parallel_independent_heterogeneous_tasks.c 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2016 Bérangère Subervie
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include <stdbool.h>
  17. #include <starpu.h>
  18. #include "../helper.h"
  19. /* Run a series of independent tasks with heterogeneous execution time */
  20. #define TIME 0.010
  21. #ifdef STARPU_QUICK_CHECK
  22. #define TASK_COEFFICIENT 20
  23. #define MARGIN 0.20
  24. #else
  25. #define TASK_COEFFICIENT 100
  26. #define MARGIN 0.10
  27. #endif
  28. #define TIME_CUDA_COEFFICIENT 10
  29. #define TIME_OPENCL_COEFFICIENT 5
  30. #define SECONDS_SCALE_COEFFICIENT_TIMING_NOW 1000000
  31. void wait_CPU(void *descr[], void *_args)
  32. {
  33. (void)descr;
  34. (void)_args;
  35. starpu_sleep(TIME);
  36. }
  37. void wait_CUDA(void *descr[], void *_args)
  38. {
  39. (void)descr;
  40. (void)_args;
  41. starpu_sleep(TIME/TIME_CUDA_COEFFICIENT);
  42. }
  43. void wait_OPENCL(void *descr[], void *_args)
  44. {
  45. (void)descr;
  46. (void)_args;
  47. starpu_sleep(TIME/TIME_OPENCL_COEFFICIENT);
  48. }
  49. double cost_function(struct starpu_task *t, struct starpu_perfmodel_arch *a, unsigned i)
  50. {
  51. (void) t; (void) i;
  52. STARPU_ASSERT(a->ndevices == 1);
  53. if (a->devices[0].type == STARPU_CPU_WORKER)
  54. {
  55. STARPU_ASSERT(a->devices[0].ncores == 1);
  56. return TIME * 1000000;
  57. }
  58. else if (a->devices[0].type == STARPU_CUDA_WORKER)
  59. {
  60. return TIME/TIME_CUDA_COEFFICIENT * 1000000;
  61. }
  62. else if (a->devices[0].type == STARPU_OPENCL_WORKER)
  63. {
  64. return TIME/TIME_OPENCL_COEFFICIENT * 1000000;
  65. }
  66. STARPU_ASSERT(0);
  67. return 0.0;
  68. }
  69. static struct starpu_perfmodel perf_model =
  70. {
  71. .type = STARPU_PER_ARCH,
  72. .arch_cost_function = cost_function,
  73. };
  74. static struct starpu_codelet cl =
  75. {
  76. .cpu_funcs = { wait_CPU },
  77. .cuda_funcs = { wait_CUDA },
  78. .opencl_funcs = { wait_OPENCL },
  79. .cpu_funcs_name = { "wait_CPU" },
  80. .nbuffers = 0,
  81. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  82. .model = &perf_model,
  83. };
  84. int main(int argc, char *argv[])
  85. {
  86. int ret;
  87. ret = starpu_initialize(NULL, &argc, &argv);
  88. if (ret == -ENODEV) return STARPU_TEST_SKIPPED;
  89. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  90. unsigned nb_tasks, nb_workers_CPU, nb_workers_CUDA, nb_workers_OPENCL, i;
  91. double begin_time, end_time, time_m, time_s, speed_up, expected_speed_up, percentage_expected_speed_up;
  92. bool check, check_sup;
  93. nb_workers_CPU = starpu_worker_get_count_by_type(STARPU_CPU_WORKER);
  94. nb_workers_CUDA = starpu_worker_get_count_by_type(STARPU_CUDA_WORKER);
  95. nb_workers_OPENCL = starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER);
  96. nb_tasks = (nb_workers_CPU + nb_workers_CUDA + nb_workers_OPENCL)*TASK_COEFFICIENT;
  97. begin_time = starpu_timing_now();
  98. /*execution des tasks*/
  99. for (i=0; i<nb_tasks; i++)
  100. {
  101. starpu_task_insert(&cl,0);
  102. }
  103. starpu_task_wait_for_all();
  104. end_time = starpu_timing_now();
  105. /*on determine si le temps mesure est satisfaisant ou pas*/
  106. time_m = (end_time - begin_time)/SECONDS_SCALE_COEFFICIENT_TIMING_NOW; //pour ramener en secondes
  107. time_s = nb_tasks * TIME;
  108. speed_up = time_s/time_m;
  109. expected_speed_up = nb_workers_CPU + TIME_CUDA_COEFFICIENT*nb_workers_CUDA + TIME_OPENCL_COEFFICIENT*nb_workers_OPENCL;
  110. percentage_expected_speed_up = 100 * (speed_up/expected_speed_up);
  111. check = speed_up >= (1 - MARGIN) * expected_speed_up;
  112. check_sup = speed_up <= (1 + MARGIN) * expected_speed_up;
  113. printf("measured time = %f seconds\nsequential time = %f seconds\nspeed up = %f\nnumber of workers CPU = %u\nnumber of workers CUDA = %u\nnumber of workers OPENCL = %u\nnumber of tasks = %u\nexpected speed up = %f\npercentage of expected speed up = %.2f%%\n", time_m, time_s, speed_up, nb_workers_CPU, nb_workers_CUDA, nb_workers_OPENCL, nb_tasks, expected_speed_up, percentage_expected_speed_up);
  114. starpu_shutdown();
  115. //test reussi ou test echoue
  116. if (check && check_sup)
  117. {
  118. return EXIT_SUCCESS;
  119. }
  120. else
  121. {
  122. return EXIT_FAILURE;
  123. }
  124. }