| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | 
							- /* dgbsv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dgbsv_(integer *n, integer *kl, integer *ku, integer *
 
- 	nrhs, doublereal *ab, integer *ldab, integer *ipiv, doublereal *b, 
 
- 	integer *ldb, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
 
-     /* Local variables */
 
-     extern /* Subroutine */ int dgbtrf_(integer *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, integer *, integer *), 
 
- 	    xerbla_(char *, integer *), dgbtrs_(char *, integer *, 
 
- 	    integer *, integer *, integer *, doublereal *, integer *, integer 
 
- 	    *, doublereal *, integer *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGBSV computes the solution to a real system of linear equations */
 
- /*  A * X = B, where A is a band matrix of order N with KL subdiagonals */
 
- /*  and KU superdiagonals, and X and B are N-by-NRHS matrices. */
 
- /*  The LU decomposition with partial pivoting and row interchanges is */
 
- /*  used to factor A as A = L * U, where L is a product of permutation */
 
- /*  and unit lower triangular matrices with KL subdiagonals, and U is */
 
- /*  upper triangular with KL+KU superdiagonals.  The factored form of A */
 
- /*  is then used to solve the system of equations A * X = B. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  KL      (input) INTEGER */
 
- /*          The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*  KU      (input) INTEGER */
 
- /*          The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the matrix A in band storage, in rows KL+1 to */
 
- /*          2*KL+KU+1; rows 1 to KL of the array need not be set. */
 
- /*          The j-th column of A is stored in the j-th column of the */
 
- /*          array AB as follows: */
 
- /*          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) */
 
- /*          On exit, details of the factorization: U is stored as an */
 
- /*          upper triangular band matrix with KL+KU superdiagonals in */
 
- /*          rows 1 to KL+KU+1, and the multipliers used during the */
 
- /*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
 
- /*          See below for further details. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */
 
- /*  IPIV    (output) INTEGER array, dimension (N) */
 
- /*          The pivot indices that define the permutation matrix P; */
 
- /*          row i of the matrix was interchanged with row IPIV(i). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N-by-NRHS right hand side matrix B. */
 
- /*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization */
 
- /*                has been completed, but the factor U is exactly */
 
- /*                singular, and the solution has not been computed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The band storage scheme is illustrated by the following example, when */
 
- /*  M = N = 6, KL = 2, KU = 1: */
 
- /*  On entry:                       On exit: */
 
- /*      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
 
- /*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
 
- /*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
 
- /*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
 
- /*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
 
- /*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */
 
- /*  Array elements marked * are not used by the routine; elements marked */
 
- /*  + need not be set on entry, but are required by the routine to store */
 
- /*  elements of U because of fill-in resulting from the row interchanges. */
 
- /*  ===================================================================== */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --ipiv;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*kl < 0) {
 
- 	*info = -2;
 
-     } else if (*ku < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*ldab < (*kl << 1) + *ku + 1) {
 
- 	*info = -6;
 
-     } else if (*ldb < max(*n,1)) {
 
- 	*info = -9;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGBSV ", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Compute the LU factorization of the band matrix A. */
 
-     dgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
 
-     if (*info == 0) {
 
- /*        Solve the system A*X = B, overwriting B with X. */
 
- 	dgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[
 
- 		1], &b[b_offset], ldb, info);
 
-     }
 
-     return 0;
 
- /*     End of DGBSV */
 
- } /* dgbsv_ */
 
 
  |