. */
 
- 		maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "DGEBRD", " ", m, 
 
- 			 n, &c_n1, &c_n1);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, "DORMBR"
 
- , "QLT", m, nrhs, n, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR", 
 
- 			"PLN", n, nrhs, m, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
 
- 		maxwrk = max(i__1,i__2);
 
- 	    }
 
- /* Computing MAX */
 
- 	    i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = max(i__1,i__2), 
 
- 		    i__2 = *m * 3 + wlalsd;
 
- 	    minwrk = max(i__1,i__2);
 
- 	}
 
- 	minwrk = min(minwrk,maxwrk);
 
- 	work[1] = (doublereal) maxwrk;
 
- 	if (*lwork < minwrk && ! lquery) {
 
- 	    *info = -12;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGELSD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	goto L10;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == 0 || *n == 0) {
 
- 	*rank = 0;
 
- 	return 0;
 
-     }
 
- /*     Get machine parameters. */
 
-     eps = dlamch_("P");
 
-     sfmin = dlamch_("S");
 
-     smlnum = sfmin / eps;
 
-     bignum = 1. / smlnum;
 
-     dlabad_(&smlnum, &bignum);
 
- /*     Scale A if max entry outside range [SMLNUM,BIGNUM]. */
 
-     anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
 
-     iascl = 0;
 
-     if (anrm > 0. && anrm < smlnum) {
 
- /*        Scale matrix norm up to SMLNUM. */
 
- 	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
 
- 		info);
 
- 	iascl = 1;
 
-     } else if (anrm > bignum) {
 
- /*        Scale matrix norm down to BIGNUM. */
 
- 	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
 
- 		info);
 
- 	iascl = 2;
 
-     } else if (anrm == 0.) {
 
- /*        Matrix all zero. Return zero solution. */
 
- 	i__1 = max(*m,*n);
 
- 	dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[b_offset], ldb);
 
- 	dlaset_("F", &minmn, &c__1, &c_b82, &c_b82, &s[1], &c__1);
 
- 	*rank = 0;
 
- 	goto L10;
 
-     }
 
- /*     Scale B if max entry outside range [SMLNUM,BIGNUM]. */
 
-     bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
 
-     ibscl = 0;
 
-     if (bnrm > 0. && bnrm < smlnum) {
 
- /*        Scale matrix norm up to SMLNUM. */
 
- 	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	ibscl = 1;
 
-     } else if (bnrm > bignum) {
 
- /*        Scale matrix norm down to BIGNUM. */
 
- 	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	ibscl = 2;
 
-     }
 
- /*     If M < N make sure certain entries of B are zero. */
 
-     if (*m < *n) {
 
- 	i__1 = *n - *m;
 
- 	dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[*m + 1 + b_dim1], ldb);
 
-     }
 
- /*     Overdetermined case. */
 
-     if (*m >= *n) {
 
- /*        Path 1 - overdetermined or exactly determined. */
 
- 	mm = *m;
 
- 	if (*m >= mnthr) {
 
- /*           Path 1a - overdetermined, with many more rows than columns. */
 
- 	    mm = *n;
 
- 	    itau = 1;
 
- 	    nwork = itau + *n;
 
- /*           Compute A=Q*R. */
 
- /*           (Workspace: need 2*N, prefer N+N*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, 
 
- 		     info);
 
- /*           Multiply B by transpose(Q). */
 
- /*           (Workspace: need N+NRHS, prefer N+NRHS*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
 
- 		    b_offset], ldb, &work[nwork], &i__1, info);
 
- /*           Zero out below R. */
 
- 	    if (*n > 1) {
 
- 		i__1 = *n - 1;
 
- 		i__2 = *n - 1;
 
- 		dlaset_("L", &i__1, &i__2, &c_b82, &c_b82, &a[a_dim1 + 2], 
 
- 			lda);
 
- 	    }
 
- 	}
 
- 	ie = 1;
 
- 	itauq = ie + *n;
 
- 	itaup = itauq + *n;
 
- 	nwork = itaup + *n;
 
- /*        Bidiagonalize R in A. */
 
- /*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
 
- 	i__1 = *lwork - nwork + 1;
 
- 	dgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
 
- 		work[itaup], &work[nwork], &i__1, info);
 
- /*        Multiply B by transpose of left bidiagonalizing vectors of R. */
 
- /*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
 
- 	i__1 = *lwork - nwork + 1;
 
- 	dormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 
 
- 		&b[b_offset], ldb, &work[nwork], &i__1, info);
 
- /*        Solve the bidiagonal least squares problem. */
 
- 	dlalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb, 
 
- 		rcond, rank, &work[nwork], &iwork[1], info);
 
- 	if (*info != 0) {
 
- 	    goto L10;
 
- 	}
 
- /*        Multiply B by right bidiagonalizing vectors of R. */
 
- 	i__1 = *lwork - nwork + 1;
 
- 	dormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
 
- 		b[b_offset], ldb, &work[nwork], &i__1, info);
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(
 
- 		i__1,*nrhs), i__2 = *n - *m * 3, i__1 = max(i__1,i__2);
 
- 	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,wlalsd)) {
 
- /*        Path 2a - underdetermined, with many more columns than rows */
 
- /*        and sufficient workspace for an efficient algorithm. */
 
- 	    ldwork = *m;
 
- /* Computing MAX */
 
- /* Computing MAX */
 
- 	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = 
 
- 		    max(i__3,*nrhs), i__4 = *n - *m * 3;
 
- 	    i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + 
 
- 		    *m + *m * *nrhs, i__1 = max(i__1,i__2), i__2 = (*m << 2) 
 
- 		    + *m * *lda + wlalsd;
 
- 	    if (*lwork >= max(i__1,i__2)) {
 
- 		ldwork = *lda;
 
- 	    }
 
- 	    itau = 1;
 
- 	    nwork = *m + 1;
 
- /*        Compute A=L*Q. */
 
- /*        (Workspace: need 2*M, prefer M+M*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, 
 
- 		     info);
 
- 	    il = nwork;
 
- /*        Copy L to WORK(IL), zeroing out above its diagonal. */
 
- 	    dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
 
- 	    i__1 = *m - 1;
 
- 	    i__2 = *m - 1;
 
- 	    dlaset_("U", &i__1, &i__2, &c_b82, &c_b82, &work[il + ldwork], &
 
- 		    ldwork);
 
- 	    ie = il + ldwork * *m;
 
- 	    itauq = ie + *m;
 
- 	    itaup = itauq + *m;
 
- 	    nwork = itaup + *m;
 
- /*        Bidiagonalize L in WORK(IL). */
 
- /*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq], 
 
- 		    &work[itaup], &work[nwork], &i__1, info);
 
- /*        Multiply B by transpose of left bidiagonalizing vectors of L. */
 
- /*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
 
- 		    itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
 
- /*        Solve the bidiagonal least squares problem. */
 
- 	    dlalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 
 
- 		    ldb, rcond, rank, &work[nwork], &iwork[1], info);
 
- 	    if (*info != 0) {
 
- 		goto L10;
 
- 	    }
 
- /*        Multiply B by right bidiagonalizing vectors of L. */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
 
- 		    itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
 
- /*        Zero out below first M rows of B. */
 
- 	    i__1 = *n - *m;
 
- 	    dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[*m + 1 + b_dim1], 
 
- 		    ldb);
 
- 	    nwork = itau + *m;
 
- /*        Multiply transpose(Q) by B. */
 
- /*        (Workspace: need M+NRHS, prefer M+NRHS*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
 
- 		    b_offset], ldb, &work[nwork], &i__1, info);
 
- 	} else {
 
- /*        Path 2 - remaining underdetermined cases. */
 
- 	    ie = 1;
 
- 	    itauq = ie + *m;
 
- 	    itaup = itauq + *m;
 
- 	    nwork = itaup + *m;
 
- /*        Bidiagonalize A. */
 
- /*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
 
- 		    work[itaup], &work[nwork], &i__1, info);
 
- /*        Multiply B by transpose of left bidiagonalizing vectors. */
 
- /*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
 
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
 
- /*        Solve the bidiagonal least squares problem. */
 
- 	    dlalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 
 
- 		    ldb, rcond, rank, &work[nwork], &iwork[1], info);
 
- 	    if (*info != 0) {
 
- 		goto L10;
 
- 	    }
 
- /*        Multiply B by right bidiagonalizing vectors of A. */
 
- 	    i__1 = *lwork - nwork + 1;
 
- 	    dormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
 
- , &b[b_offset], ldb, &work[nwork], &i__1, info);
 
- 	}
 
-     }
 
- /*     Undo scaling. */
 
-     if (iascl == 1) {
 
- 	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
 
- 		minmn, info);
 
-     } else if (iascl == 2) {
 
- 	dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
 
- 		minmn, info);
 
-     }
 
-     if (ibscl == 1) {
 
- 	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
-     } else if (ibscl == 2) {
 
- 	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
-     }
 
- L10:
 
-     work[1] = (doublereal) maxwrk;
 
-     return 0;
 
- /*     End of DGELSD */
 
- } /* dgelsd_ */
 
 
  |