mpi-support.texi 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. The integration of MPI transfers within task parallelism is done in a
  8. very natural way by the means of asynchronous interactions between the
  9. application and StarPU. This is implemented in a separate libstarpumpi library
  10. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  11. @code{void *} buffers are replaced with @code{starpu_data_handle_t}s, and all
  12. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to
  13. use the usual @code{mpirun} command of the MPI implementation to start StarPU on
  14. the different MPI nodes.
  15. An MPI Insert Task function provides an even more seamless transition to a
  16. distributed application, by automatically issuing all required data transfers
  17. according to the task graph and an application-provided distribution.
  18. @menu
  19. * Simple Example::
  20. * Point to point communication::
  21. * Exchanging User Defined Data Interface::
  22. * MPI Insert Task Utility::
  23. * MPI Collective Operations::
  24. @end menu
  25. @node Simple Example
  26. @section Simple Example
  27. The flags required to compile or link against the MPI layer are then
  28. accessible with the following commands:
  29. @example
  30. $ pkg-config --cflags starpumpi-1.0 # options for the compiler
  31. $ pkg-config --libs starpumpi-1.0 # options for the linker
  32. @end example
  33. Also pass the @code{--static} option if the application is to be linked statically.
  34. @cartouche
  35. @smallexample
  36. void increment_token(void)
  37. @{
  38. struct starpu_task *task = starpu_task_create();
  39. task->cl = &increment_cl;
  40. task->handles[0] = token_handle;
  41. starpu_task_submit(task);
  42. @}
  43. @end smallexample
  44. @end cartouche
  45. @cartouche
  46. @smallexample
  47. int main(int argc, char **argv)
  48. @{
  49. int rank, size;
  50. starpu_init(NULL);
  51. starpu_mpi_initialize_extended(&rank, &size);
  52. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  53. unsigned nloops = NITER;
  54. unsigned loop;
  55. unsigned last_loop = nloops - 1;
  56. unsigned last_rank = size - 1;
  57. @end smallexample
  58. @end cartouche
  59. @cartouche
  60. @smallexample
  61. for (loop = 0; loop < nloops; loop++) @{
  62. int tag = loop*size + rank;
  63. if (loop == 0 && rank == 0)
  64. @{
  65. token = 0;
  66. fprintf(stdout, "Start with token value %d\n", token);
  67. @}
  68. else
  69. @{
  70. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  71. MPI_COMM_WORLD, NULL, NULL);
  72. @}
  73. increment_token();
  74. if (loop == last_loop && rank == last_rank)
  75. @{
  76. starpu_data_acquire(token_handle, STARPU_R);
  77. fprintf(stdout, "Finished: token value %d\n", token);
  78. starpu_data_release(token_handle);
  79. @}
  80. else
  81. @{
  82. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  83. MPI_COMM_WORLD, NULL, NULL);
  84. @}
  85. @}
  86. starpu_task_wait_for_all();
  87. @end smallexample
  88. @end cartouche
  89. @cartouche
  90. @smallexample
  91. starpu_mpi_shutdown();
  92. starpu_shutdown();
  93. if (rank == last_rank)
  94. @{
  95. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  96. STARPU_ASSERT(token == nloops*size);
  97. @}
  98. @end smallexample
  99. @end cartouche
  100. @node Point to point communication
  101. @section Point to point communication
  102. The standard point to point communications of MPI have been
  103. implemented. The semantic is similar to the MPI one, but adapted to
  104. the DSM provided by StarPU. A MPI request will only be submitted when
  105. the data is available in the main memory of the node submitting the
  106. request.
  107. There is two types of asynchronous communications: the classic
  108. asynchronous communications and the detached communications. The
  109. classic asynchronous communications (@code{starpu_mpi_isend} and
  110. @code{starpu_mpi_irecv}) need to be followed by a call to
  111. @code{starpu_mpi_wait} or to @code{starpu_mpi_test} to wait for or to
  112. test the completion of the communication. Waiting for or testing the
  113. completion of detached communications is not possible, this is done
  114. internally by StarPU-MPI, on completion, the resources are
  115. automatically released. This mechanism is similar to the pthread
  116. detach state attribute which determines whether a thread will be
  117. created in a joinable or a detached state.
  118. For any communication, the call of the function will result in the
  119. creation of a StarPU-MPI request, the function
  120. @code{starpu_data_acquire_cb} is then called to asynchronously request
  121. StarPU to fetch the data in main memory; when the data is available in
  122. main memory, a StarPU-MPI function is called to put the new request in
  123. the list of the ready requests if it is a send request, or in an
  124. hashmap if it is a receive request.
  125. Internally, all MPI communications submitted by StarPU uses a unique
  126. tag called starpu_mpi_tag, which can be accessed with getter/setter
  127. functions.
  128. @deftypefun void starpu_mpi_set_starpu_mpi_tag (int @var{tag})
  129. Tell StarPU-MPI which MPI tag to use for all its communications.
  130. @end deftypefun
  131. @deftypefun int starpu_mpi_get_starpu_mpi_tag (void)
  132. Returns the MPI tag which will be used for all StarPU-MPI communications.
  133. @end deftypefun
  134. The matching of tags with corresponding requests is done into StarPU-MPI.
  135. To handle this, any communication is a double-communication based on a
  136. envelope + data system. Every data which will be sent needs to send an
  137. envelope which describes the data (particularly its tag) before sending
  138. the data, so the receiver can get the matching pending receive request
  139. from the hashmap, and submit it to recieve the data correctly.
  140. To this aim, the StarPU-MPI progression thread has a permanent-submitted
  141. request destined to receive incoming envelopes from all sources.
  142. The StarPU-MPI progression thread regularly polls this list of ready
  143. requests. For each new ready request, the appropriate function is
  144. called to post the corresponding MPI call. For example, calling
  145. @code{starpu_mpi_isend} will result in posting @code{MPI_Isend}. If
  146. the request is marked as detached, the request will be put in the list
  147. of detached requests.
  148. The StarPU-MPI progression thread also polls the list of detached
  149. requests. For each detached request, it regularly tests the completion
  150. of the MPI request by calling @code{MPI_Test}. On completion, the data
  151. handle is released, and if a callback was defined, it is called.
  152. Finally, the StarPU-MPI progression thread checks if an envelope has
  153. arrived. If it is, it'll check if the corresponding receive has already
  154. been submitted by the application. If it is, it'll submit the request
  155. just as like as it does with those on the list of ready requests.
  156. If it is not, it'll allocate a temporary handle to store the data that
  157. will arrive just after, so as when the corresponding receive request
  158. will be submitted by the application, it'll copy this temporary handle
  159. into its one instead of submitting a new StarPU-MPI request.
  160. @ref{Communication} gives the list of all the point to point
  161. communications defined in StarPU-MPI.
  162. @node Exchanging User Defined Data Interface
  163. @section Exchanging User Defined Data Interface
  164. New data interfaces defined as explained in @ref{Defining a New Data
  165. Interface} can also be used within StarPU-MPI and exchanged between
  166. nodes. Two functions needs to be defined through
  167. the type @code{struct starpu_data_interface_ops} (@pxref{Defining
  168. Interface}). The pack function takes a handle and returns a
  169. contiguous memory buffer along with its size where data to be conveyed to another node
  170. should be copied. The reversed operation is implemented in the unpack
  171. function which takes a contiguous memory buffer and recreates the data
  172. handle.
  173. @cartouche
  174. @smallexample
  175. static int complex_pack_data(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)
  176. @{
  177. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  178. struct starpu_complex_interface *complex_interface =
  179. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  180. *count = complex_get_size(handle);
  181. *ptr = malloc(*count);
  182. memcpy(*ptr, complex_interface->real, complex_interface->nx*sizeof(double));
  183. memcpy(*ptr+complex_interface->nx*sizeof(double), complex_interface->imaginary,
  184. complex_interface->nx*sizeof(double));
  185. return 0;
  186. @}
  187. @end smallexample
  188. @end cartouche
  189. @cartouche
  190. @smallexample
  191. static int complex_unpack_data(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)
  192. @{
  193. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  194. struct starpu_complex_interface *complex_interface =
  195. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  196. memcpy(complex_interface->real, ptr, complex_interface->nx*sizeof(double));
  197. memcpy(complex_interface->imaginary, ptr+complex_interface->nx*sizeof(double),
  198. complex_interface->nx*sizeof(double));
  199. return 0;
  200. @}
  201. @end smallexample
  202. @end cartouche
  203. @cartouche
  204. @smallexample
  205. static struct starpu_data_interface_ops interface_complex_ops =
  206. @{
  207. ...
  208. .pack_data = complex_pack_data,
  209. .unpack_data = complex_unpack_data
  210. @};
  211. @end smallexample
  212. @end cartouche
  213. @node MPI Insert Task Utility
  214. @section MPI Insert Task Utility
  215. To save the programmer from having to explicit all communications, StarPU
  216. provides an "MPI Insert Task Utility". The principe is that the application
  217. decides a distribution of the data over the MPI nodes by allocating it and
  218. notifying StarPU of that decision, i.e. tell StarPU which MPI node "owns"
  219. which data. It also decides, for each handle, an MPI tag which will be used to
  220. exchange the content of the handle. All MPI nodes then process the whole task
  221. graph, and StarPU automatically determines which node actually execute which
  222. task, and trigger the required MPI transfers.
  223. The list of functions are described in @ref{MPI Insert Task}.
  224. Here an stencil example showing how to use @code{starpu_mpi_insert_task}. One
  225. first needs to define a distribution function which specifies the
  226. locality of the data. Note that that distribution information needs to
  227. be given to StarPU by calling @code{starpu_data_set_rank}. A MPI tag
  228. should also be defined for each data handle by calling
  229. @code{starpu_data_set_tag}.
  230. @cartouche
  231. @smallexample
  232. /* Returns the MPI node number where data is */
  233. int my_distrib(int x, int y, int nb_nodes) @{
  234. /* Block distrib */
  235. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  236. // /* Other examples useful for other kinds of computations */
  237. // /* / distrib */
  238. // return (x+y) % nb_nodes;
  239. // /* Block cyclic distrib */
  240. // unsigned side = sqrt(nb_nodes);
  241. // return x % side + (y % side) * size;
  242. @}
  243. @end smallexample
  244. @end cartouche
  245. Now the data can be registered within StarPU. Data which are not
  246. owned but will be needed for computations can be registered through
  247. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  248. StarPU will automatically allocate the memory when it is used for the
  249. first time.
  250. One can note an optimization here (the @code{else if} test): we only register
  251. data which will be needed by the tasks that we will execute.
  252. @cartouche
  253. @smallexample
  254. unsigned matrix[X][Y];
  255. starpu_data_handle_t data_handles[X][Y];
  256. for(x = 0; x < X; x++) @{
  257. for (y = 0; y < Y; y++) @{
  258. int mpi_rank = my_distrib(x, y, size);
  259. if (mpi_rank == my_rank)
  260. /* Owning data */
  261. starpu_variable_data_register(&data_handles[x][y], 0,
  262. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  263. else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
  264. || my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
  265. /* I don't own that index, but will need it for my computations */
  266. starpu_variable_data_register(&data_handles[x][y], -1,
  267. (uintptr_t)NULL, sizeof(unsigned));
  268. else
  269. /* I know it's useless to allocate anything for this */
  270. data_handles[x][y] = NULL;
  271. if (data_handles[x][y]) @{
  272. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  273. starpu_data_set_tag(data_handles[x][y], x*X+y);
  274. @}
  275. @}
  276. @}
  277. @end smallexample
  278. @end cartouche
  279. Now @code{starpu_mpi_insert_task()} can be called for the different
  280. steps of the application.
  281. @cartouche
  282. @smallexample
  283. for(loop=0 ; loop<niter; loop++)
  284. for (x = 1; x < X-1; x++)
  285. for (y = 1; y < Y-1; y++)
  286. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  287. STARPU_RW, data_handles[x][y],
  288. STARPU_R, data_handles[x-1][y],
  289. STARPU_R, data_handles[x+1][y],
  290. STARPU_R, data_handles[x][y-1],
  291. STARPU_R, data_handles[x][y+1],
  292. 0);
  293. starpu_task_wait_for_all();
  294. @end smallexample
  295. @end cartouche
  296. I.e. all MPI nodes process the whole task graph, but as mentioned above, for
  297. each task, only the MPI node which owns the data being written to (here,
  298. @code{data_handles[x][y]}) will actually run the task. The other MPI nodes will
  299. automatically send the required data.
  300. This can be a concern with a growing number of nodes. To avoid this, the
  301. application can prune the task for loops according to the data distribution,
  302. so as to only submit tasks on nodes which have to care about them (either to
  303. execute them, or to send the required data).
  304. @node MPI Collective Operations
  305. @section MPI Collective Operations
  306. The functions are described in @ref{Collective Operations}.
  307. @cartouche
  308. @smallexample
  309. if (rank == root)
  310. @{
  311. /* Allocate the vector */
  312. vector = malloc(nblocks * sizeof(float *));
  313. for(x=0 ; x<nblocks ; x++)
  314. @{
  315. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  316. @}
  317. @}
  318. /* Allocate data handles and register data to StarPU */
  319. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  320. for(x = 0; x < nblocks ; x++)
  321. @{
  322. int mpi_rank = my_distrib(x, nodes);
  323. if (rank == root) @{
  324. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  325. blocks_size, sizeof(float));
  326. @}
  327. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  328. /* I own that index, or i will need it for my computations */
  329. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  330. block_size, sizeof(float));
  331. @}
  332. else @{
  333. /* I know it's useless to allocate anything for this */
  334. data_handles[x] = NULL;
  335. @}
  336. if (data_handles[x]) @{
  337. starpu_data_set_rank(data_handles[x], mpi_rank);
  338. starpu_data_set_tag(data_handles[x], x*nblocks+y);
  339. @}
  340. @}
  341. /* Scatter the matrix among the nodes */
  342. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  343. /* Calculation */
  344. for(x = 0; x < nblocks ; x++) @{
  345. if (data_handles[x]) @{
  346. int owner = starpu_data_get_rank(data_handles[x]);
  347. if (owner == rank) @{
  348. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  349. @}
  350. @}
  351. @}
  352. /* Gather the matrix on main node */
  353. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  354. @end smallexample
  355. @end cartouche