parallel_independent_heterogeneous_tasks_data.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2016 Bérangère Subervie
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include <stdbool.h>
  17. #include <starpu.h>
  18. #include "../helper.h"
  19. /* Run a series of independent tasks with heterogeneous execution time and independent data */
  20. #define TIME 0.010
  21. #ifdef STARPU_QUICK_CHECK
  22. #define TASK_COEFFICIENT 20
  23. #define MARGIN 0.20
  24. #else
  25. #define TASK_COEFFICIENT 100
  26. #define MARGIN 0.10
  27. #endif
  28. #define TIME_CUDA_COEFFICIENT 10
  29. #define TIME_OPENCL_COEFFICIENT 5
  30. #define SECONDS_SCALE_COEFFICIENT_TIMING_NOW 1000000
  31. #define NB_FLOAT 400000
  32. void wait_CPU(void *descr[], void *_args)
  33. {
  34. (void)descr;
  35. (void)_args;
  36. starpu_sleep(TIME);
  37. }
  38. void wait_CUDA(void *descr[], void *_args)
  39. {
  40. (void)descr;
  41. (void)_args;
  42. starpu_sleep(TIME/TIME_CUDA_COEFFICIENT);
  43. }
  44. void wait_OPENCL(void *descr[], void *_args)
  45. {
  46. (void)descr;
  47. (void)_args;
  48. starpu_sleep(TIME/TIME_OPENCL_COEFFICIENT);
  49. }
  50. double cost_function(struct starpu_task *t, struct starpu_perfmodel_arch *a, unsigned i)
  51. {
  52. (void) t; (void) i;
  53. STARPU_ASSERT(a->ndevices == 1);
  54. if (a->devices[0].type == STARPU_CPU_WORKER)
  55. {
  56. STARPU_ASSERT(a->devices[0].ncores == 1);
  57. return TIME * 1000000;
  58. }
  59. else if (a->devices[0].type == STARPU_CUDA_WORKER)
  60. {
  61. return TIME/TIME_CUDA_COEFFICIENT * 1000000;
  62. }
  63. else if (a->devices[0].type == STARPU_OPENCL_WORKER)
  64. {
  65. return TIME/TIME_OPENCL_COEFFICIENT * 1000000;
  66. }
  67. STARPU_ASSERT(0);
  68. return 0.0;
  69. }
  70. static struct starpu_perfmodel perf_model =
  71. {
  72. .type = STARPU_PER_ARCH,
  73. .arch_cost_function = cost_function,
  74. };
  75. static struct starpu_codelet cl =
  76. {
  77. .cpu_funcs = { wait_CPU },
  78. .cuda_funcs = { wait_CUDA },
  79. .opencl_funcs = { wait_OPENCL },
  80. .cpu_funcs_name = { "wait_CPU" },
  81. .nbuffers = 1,
  82. .modes = {STARPU_RW},
  83. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  84. .model = &perf_model,
  85. };
  86. int main(int argc, char *argv[])
  87. {
  88. int ret;
  89. ret = starpu_initialize(NULL, &argc, &argv);
  90. if (ret == -ENODEV) return STARPU_TEST_SKIPPED;
  91. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  92. unsigned nb_tasks, nb_workers_CPU, nb_workers_CUDA, nb_workers_OPENCL;
  93. double begin_time, end_time, time_m, time_s, speed_up, expected_speed_up, percentage_expected_speed_up;
  94. bool check, check_sup;
  95. nb_workers_CPU = starpu_worker_get_count_by_type(STARPU_CPU_WORKER);
  96. nb_workers_CUDA = starpu_worker_get_count_by_type(STARPU_CUDA_WORKER);
  97. nb_workers_OPENCL = starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER);
  98. nb_tasks = (nb_workers_CPU + nb_workers_CUDA + nb_workers_OPENCL)*TASK_COEFFICIENT;
  99. /* We consider a vector of float that is initialized just as any of C
  100. * data */
  101. float *vector[nb_tasks];
  102. starpu_data_handle_t vector_handle[nb_tasks];
  103. unsigned i,j;
  104. for (j = 0; j < nb_tasks; j++)
  105. {
  106. vector[j] = malloc(NB_FLOAT * sizeof(float));
  107. #ifndef STARPU_SIMGRID
  108. for (i = 0; i < NB_FLOAT; i++)
  109. vector[j][i] = (i+1.0f);
  110. #endif
  111. /* Tell StaPU to associate the "vector" vector with the "vector_handle"
  112. * identifier. When a task needs to access a piece of data, it should
  113. * refer to the handle that is associated to it.
  114. * In the case of the "vector" data interface:
  115. * - the first argument of the registration method is a pointer to the
  116. * handle that should describe the data
  117. * - the second argument is the memory node where the data (ie. "vector")
  118. * resides initially: STARPU_MAIN_RAM stands for an address in main memory, as
  119. * opposed to an adress on a GPU for instance.
  120. * - the third argument is the adress of the vector in RAM
  121. * - the fourth argument is the number of elements in the vector
  122. * - the fifth argument is the size of each element.
  123. */
  124. starpu_vector_data_register(&vector_handle[j], STARPU_MAIN_RAM, (uintptr_t)vector[j], NB_FLOAT, sizeof(vector[0][0]));
  125. }
  126. begin_time = starpu_timing_now();
  127. /*execution des tasks*/
  128. for (i=0; i<nb_tasks; i++)
  129. {
  130. starpu_task_insert(&cl, STARPU_RW, vector_handle[i], 0);
  131. starpu_data_wont_use(vector_handle[i]);
  132. }
  133. starpu_task_wait_for_all();
  134. end_time = starpu_timing_now();
  135. for (j = 0; j < nb_tasks; j++)
  136. starpu_data_unregister(vector_handle[j]);
  137. /*on determine si le temps mesure est satisfaisant ou pas*/
  138. time_m = (end_time - begin_time)/SECONDS_SCALE_COEFFICIENT_TIMING_NOW; //pour ramener en secondes
  139. time_s = nb_tasks * TIME;
  140. speed_up = time_s/time_m;
  141. expected_speed_up = nb_workers_CPU + TIME_CUDA_COEFFICIENT*nb_workers_CUDA + TIME_OPENCL_COEFFICIENT*nb_workers_OPENCL;
  142. percentage_expected_speed_up = 100 * (speed_up/expected_speed_up);
  143. check = speed_up >= ((1 - MARGIN) * expected_speed_up);
  144. check_sup = speed_up <= ((1 + MARGIN) * expected_speed_up);
  145. printf("measured time = %f seconds\nsequential time = %f seconds\nspeed up = %f\nnumber of workers CPU = %u\nnumber of workers CUDA = %u\nnumber of workers OPENCL = %u\nnumber of tasks = %u\nexpected speed up = %f\npercentage of expected speed up %.2f%%\n", time_m, time_s, speed_up, nb_workers_CPU, nb_workers_CUDA, nb_workers_OPENCL, nb_tasks, expected_speed_up, percentage_expected_speed_up);
  146. starpu_shutdown();
  147. for (j = 0; j < nb_tasks; j++)
  148. free(vector[j]);
  149. //test reussi ou test echoue
  150. if (check && check_sup)
  151. {
  152. return EXIT_SUCCESS;
  153. }
  154. else
  155. {
  156. return EXIT_FAILURE;
  157. }
  158. }