starpu.texi 136 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance feedback:: Performance debugging tools
  31. * Configuring StarPU:: How to configure StarPU
  32. * StarPU API:: The API to use StarPU
  33. * Advanced Topics:: Advanced use of StarPU
  34. * Full source code for the 'Scaling a Vector' example::
  35. @end menu
  36. @c ---------------------------------------------------------------------
  37. @c Introduction to StarPU
  38. @c ---------------------------------------------------------------------
  39. @node Introduction
  40. @chapter Introduction to StarPU
  41. @menu
  42. * Motivation:: Why StarPU ?
  43. * StarPU in a Nutshell:: The Fundamentals of StarPU
  44. @end menu
  45. @node Motivation
  46. @section Motivation
  47. @c complex machines with heterogeneous cores/devices
  48. The use of specialized hardware such as accelerators or coprocessors offers an
  49. interesting approach to overcome the physical limits encountered by processor
  50. architects. As a result, many machines are now equipped with one or several
  51. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  52. efforts have been devoted to offload computation onto such accelerators, very
  53. little attention as been paid to portability concerns on the one hand, and to the
  54. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  55. StarPU is a runtime system that offers support for heterogeneous multicore
  56. architectures, it not only offers a unified view of the computational resources
  57. (i.e. CPUs and accelerators at the same time), but it also takes care of
  58. efficiently mapping and executing tasks onto an heterogeneous machine while
  59. transparently handling low-level issues in a portable fashion.
  60. @c this leads to a complicated distributed memory design
  61. @c which is not (easily) manageable by hand
  62. @c added value/benefits of StarPU
  63. @c - portability
  64. @c - scheduling, perf. portability
  65. @node StarPU in a Nutshell
  66. @section StarPU in a Nutshell
  67. @menu
  68. * Codelet and Tasks::
  69. * StarPU Data Management Library::
  70. * Research Papers::
  71. @end menu
  72. From a programming point of view, StarPU is not a new language but a library
  73. that executes tasks explicitly submitted by the application. The data that a
  74. task manipulates are automatically transferred onto the accelerator so that the
  75. programmer does not have to take care of complex data movements. StarPU also
  76. takes particular care of scheduling those tasks efficiently and allows
  77. scheduling experts to implement custom scheduling policies in a portable
  78. fashion.
  79. @c explain the notion of codelet and task (i.e. g(A, B)
  80. @node Codelet and Tasks
  81. @subsection Codelet and Tasks
  82. One of StarPU primary data structure is the @b{codelet}. A codelet describes a
  83. computational kernel that can possibly be implemented on multiple architectures
  84. such as a CPU, a CUDA device or a Cell's SPU.
  85. @c TODO insert illustration f : f_spu, f_cpu, ...
  86. Another important data structure is the @b{task}. Executing a StarPU task
  87. consists in applying a codelet on a data set, on one of the architectures on
  88. which the codelet is implemented. In addition to the codelet that a task
  89. implements, it also describes which data are accessed, and how they are
  90. accessed during the computation (read and/or write).
  91. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  92. operation. The task structure can also specify a @b{callback} function that is
  93. called once StarPU has properly executed the task. It also contains optional
  94. fields that the application may use to give hints to the scheduler (such as
  95. priority levels).
  96. A task may be identified by a unique 64-bit number which we refer as a @b{tag}.
  97. Task dependencies can be enforced either by the means of callback functions, or
  98. by expressing dependencies between tags.
  99. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  100. @c DSM
  101. @node StarPU Data Management Library
  102. @subsection StarPU Data Management Library
  103. Because StarPU schedules tasks at runtime, data transfers have to be
  104. done automatically and ``just-in-time'' between processing units,
  105. relieving the application programmer from explicit data transfers.
  106. Moreover, to avoid unnecessary transfers, StarPU keeps data
  107. where it was last needed, even if was modified there, and it
  108. allows multiple copies of the same data to reside at the same time on
  109. several processing units as long as it is not modified.
  110. @node Research Papers
  111. @subsection Research Papers
  112. Research papers about StarPU can be found at
  113. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  114. Notably a good overview in the research report
  115. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  116. @c ---------------------------------------------------------------------
  117. @c Installing StarPU
  118. @c ---------------------------------------------------------------------
  119. @node Installing StarPU
  120. @chapter Installing StarPU
  121. @menu
  122. * Downloading StarPU::
  123. * Configuration of StarPU::
  124. * Building and Installing StarPU::
  125. @end menu
  126. StarPU can be built and installed by the standard means of the GNU
  127. autotools. The following chapter is intended to briefly remind how these tools
  128. can be used to install StarPU.
  129. @node Downloading StarPU
  130. @section Downloading StarPU
  131. @menu
  132. * Getting Sources::
  133. * Optional dependencies::
  134. @end menu
  135. @node Getting Sources
  136. @subsection Getting Sources
  137. The source code is managed by a Subversion server hosted by the
  138. InriaGforge. To get the source code, you need:
  139. @itemize
  140. @item
  141. To install the client side of the software Subversion if it is
  142. not already available on your system. The software can be obtained from
  143. @indicateurl{http://subversion.tigris.org}.
  144. @item
  145. You can check out the project's SVN repository through anonymous
  146. access. This will provide you with a read access to the
  147. repository.
  148. You can also choose to become a member of the project @code{starpu}.
  149. For this, you first need to get an account to the gForge server. You
  150. can then send a request to join the project
  151. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  152. @item
  153. More information on how to get a gForge account, to become a member of
  154. a project, or on any other related task can be obtained from the
  155. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  156. thing is to upload your public SSH key on the gForge server (see the
  157. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  158. instructions).
  159. @end itemize
  160. You can now check out the latest version from the Subversion server:
  161. @itemize
  162. @item
  163. using the anonymous access via svn:
  164. @example
  165. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  166. @end example
  167. @item
  168. using the anonymous access via https:
  169. @example
  170. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  171. @end example
  172. The password is @code{anonsvn}.
  173. @item
  174. using your gForge account
  175. @example
  176. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  177. @end example
  178. @end itemize
  179. These steps require to run autoconf and automake to generate the
  180. @code{./configure} script. This can be done by calling
  181. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  182. higher.
  183. @example
  184. % ./autogen.sh
  185. @end example
  186. If the autotools are not available on your machine or not recent
  187. enough, you can choose to download the latest nightly tarball, which
  188. is provided with a @code{configure} script.
  189. @example
  190. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  191. @end example
  192. @node Optional dependencies
  193. @subsection Optional dependencies
  194. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  195. but strongly recommended. It allows to increase performance, and to
  196. perform some topology aware scheduling.
  197. @code{hwloc} is available in major distributions and for most OSes and can be
  198. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  199. @node Configuration of StarPU
  200. @section Configuration of StarPU
  201. @menu
  202. * Generating Makefiles and configuration scripts::
  203. * Running the configuration::
  204. @end menu
  205. @node Generating Makefiles and configuration scripts
  206. @subsection Generating Makefiles and configuration scripts
  207. This step is not necessary when using the tarball releases of StarPU. If you
  208. are using the source code from the svn repository, you first need to generate
  209. the configure scripts and the Makefiles.
  210. @example
  211. % ./autogen.sh
  212. @end example
  213. @node Running the configuration
  214. @subsection Running the configuration
  215. @example
  216. % ./configure
  217. @end example
  218. Details about options that are useful to give to @code{./configure} are given in
  219. @ref{Compilation configuration}.
  220. @node Building and Installing StarPU
  221. @section Building and Installing StarPU
  222. @menu
  223. * Building::
  224. * Sanity Checks::
  225. * Installing::
  226. @end menu
  227. @node Building
  228. @subsection Building
  229. @example
  230. % make
  231. @end example
  232. @node Sanity Checks
  233. @subsection Sanity Checks
  234. In order to make sure that StarPU is working properly on the system, it is also
  235. possible to run a test suite.
  236. @example
  237. % make check
  238. @end example
  239. @node Installing
  240. @subsection Installing
  241. In order to install StarPU at the location that was specified during
  242. configuration:
  243. @example
  244. % make install
  245. @end example
  246. @c ---------------------------------------------------------------------
  247. @c Using StarPU
  248. @c ---------------------------------------------------------------------
  249. @node Using StarPU
  250. @chapter Using StarPU
  251. @menu
  252. * Setting flags for compiling and linking applications::
  253. * Running a basic StarPU application::
  254. @end menu
  255. @node Setting flags for compiling and linking applications
  256. @section Setting flags for compiling and linking applications
  257. Compiling and linking an application against StarPU may require to use
  258. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  259. To this end, it is possible to use the @code{pkg-config} tool.
  260. If StarPU was not installed at some standard location, the path of StarPU's
  261. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  262. that @code{pkg-config} can find it. For example if StarPU was installed in
  263. @code{$prefix_dir}:
  264. @example
  265. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  266. @end example
  267. The flags required to compile or link against StarPU are then
  268. accessible with the following commands:
  269. @example
  270. % pkg-config --cflags libstarpu # options for the compiler
  271. % pkg-config --libs libstarpu # options for the linker
  272. @end example
  273. @node Running a basic StarPU application
  274. @section Running a basic StarPU application
  275. Basic examples using StarPU have been built in the directory
  276. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  277. example @code{vector_scal}.
  278. @example
  279. % $prefix_dir/lib/starpu/examples/vector_scal
  280. BEFORE : First element was 1.000000
  281. AFTER First element is 3.140000
  282. %
  283. @end example
  284. When StarPU is used for the first time, the directory
  285. @code{$HOME/.starpu/} is created, performance models will be stored in
  286. that directory.
  287. Please note that buses are benchmarked when StarPU is launched for the
  288. first time. This may take a few minutes, or less if @code{hwloc} is
  289. installed. This step is done only once per user and per machine.
  290. @c ---------------------------------------------------------------------
  291. @c Basic Examples
  292. @c ---------------------------------------------------------------------
  293. @node Basic Examples
  294. @chapter Basic Examples
  295. @menu
  296. * Compiling and linking options::
  297. * Hello World:: Submitting Tasks
  298. * Scaling a Vector:: Manipulating Data
  299. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  300. * Task and Worker Profiling::
  301. * Partitioning Data:: Partitioning Data
  302. * Performance model example::
  303. * Theoretical lower bound on execution time::
  304. * More examples:: More examples shipped with StarPU
  305. @end menu
  306. @node Compiling and linking options
  307. @section Compiling and linking options
  308. Let's suppose StarPU has been installed in the directory
  309. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  310. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  311. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  312. libraries at runtime.
  313. @example
  314. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  315. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  316. @end example
  317. The Makefile could for instance contain the following lines to define which
  318. options must be given to the compiler and to the linker:
  319. @cartouche
  320. @example
  321. CFLAGS += $$(pkg-config --cflags libstarpu)
  322. LDFLAGS += $$(pkg-config --libs libstarpu)
  323. @end example
  324. @end cartouche
  325. @node Hello World
  326. @section Hello World
  327. @menu
  328. * Required Headers::
  329. * Defining a Codelet::
  330. * Submitting a Task::
  331. * Execution of Hello World::
  332. @end menu
  333. In this section, we show how to implement a simple program that submits a task to StarPU.
  334. @node Required Headers
  335. @subsection Required Headers
  336. The @code{starpu.h} header should be included in any code using StarPU.
  337. @cartouche
  338. @smallexample
  339. #include <starpu.h>
  340. @end smallexample
  341. @end cartouche
  342. @node Defining a Codelet
  343. @subsection Defining a Codelet
  344. @cartouche
  345. @smallexample
  346. void cpu_func(void *buffers[], void *cl_arg)
  347. @{
  348. float *array = cl_arg;
  349. printf("Hello world (array = @{%f, %f@} )\n", array[0], array[1]);
  350. @}
  351. starpu_codelet cl =
  352. @{
  353. .where = STARPU_CPU,
  354. .cpu_func = cpu_func,
  355. .nbuffers = 0
  356. @};
  357. @end smallexample
  358. @end cartouche
  359. A codelet is a structure that represents a computational kernel. Such a codelet
  360. may contain an implementation of the same kernel on different architectures
  361. (e.g. CUDA, Cell's SPU, x86, ...).
  362. The @code{nbuffers} field specifies the number of data buffers that are
  363. manipulated by the codelet: here the codelet does not access or modify any data
  364. that is controlled by our data management library. Note that the argument
  365. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  366. structure) does not count as a buffer since it is not managed by our data
  367. management library.
  368. @c TODO need a crossref to the proper description of "where" see bla for more ...
  369. We create a codelet which may only be executed on the CPUs. The @code{where}
  370. field is a bitmask that defines where the codelet may be executed. Here, the
  371. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  372. (@pxref{Codelets and Tasks} for more details on this field).
  373. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  374. which @emph{must} have the following prototype:
  375. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  376. In this example, we can ignore the first argument of this function which gives a
  377. description of the input and output buffers (e.g. the size and the location of
  378. the matrices). The second argument is a pointer to a buffer passed as an
  379. argument to the codelet by the means of the @code{cl_arg} field of the
  380. @code{starpu_task} structure.
  381. @c TODO rewrite so that it is a little clearer ?
  382. Be aware that this may be a pointer to a
  383. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  384. if the codelet modifies this buffer, there is no guarantee that the initial
  385. buffer will be modified as well: this for instance implies that the buffer
  386. cannot be used as a synchronization medium.
  387. @node Submitting a Task
  388. @subsection Submitting a Task
  389. @cartouche
  390. @smallexample
  391. void callback_func(void *callback_arg)
  392. @{
  393. printf("Callback function (arg %x)\n", callback_arg);
  394. @}
  395. int main(int argc, char **argv)
  396. @{
  397. /* @b{initialize StarPU} */
  398. starpu_init(NULL);
  399. struct starpu_task *task = starpu_task_create();
  400. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  401. float array[2] = @{1.0f, -1.0f@};
  402. task->cl_arg = &array;
  403. task->cl_arg_size = sizeof(array);
  404. task->callback_func = callback_func;
  405. task->callback_arg = 0x42;
  406. /* @b{starpu_task_submit will be a blocking call} */
  407. task->synchronous = 1;
  408. /* @b{submit the task to StarPU} */
  409. starpu_task_submit(task);
  410. /* @b{terminate StarPU} */
  411. starpu_shutdown();
  412. return 0;
  413. @}
  414. @end smallexample
  415. @end cartouche
  416. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  417. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  418. be submitted after the termination of StarPU by a call to
  419. @code{starpu_shutdown}.
  420. In the example above, a task structure is allocated by a call to
  421. @code{starpu_task_create}. This function only allocates and fills the
  422. corresponding structure with the default settings (@pxref{starpu_task_create}),
  423. but it does not submit the task to StarPU.
  424. @c not really clear ;)
  425. The @code{cl} field is a pointer to the codelet which the task will
  426. execute: in other words, the codelet structure describes which computational
  427. kernel should be offloaded on the different architectures, and the task
  428. structure is a wrapper containing a codelet and the piece of data on which the
  429. codelet should operate.
  430. The optional @code{cl_arg} field is a pointer to a buffer (of size
  431. @code{cl_arg_size}) with some parameters for the kernel
  432. described by the codelet. For instance, if a codelet implements a computational
  433. kernel that multiplies its input vector by a constant, the constant could be
  434. specified by the means of this buffer, instead of registering it.
  435. Once a task has been executed, an optional callback function can be called.
  436. While the computational kernel could be offloaded on various architectures, the
  437. callback function is always executed on a CPU. The @code{callback_arg}
  438. pointer is passed as an argument of the callback. The prototype of a callback
  439. function must be:
  440. @code{void (*callback_function)(void *);}
  441. If the @code{synchronous} field is non-null, task submission will be
  442. synchronous: the @code{starpu_task_submit} function will not return until the
  443. task was executed. Note that the @code{starpu_shutdown} method does not
  444. guarantee that asynchronous tasks have been executed before it returns.
  445. @node Execution of Hello World
  446. @subsection Execution of Hello World
  447. @smallexample
  448. % make hello_world
  449. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  450. % ./hello_world
  451. Hello world (array = @{1.000000, -1.000000@} )
  452. Callback function (arg 42)
  453. @end smallexample
  454. @node Scaling a Vector
  455. @section Manipulating Data: Scaling a Vector
  456. The previous example has shown how to submit tasks. In this section,
  457. we show how StarPU tasks can manipulate data. The full source code for
  458. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  459. @menu
  460. * Source code of Vector Scaling::
  461. * Execution of Vector Scaling::
  462. @end menu
  463. @node Source code of Vector Scaling
  464. @subsection Source code of Vector Scaling
  465. Programmers can describe the data layout of their application so that StarPU is
  466. responsible for enforcing data coherency and availability across the machine.
  467. Instead of handling complex (and non-portable) mechanisms to perform data
  468. movements, programmers only declare which piece of data is accessed and/or
  469. modified by a task, and StarPU makes sure that when a computational kernel
  470. starts somewhere (e.g. on a GPU), its data are available locally.
  471. Before submitting those tasks, the programmer first needs to declare the
  472. different pieces of data to StarPU using the @code{starpu_*_data_register}
  473. functions. To ease the development of applications for StarPU, it is possible
  474. to describe multiple types of data layout. A type of data layout is called an
  475. @b{interface}. By default, there are different interfaces available in StarPU:
  476. here we will consider the @b{vector interface}.
  477. The following lines show how to declare an array of @code{NX} elements of type
  478. @code{float} using the vector interface:
  479. @cartouche
  480. @smallexample
  481. float vector[NX];
  482. starpu_data_handle vector_handle;
  483. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  484. sizeof(vector[0]));
  485. @end smallexample
  486. @end cartouche
  487. The first argument, called the @b{data handle}, is an opaque pointer which
  488. designates the array in StarPU. This is also the structure which is used to
  489. describe which data is used by a task. The second argument is the node number
  490. where the data currently resides. Here it is 0 since the @code{vector} array is in
  491. the main memory. Then comes the pointer @code{vector} where the data can be found,
  492. the number of elements in the vector and the size of each element.
  493. It is possible to construct a StarPU task that will manipulate the
  494. vector and a constant factor.
  495. @cartouche
  496. @smallexample
  497. float factor = 3.14;
  498. struct starpu_task *task = starpu_task_create();
  499. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  500. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  501. task->buffers[0].mode = STARPU_RW;
  502. task->cl_arg = &factor;
  503. task->cl_arg_size = sizeof(factor);
  504. task->synchronous = 1;
  505. starpu_task_submit(task);
  506. @end smallexample
  507. @end cartouche
  508. Since the factor is a mere float value parameter, it does not need a preliminary registration, and
  509. can just be passed through the @code{cl_arg} pointer like in the previous
  510. example. The vector parameter is described by its handle.
  511. There are two fields in each element of the @code{buffers} array.
  512. @code{handle} is the handle of the data, and @code{mode} specifies how the
  513. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  514. write-only and @code{STARPU_RW} for read and write access).
  515. The definition of the codelet can be written as follows:
  516. @cartouche
  517. @smallexample
  518. void scal_cpu_func(void *buffers[], void *cl_arg)
  519. @{
  520. unsigned i;
  521. float *factor = cl_arg;
  522. /* length of the vector */
  523. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  524. /* local copy of the vector pointer */
  525. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  526. for (i = 0; i < n; i++)
  527. val[i] *= *factor;
  528. @}
  529. starpu_codelet cl = @{
  530. .where = STARPU_CPU,
  531. .cpu_func = scal_cpu_func,
  532. .nbuffers = 1
  533. @};
  534. @end smallexample
  535. @end cartouche
  536. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  537. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  538. constant factor from this pointer. The first argument is an array that gives
  539. a description of all the buffers passed in the @code{task->buffers}@ array. The
  540. size of this array is given by the @code{nbuffers} field of the codelet
  541. structure. For the sake of generality, this array contains pointers to the
  542. different interfaces describing each buffer. In the case of the @b{vector
  543. interface}, the location of the vector (resp. its length) is accessible in the
  544. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  545. read-write fashion, any modification will automatically affect future accesses
  546. to this vector made by other tasks.
  547. @node Execution of Vector Scaling
  548. @subsection Execution of Vector Scaling
  549. @smallexample
  550. % make vector_scal
  551. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  552. % ./vector_scal
  553. 0.000000 3.000000 6.000000 9.000000 12.000000
  554. @end smallexample
  555. @node Vector Scaling on an Hybrid CPU/GPU Machine
  556. @section Vector Scaling on an Hybrid CPU/GPU Machine
  557. Contrary to the previous examples, the task submitted in this example may not
  558. only be executed by the CPUs, but also by a CUDA device.
  559. @menu
  560. * Definition of the CUDA Kernel::
  561. * Definition of the OpenCL Kernel::
  562. * Definition of the Main Code::
  563. * Execution of Hybrid Vector Scaling::
  564. @end menu
  565. @node Definition of the CUDA Kernel
  566. @subsection Definition of the CUDA Kernel
  567. The CUDA implementation can be written as follows. It needs to be
  568. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  569. driver.
  570. @cartouche
  571. @smallexample
  572. #include <starpu.h>
  573. static __global__ void vector_mult_cuda(float *val, unsigned n,
  574. float factor)
  575. @{
  576. unsigned i;
  577. for(i = 0 ; i < n ; i++)
  578. val[i] *= factor;
  579. @}
  580. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  581. @{
  582. float *factor = (float *)_args;
  583. /* length of the vector */
  584. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  585. /* local copy of the vector pointer */
  586. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  587. @i{ vector_mult_cuda<<<1,1>>>(val, n, *factor);}
  588. @i{ cudaThreadSynchronize();}
  589. @}
  590. @end smallexample
  591. @end cartouche
  592. @node Definition of the OpenCL Kernel
  593. @subsection Definition of the OpenCL Kernel
  594. The OpenCL implementation can be written as follows. StarPU provides
  595. tools to compile a OpenCL kernel stored in a file.
  596. @cartouche
  597. @smallexample
  598. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  599. @{
  600. const int i = get_global_id(0);
  601. if (i < nx) @{
  602. val[i] *= factor;
  603. @}
  604. @}
  605. @end smallexample
  606. @end cartouche
  607. @cartouche
  608. @smallexample
  609. #include <starpu.h>
  610. @i{#include <starpu_opencl.h>}
  611. @i{extern struct starpu_opencl_program programs;}
  612. void scal_opencl_func(void *buffers[], void *_args)
  613. @{
  614. float *factor = _args;
  615. @i{ int id, devid, err;}
  616. @i{ cl_kernel kernel;}
  617. @i{ cl_command_queue queue;}
  618. /* length of the vector */
  619. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  620. /* local copy of the vector pointer */
  621. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  622. @i{ id = starpu_worker_get_id();}
  623. @i{ devid = starpu_worker_get_devid(id);}
  624. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  625. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  626. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  627. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  628. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  629. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  630. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  631. @i{ @{}
  632. @i{ size_t global=1;}
  633. @i{ size_t local=1;}
  634. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);}
  635. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  636. @i{ @}}
  637. @i{ clFinish(queue);}
  638. @i{ starpu_opencl_release_kernel(kernel);}
  639. @}
  640. @end smallexample
  641. @end cartouche
  642. @node Definition of the Main Code
  643. @subsection Definition of the Main Code
  644. The CPU implementation is the same as in the previous section.
  645. Here is the source of the main application. You can notice the value of the
  646. field @code{where} for the codelet. We specify
  647. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  648. can be executed either on a CPU or on a CUDA or an OpenCL device.
  649. @cartouche
  650. @smallexample
  651. #include <starpu.h>
  652. #define NX 2048
  653. extern void scal_cuda_func(void *buffers[], void *_args);
  654. extern void scal_cpu_func(void *buffers[], void *_args);
  655. extern void scal_opencl_func(void *buffers[], void *_args);
  656. /* @b{Definition of the codelet} */
  657. static starpu_codelet cl = @{
  658. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  659. /* @b{on a CUDA device, or on an OpenCL device} */
  660. .cuda_func = scal_cuda_func;
  661. .cpu_func = scal_cpu_func;
  662. .opencl_func = scal_opencl_func;
  663. .nbuffers = 1;
  664. @}
  665. #ifdef STARPU_USE_OPENCL
  666. /* @b{The compiled version of the OpenCL program} */
  667. struct starpu_opencl_program programs;
  668. #endif
  669. int main(int argc, char **argv)
  670. @{
  671. float *vector;
  672. int i, ret;
  673. float factor=3.0;
  674. struct starpu_task *task;
  675. starpu_data_handle vector_handle;
  676. starpu_init(NULL); /* @b{Initialising StarPU} */
  677. #ifdef STARPU_USE_OPENCL
  678. starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_codelet.cl",
  679. &programs);
  680. #endif
  681. vector = malloc(NX*sizeof(vector[0]));
  682. assert(vector);
  683. for(i=0 ; i<NX ; i++) vector[i] = i;
  684. @end smallexample
  685. @end cartouche
  686. @cartouche
  687. @smallexample
  688. /* @b{Registering data within StarPU} */
  689. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  690. NX, sizeof(vector[0]));
  691. /* @b{Definition of the task} */
  692. task = starpu_task_create();
  693. task->cl = &cl;
  694. task->buffers[0].handle = vector_handle;
  695. task->buffers[0].mode = STARPU_RW;
  696. task->cl_arg = &factor;
  697. task->cl_arg_size = sizeof(factor);
  698. @end smallexample
  699. @end cartouche
  700. @cartouche
  701. @smallexample
  702. /* @b{Submitting the task} */
  703. ret = starpu_task_submit(task);
  704. if (ret == -ENODEV) @{
  705. fprintf(stderr, "No worker may execute this task\n");
  706. return 1;
  707. @}
  708. /* @b{Waiting for its termination} */
  709. starpu_task_wait_for_all();
  710. /* @b{Update the vector in RAM} */
  711. starpu_data_acquire(vector_handle, STARPU_R);
  712. @end smallexample
  713. @end cartouche
  714. @cartouche
  715. @smallexample
  716. /* @b{Access the data} */
  717. for(i=0 ; i<NX; i++) @{
  718. fprintf(stderr, "%f ", vector[i]);
  719. @}
  720. fprintf(stderr, "\n");
  721. /* @b{Release the data and shutdown StarPU} */
  722. starpu_data_release(vector_handle);
  723. starpu_shutdown();
  724. return 0;
  725. @}
  726. @end smallexample
  727. @end cartouche
  728. @node Execution of Hybrid Vector Scaling
  729. @subsection Execution of Hybrid Vector Scaling
  730. The Makefile given at the beginning of the section must be extended to
  731. give the rules to compile the CUDA source code. Note that the source
  732. file of the OpenCL kernel does not need to be compiled now, it will
  733. be compiled at run-time when calling the function
  734. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  735. @cartouche
  736. @smallexample
  737. CFLAGS += $(shell pkg-config --cflags libstarpu)
  738. LDFLAGS += $(shell pkg-config --libs libstarpu)
  739. CC = gcc
  740. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  741. %.o: %.cu
  742. nvcc $(CFLAGS) $< -c $@
  743. clean:
  744. rm -f vector_scal *.o
  745. @end smallexample
  746. @end cartouche
  747. @smallexample
  748. % make
  749. @end smallexample
  750. and to execute it, with the default configuration:
  751. @smallexample
  752. % ./vector_scal
  753. 0.000000 3.000000 6.000000 9.000000 12.000000
  754. @end smallexample
  755. or for example, by disabling CPU devices:
  756. @smallexample
  757. % STARPU_NCPUS=0 ./vector_scal
  758. 0.000000 3.000000 6.000000 9.000000 12.000000
  759. @end smallexample
  760. or by disabling CUDA devices:
  761. @smallexample
  762. % STARPU_NCUDA=0 ./vector_scal
  763. 0.000000 3.000000 6.000000 9.000000 12.000000
  764. @end smallexample
  765. @node Task and Worker Profiling
  766. @section Task and Worker Profiling
  767. A full example showing how to use the profiling API is available in
  768. the StarPU sources in the directory @code{examples/profiling/}.
  769. @cartouche
  770. @smallexample
  771. struct starpu_task *task = starpu_task_create();
  772. task->cl = &cl;
  773. task->synchronous = 1;
  774. /* We will destroy the task structure by hand so that we can
  775. * query the profiling info before the task is destroyed. */
  776. task->destroy = 0;
  777. starpu_task_submit(task);
  778. /* The task is finished, get profiling information */
  779. struct starpu_task_profiling_info *info = task->profiling_info;
  780. /* How much time did it take before the task started ? */
  781. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  782. /* How long was the task execution ? */
  783. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  784. /* We don't need the task structure anymore */
  785. starpu_task_destroy(task);
  786. @end smallexample
  787. @end cartouche
  788. @cartouche
  789. @smallexample
  790. /* Display the occupancy of all workers during the test */
  791. int worker;
  792. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  793. @{
  794. struct starpu_worker_profiling_info worker_info;
  795. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  796. STARPU_ASSERT(!ret);
  797. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  798. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  799. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  800. float executing_ratio = 100.0*executing_time/total_time;
  801. float sleeping_ratio = 100.0*sleeping_time/total_time;
  802. char workername[128];
  803. starpu_worker_get_name(worker, workername, 128);
  804. fprintf(stderr, "Worker %s:\n", workername);
  805. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  806. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  807. executing_ratio);
  808. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  809. sleeping_ratio);
  810. @}
  811. @end smallexample
  812. @end cartouche
  813. @node Partitioning Data
  814. @section Partitioning Data
  815. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  816. @cartouche
  817. @smallexample
  818. int vector[NX];
  819. starpu_data_handle handle;
  820. /* Declare data to StarPU */
  821. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  822. /* Partition the vector in PARTS sub-vectors */
  823. starpu_filter f =
  824. @{
  825. .filter_func = starpu_block_filter_func_vector,
  826. .nchildren = PARTS,
  827. .get_nchildren = NULL,
  828. .get_child_ops = NULL
  829. @};
  830. starpu_data_partition(handle, &f);
  831. @end smallexample
  832. @end cartouche
  833. @cartouche
  834. @smallexample
  835. /* Submit a task on each sub-vector */
  836. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  837. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  838. struct starpu_task *task = starpu_task_create();
  839. task->buffers[0].handle = sub_handle;
  840. task->buffers[0].mode = STARPU_RW;
  841. task->cl = &cl;
  842. task->synchronous = 1;
  843. task->cl_arg = &factor;
  844. task->cl_arg_size = sizeof(factor);
  845. starpu_task_submit(task);
  846. @}
  847. @end smallexample
  848. @end cartouche
  849. Partitioning can be applied several times, see
  850. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  851. @node Performance model example
  852. @section Performance model example
  853. To achieve good scheduling, StarPU scheduling policies need to be able to
  854. estimate in advance the duration of a task. This is done by giving to codelets a
  855. performance model. There are several kinds of performance models.
  856. @itemize
  857. @item
  858. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  859. see for instance
  860. @code{examples/common/blas_model.c} and @code{examples/common/blas_model.h}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  861. @item
  862. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  863. given set of data input/output sizes, the performance will always be about the
  864. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  865. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  866. few different sets of data input/output sizes. StarPU will then keep record of
  867. the average time of previous executions on the various processing units, and use
  868. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  869. for further executions. The following is a small code example.
  870. @cartouche
  871. @smallexample
  872. static struct starpu_perfmodel_t mult_perf_model = @{
  873. .type = STARPU_HISTORY_BASED,
  874. .symbol = "mult_perf_model"
  875. @};
  876. starpu_codelet cl = @{
  877. .where = STARPU_CPU,
  878. .cpu_func = cpu_mult,
  879. .nbuffers = 3,
  880. /* for the scheduling policy to be able to use performance models */
  881. .model = &mult_perf_model
  882. @};
  883. @end smallexample
  884. @end cartouche
  885. @item
  886. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  887. type). This still assumes performance regularity, but can work with various data
  888. input sizes, by applying a*n^b+c regression over observed execution times.
  889. @end itemize
  890. @node Theoretical lower bound on execution time
  891. @section Theoretical lower bound on execution time
  892. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  893. bound for the execution time of a whole set of tasks. See for
  894. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  895. call @code{starpu_bound_start}, and after complete execution, call
  896. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  897. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  898. problem corresponding to the schedule of your tasks. Run it through
  899. @code{lp_solve} or any other linear programming solver, and that will give you a
  900. lower bound for the total execution time of your tasks. If StarPU was compiled
  901. with the glpk library installed, @code{starpu_bound_compute} can be used to
  902. solve it immediately and get the optimized minimum. Its @code{integer}
  903. parameter allows to decide whether integer resolution should be computed
  904. and returned.
  905. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  906. dependencies into account. It must be understood that the linear programming
  907. problem size is quadratic with the number of tasks and thus the time to solve it
  908. will be very long, it could be minutes for just a few dozen tasks. You should
  909. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  910. problem to MPS format and then use a better solver, @code{glpsol} might be
  911. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  912. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  913. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  914. of @code{lp_solve}. For instance, we often just use
  915. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  916. the @code{-gr} option can also be quite useful.
  917. Setting @code{deps} to 0 will only take into account the actual computations
  918. on processing units. It however still properly takes into account the varying
  919. performances of kernels and processing units, which is quite more accurate than
  920. just comparing StarPU performances with the fastest of the kernels being used.
  921. The @code{prio} parameter tells StarPU whether to simulate taking into account
  922. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  923. tasks before less prioritized tasks, to check to which extend this results
  924. to a less optimal solution. This increases even more computation time.
  925. Note that all this however doesn't take into account data transfer, which is
  926. assumed to be completely overlapped.
  927. @node More examples
  928. @section More examples
  929. More examples are available in the StarPU sources in the @code{examples/}
  930. directory. Simple examples include:
  931. @table @asis
  932. @item @code{incrementer/}:
  933. Trivial incrementation test.
  934. @item @code{basic_examples/}:
  935. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  936. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  937. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  938. interface, and an example using the variable data interface.
  939. @item @code{matvecmult/}:
  940. OpenCL example from NVidia, adapted to StarPU.
  941. @item @code{axpy/}:
  942. AXPY CUBLAS operation adapted to StarPU.
  943. @item @code{fortran/}:
  944. Example of Fortran bindings.
  945. @end table
  946. More advanced examples include:
  947. @table @asis
  948. @item @code{filters/}:
  949. Examples using filters, as shown in @ref{Partitioning Data}.
  950. @item @code{lu/}:
  951. LU matrix factorization.
  952. @end table
  953. @c ---------------------------------------------------------------------
  954. @c Performance feedback
  955. @c ---------------------------------------------------------------------
  956. @node Performance feedback
  957. @chapter Performance feedback
  958. @menu
  959. * On-line:: On-line performance feedback
  960. * Off-line:: Off-line performance feedback
  961. @end menu
  962. @node On-line
  963. @section On-line performance feedback
  964. @menu
  965. * Enabling monitoring:: Enabling on-line performance monitoring
  966. * Task feedback:: Per-task feedback
  967. * Codelet feedback:: Per-codelet feedback
  968. * Worker feedback:: Per-worker feedback
  969. * Bus feedback:: Bus-related feedback
  970. @end menu
  971. @node Enabling monitoring
  972. @subsection Enabling on-line performance monitoring
  973. In order to enable online performance monitoring, the application must call
  974. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  975. detect whether monitoring is already enabled or not by calling
  976. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  977. previously collected feedback.
  978. Likewise, performance monitoring is stopped by calling
  979. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  980. does not reset the performance counters so that the application may consult
  981. them later on.
  982. More details about the performance monitoring API are available in section
  983. @ref{Profiling API}.
  984. @node Task feedback
  985. @subsection Per-task feedback
  986. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  987. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  988. structure when a task terminates.
  989. This structure is automatically destroyed when the task structure is destroyed,
  990. either automatically or by calling @code{starpu_task_destroy}.
  991. The @code{starpu_task_profiling_info} structure indicates the date when the
  992. task was submitted (@code{submit_time}), started (@code{start_time}), and
  993. terminated (@code{end_time}), relative to the initialization of
  994. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  995. that has executed the task (@code{workerid}).
  996. These date are stored as @code{timespec} structures which the user may convert
  997. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  998. function.
  999. It it worth noting that the application may directly access this structure from
  1000. the callback executed at the end of the task. The @code{starpu_task} structure
  1001. associated to the callback currently being executed is indeed accessible with
  1002. the @code{starpu_get_current_task()} function.
  1003. @node Codelet feedback
  1004. @subsection Per-codelet feedback
  1005. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1006. an array of counters. The i-th entry of the array is incremented every time a
  1007. task implementing the codelet is executed on the i-th worker.
  1008. This array is not reinitialized when profiling is enabled or disabled.
  1009. @node Worker feedback
  1010. @subsection Per-worker feedback
  1011. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1012. function is a @code{starpu_worker_profiling_info} structure that gives
  1013. statistics about the specified worker. This structure specifies when StarPU
  1014. started collecting profiling information for that worker (@code{start_time}),
  1015. the duration of the profiling measurement interval (@code{total_time}), the
  1016. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1017. because there is no task to execute at all (@code{sleeping_time}), and the
  1018. number of tasks that were executed while profiling was enabled.
  1019. These values give an estimation of the proportion of time spent do real work,
  1020. and the time spent either sleeping because there are not enough executable
  1021. tasks or simply wasted in pure StarPU overhead.
  1022. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1023. information associated to a worker.
  1024. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1025. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1026. generate a graphic showing the evolution of these values during the time, for
  1027. the different workers.
  1028. @node Bus feedback
  1029. @subsection Bus-related feedback
  1030. TODO
  1031. @c how to enable/disable performance monitoring
  1032. @c what kind of information do we get ?
  1033. @node Off-line
  1034. @section Off-line performance feedback
  1035. @menu
  1036. * Generating traces:: Generating traces with FxT
  1037. * Gantt diagram:: Creating a Gantt Diagram
  1038. * DAG:: Creating a DAG with graphviz
  1039. * starpu-top:: Monitoring activity
  1040. @end menu
  1041. @node Generating traces
  1042. @subsection Generating traces with FxT
  1043. StarPU can use the FxT library (see
  1044. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1045. with a limited runtime overhead.
  1046. You can either get the FxT library from CVS (autotools are required):
  1047. @example
  1048. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1049. % ./bootstrap
  1050. @end example
  1051. If autotools are not available on your machine, or if you prefer to do so,
  1052. FxT's code is also available as a tarball:
  1053. @example
  1054. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1055. @end example
  1056. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1057. done following the standard procedure:
  1058. @example
  1059. % ./configure --prefix=$FXTDIR
  1060. % make
  1061. % make install
  1062. @end example
  1063. In order to have StarPU to generate traces, StarPU should be configured with
  1064. the @code{--with-fxt} option:
  1065. @example
  1066. $ ./configure --with-fxt=$FXTDIR
  1067. @end example
  1068. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1069. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1070. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1071. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1072. @code{/tmp/} directory by default, or by the directory specified by
  1073. the @code{STARPU_FXT_PREFIX} environment variable.
  1074. @node Gantt diagram
  1075. @subsection Creating a Gantt Diagram
  1076. When the FxT trace file @code{filename} has been generated, it is possible to
  1077. generate a trace in the Paje format by calling:
  1078. @example
  1079. % fxt_tool -i filename
  1080. @end example
  1081. This will create a @code{paje.trace} file in the current directory that can be
  1082. inspected with the Vite trace visualizing open-source tool. More information
  1083. about Vite is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1084. possible to open the @code{paje.trace} file with Vite by using the following
  1085. command:
  1086. @example
  1087. % vite paje.trace
  1088. @end example
  1089. @node DAG
  1090. @subsection Creating a DAG with graphviz
  1091. When the FxT trace file @code{filename} has been generated, it is possible to
  1092. generate a task graph in the DOT format by calling:
  1093. @example
  1094. $ fxt_tool -i filename
  1095. @end example
  1096. This will create a @code{dag.dot} file in the current directory. This file is a
  1097. task graph described using the DOT language. It is possible to get a
  1098. graphical output of the graph by using the graphviz library:
  1099. @example
  1100. $ dot -Tpdf dag.dot -o output.pdf
  1101. @end example
  1102. @node starpu-top
  1103. @subsection Monitoring activity
  1104. When the FxT trace file @code{filename} has been generated, it is possible to
  1105. generate a activity trace by calling:
  1106. @example
  1107. $ fxt_tool -i filename
  1108. @end example
  1109. This will create an @code{activity.data} file in the current
  1110. directory. A profile of the application showing the activity of StarPU
  1111. during the execution of the program can be generated:
  1112. @example
  1113. $ starpu_top.sh activity.data
  1114. @end example
  1115. This will create a file named @code{activity.eps} in the current directory.
  1116. This picture is composed of two parts.
  1117. The first part shows the activity of the different workers. The green sections
  1118. indicate which proportion of the time was spent executed kernels on the
  1119. processing unit. The red sections indicate the proportion of time spent in
  1120. StartPU: an important overhead may indicate that the granularity may be too
  1121. low, and that bigger tasks may be appropriate to use the processing unit more
  1122. efficiently. The black sections indicate that the processing unit was blocked
  1123. because there was no task to process: this may indicate a lack of parallelism
  1124. which may be alleviated by creating more tasks when it is possible.
  1125. The second part of the @code{activity.eps} picture is a graph showing the
  1126. evolution of the number of tasks available in the system during the execution.
  1127. Ready tasks are shown in black, and tasks that are submitted but not
  1128. schedulable yet are shown in grey.
  1129. @c ---------------------------------------------------------------------
  1130. @c Configuration options
  1131. @c ---------------------------------------------------------------------
  1132. @node Configuring StarPU
  1133. @chapter Configuring StarPU
  1134. @menu
  1135. * Compilation configuration::
  1136. * Execution configuration through environment variables::
  1137. @end menu
  1138. @node Compilation configuration
  1139. @section Compilation configuration
  1140. The following arguments can be given to the @code{configure} script.
  1141. @menu
  1142. * Common configuration::
  1143. * Configuring workers::
  1144. * Advanced configuration::
  1145. @end menu
  1146. @node Common configuration
  1147. @subsection Common configuration
  1148. @menu
  1149. * --enable-debug::
  1150. * --enable-fast::
  1151. * --enable-verbose::
  1152. * --enable-coverage::
  1153. @end menu
  1154. @node --enable-debug
  1155. @subsubsection @code{--enable-debug}
  1156. @table @asis
  1157. @item @emph{Description}:
  1158. Enable debugging messages.
  1159. @end table
  1160. @node --enable-fast
  1161. @subsubsection @code{--enable-fast}
  1162. @table @asis
  1163. @item @emph{Description}:
  1164. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1165. @end table
  1166. @node --enable-verbose
  1167. @subsubsection @code{--enable-verbose}
  1168. @table @asis
  1169. @item @emph{Description}:
  1170. Augment the verbosity of the debugging messages.
  1171. @end table
  1172. @node --enable-coverage
  1173. @subsubsection @code{--enable-coverage}
  1174. @table @asis
  1175. @item @emph{Description}:
  1176. Enable flags for the coverage tool.
  1177. @end table
  1178. @node Configuring workers
  1179. @subsection Configuring workers
  1180. @menu
  1181. * --enable-nmaxcpus::
  1182. * --disable-cpu::
  1183. * --enable-maxcudadev::
  1184. * --disable-cuda::
  1185. * --with-cuda-dir::
  1186. * --with-cuda-include-dir::
  1187. * --with-cuda-lib-dir::
  1188. * --enable-maxopencldev::
  1189. * --disable-opencl::
  1190. * --with-opencl-dir::
  1191. * --with-opencl-include-dir::
  1192. * --with-opencl-lib-dir::
  1193. * --enable-gordon::
  1194. * --with-gordon-dir::
  1195. @end menu
  1196. @node --enable-nmaxcpus
  1197. @subsubsection @code{--enable-nmaxcpus=<number>}
  1198. @table @asis
  1199. @item @emph{Description}:
  1200. Defines the maximum number of CPU cores that StarPU will support, then
  1201. available as the @code{STARPU_NMAXCPUS} macro.
  1202. @end table
  1203. @node --disable-cpu
  1204. @subsubsection @code{--disable-cpu}
  1205. @table @asis
  1206. @item @emph{Description}:
  1207. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1208. @end table
  1209. @node --enable-maxcudadev
  1210. @subsubsection @code{--enable-maxcudadev=<number>}
  1211. @table @asis
  1212. @item @emph{Description}:
  1213. Defines the maximum number of CUDA devices that StarPU will support, then
  1214. available as the @code{STARPU_MAXCUDADEVS} macro.
  1215. @end table
  1216. @node --disable-cuda
  1217. @subsubsection @code{--disable-cuda}
  1218. @table @asis
  1219. @item @emph{Description}:
  1220. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1221. @end table
  1222. @node --with-cuda-dir
  1223. @subsubsection @code{--with-cuda-dir=<path>}
  1224. @table @asis
  1225. @item @emph{Description}:
  1226. Specify the directory where CUDA is installed. This directory should notably contain
  1227. @code{include/cuda.h}.
  1228. @end table
  1229. @node --with-cuda-include-dir
  1230. @subsubsection @code{--with-cuda-include-dir=<path>}
  1231. @table @asis
  1232. @item @emph{Description}:
  1233. Specify the directory where CUDA headers are installed. This directory should
  1234. notably contain @code{cuda.h}.
  1235. @end table
  1236. @node --with-cuda-lib-dir
  1237. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1238. @table @asis
  1239. @item @emph{Description}:
  1240. Specify the directory where the CUDA library is installed.
  1241. @end table
  1242. @node --enable-maxopencldev
  1243. @subsubsection @code{--enable-maxopencldev=<number>}
  1244. @table @asis
  1245. @item @emph{Description}:
  1246. Defines the maximum number of OpenCL devices that StarPU will support, then
  1247. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1248. @end table
  1249. @node --disable-opencl
  1250. @subsubsection @code{--disable-opencl}
  1251. @table @asis
  1252. @item @emph{Description}:
  1253. Disable the use of OpenCL, even if the SDK is detected.
  1254. @end table
  1255. @node --with-opencl-dir
  1256. @subsubsection @code{--with-opencl-dir=<path>}
  1257. @table @asis
  1258. @item @emph{Description}:
  1259. Specify the location of the OpenCL SDK. This directory should notably contain
  1260. @code{include/CL/cl.h}.
  1261. @end table
  1262. @node --with-opencl-include-dir
  1263. @subsubsection @code{--with-opencl-include-dir=<path>}
  1264. @table @asis
  1265. @item @emph{Description}:
  1266. Specify the location of OpenCL headers. This directory should notably contain
  1267. @code{CL/cl.h}.
  1268. @end table
  1269. @node --with-opencl-lib-dir
  1270. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1271. @table @asis
  1272. @item @emph{Description}:
  1273. Specify the location of the OpenCL library.
  1274. @code{include/CL/cl.h}.
  1275. @end table
  1276. @node --enable-gordon
  1277. @subsubsection @code{--enable-gordon}
  1278. @table @asis
  1279. @item @emph{Description}:
  1280. Enable the use of the Gordon runtime for Cell SPUs.
  1281. @c TODO: rather default to enabled when detected
  1282. @end table
  1283. @node --with-gordon-dir
  1284. @subsubsection @code{--with-gordon-dir=<path>}
  1285. @table @asis
  1286. @item @emph{Description}:
  1287. Specify the location of the Gordon SDK.
  1288. @end table
  1289. @node Advanced configuration
  1290. @subsection Advanced configuration
  1291. @menu
  1292. * --enable-perf-debug::
  1293. * --enable-model-debug::
  1294. * --enable-stats::
  1295. * --enable-maxbuffers::
  1296. * --enable-allocation-cache::
  1297. * --enable-opengl-render::
  1298. * --enable-blas-lib::
  1299. * --with-magma::
  1300. * --with-fxt::
  1301. * --with-perf-model-dir::
  1302. * --with-mpicc::
  1303. * --with-goto-dir::
  1304. * --with-atlas-dir::
  1305. * --with-mkl-cflags::
  1306. * --with-mkl-ldflags::
  1307. @end menu
  1308. @node --enable-perf-debug
  1309. @subsubsection @code{--enable-perf-debug}
  1310. @table @asis
  1311. @item @emph{Description}:
  1312. Enable performance debugging.
  1313. @end table
  1314. @node --enable-model-debug
  1315. @subsubsection @code{--enable-model-debug}
  1316. @table @asis
  1317. @item @emph{Description}:
  1318. Enable performance model debugging.
  1319. @end table
  1320. @node --enable-stats
  1321. @subsubsection @code{--enable-stats}
  1322. @table @asis
  1323. @item @emph{Description}:
  1324. Enable statistics.
  1325. @end table
  1326. @node --enable-maxbuffers
  1327. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1328. @table @asis
  1329. @item @emph{Description}:
  1330. Define the maximum number of buffers that tasks will be able to take
  1331. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1332. @end table
  1333. @node --enable-allocation-cache
  1334. @subsubsection @code{--enable-allocation-cache}
  1335. @table @asis
  1336. @item @emph{Description}:
  1337. Enable the use of a data allocation cache to avoid the cost of it with
  1338. CUDA. Still experimental.
  1339. @end table
  1340. @node --enable-opengl-render
  1341. @subsubsection @code{--enable-opengl-render}
  1342. @table @asis
  1343. @item @emph{Description}:
  1344. Enable the use of OpenGL for the rendering of some examples.
  1345. @c TODO: rather default to enabled when detected
  1346. @end table
  1347. @node --enable-blas-lib
  1348. @subsubsection @code{--enable-blas-lib=<name>}
  1349. @table @asis
  1350. @item @emph{Description}:
  1351. Specify the blas library to be used by some of the examples. The
  1352. library has to be 'atlas' or 'goto'.
  1353. @end table
  1354. @node --with-magma
  1355. @subsubsection @code{--with-magma=<path>}
  1356. @table @asis
  1357. @item @emph{Description}:
  1358. Specify where magma is installed.
  1359. @end table
  1360. @node --with-fxt
  1361. @subsubsection @code{--with-fxt=<path>}
  1362. @table @asis
  1363. @item @emph{Description}:
  1364. Specify the location of FxT (for generating traces and rendering them
  1365. using ViTE). This directory should notably contain
  1366. @code{include/fxt/fxt.h}.
  1367. @c TODO add ref to other section
  1368. @end table
  1369. @node --with-perf-model-dir
  1370. @subsubsection @code{--with-perf-model-dir=<dir>}
  1371. @table @asis
  1372. @item @emph{Description}:
  1373. Specify where performance models should be stored (instead of defaulting to the
  1374. current user's home).
  1375. @end table
  1376. @node --with-mpicc
  1377. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1378. @table @asis
  1379. @item @emph{Description}:
  1380. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1381. @end table
  1382. @node --with-goto-dir
  1383. @subsubsection @code{--with-goto-dir=<dir>}
  1384. @table @asis
  1385. @item @emph{Description}:
  1386. Specify the location of GotoBLAS.
  1387. @end table
  1388. @node --with-atlas-dir
  1389. @subsubsection @code{--with-atlas-dir=<dir>}
  1390. @table @asis
  1391. @item @emph{Description}:
  1392. Specify the location of ATLAS. This directory should notably contain
  1393. @code{include/cblas.h}.
  1394. @end table
  1395. @node --with-mkl-cflags
  1396. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1397. @table @asis
  1398. @item @emph{Description}:
  1399. Specify the compilation flags for the MKL Library.
  1400. @end table
  1401. @node --with-mkl-ldflags
  1402. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1403. @table @asis
  1404. @item @emph{Description}:
  1405. Specify the linking flags for the MKL Library. Note that the
  1406. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1407. website provides a script to determine the linking flags.
  1408. @end table
  1409. @c ---------------------------------------------------------------------
  1410. @c Environment variables
  1411. @c ---------------------------------------------------------------------
  1412. @node Execution configuration through environment variables
  1413. @section Execution configuration through environment variables
  1414. @menu
  1415. * Workers:: Configuring workers
  1416. * Scheduling:: Configuring the Scheduling engine
  1417. * Misc:: Miscellaneous and debug
  1418. @end menu
  1419. Note: the values given in @code{starpu_conf} structure passed when
  1420. calling @code{starpu_init} will override the values of the environment
  1421. variables.
  1422. @node Workers
  1423. @subsection Configuring workers
  1424. @menu
  1425. * STARPU_NCPUS:: Number of CPU workers
  1426. * STARPU_NCUDA:: Number of CUDA workers
  1427. * STARPU_NOPENCL:: Number of OpenCL workers
  1428. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1429. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1430. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1431. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1432. @end menu
  1433. @node STARPU_NCPUS
  1434. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1435. @table @asis
  1436. @item @emph{Description}:
  1437. Specify the maximum number of CPU workers. Note that StarPU will not allocate
  1438. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1439. the accelerators.
  1440. @end table
  1441. @node STARPU_NCUDA
  1442. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1443. @table @asis
  1444. @item @emph{Description}:
  1445. Specify the maximum number of CUDA devices that StarPU can use. If
  1446. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1447. possible to select which CUDA devices should be used by the means of the
  1448. @code{STARPU_WORKERS_CUDAID} environment variable.
  1449. @end table
  1450. @node STARPU_NOPENCL
  1451. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1452. @table @asis
  1453. @item @emph{Description}:
  1454. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1455. @end table
  1456. @node STARPU_NGORDON
  1457. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1458. @table @asis
  1459. @item @emph{Description}:
  1460. Specify the maximum number of SPUs that StarPU can use.
  1461. @end table
  1462. @node STARPU_WORKERS_CPUID
  1463. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1464. @table @asis
  1465. @item @emph{Description}:
  1466. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1467. specifies on which logical CPU the different workers should be
  1468. bound. For instance, if @code{STARPU_WORKERS_CPUID = "1 3 0 2"}, the first
  1469. worker will be bound to logical CPU #1, the second CPU worker will be bound to
  1470. logical CPU #3 and so on. Note that the logical ordering of the CPUs is either
  1471. determined by the OS, or provided by the @code{hwloc} library in case it is
  1472. available.
  1473. Note that the first workers correspond to the CUDA workers, then come the
  1474. OpenCL and the SPU, and finally the CPU workers. For example if
  1475. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1476. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1477. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1478. the logical CPUs #1 and #3 will be used by the CPU workers.
  1479. If the number of workers is larger than the array given in
  1480. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1481. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1482. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1483. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1484. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1485. @end table
  1486. @node STARPU_WORKERS_CUDAID
  1487. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1488. @table @asis
  1489. @item @emph{Description}:
  1490. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1491. possible to select which CUDA devices should be used by StarPU. On a machine
  1492. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1493. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1494. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1495. the one reported by CUDA).
  1496. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1497. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1498. @end table
  1499. @node STARPU_WORKERS_OPENCLID
  1500. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1501. @table @asis
  1502. @item @emph{Description}:
  1503. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1504. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1505. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1506. @end table
  1507. @node Scheduling
  1508. @subsection Configuring the Scheduling engine
  1509. @menu
  1510. * STARPU_SCHED:: Scheduling policy
  1511. * STARPU_CALIBRATE:: Calibrate performance models
  1512. * STARPU_PREFETCH:: Use data prefetch
  1513. * STARPU_SCHED_ALPHA:: Computation factor
  1514. * STARPU_SCHED_BETA:: Communication factor
  1515. @end menu
  1516. @node STARPU_SCHED
  1517. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1518. @table @asis
  1519. @item @emph{Description}:
  1520. This chooses between the different scheduling policies proposed by StarPU: work
  1521. random, stealing, greedy, with performance models, etc.
  1522. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1523. @end table
  1524. @node STARPU_CALIBRATE
  1525. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1526. @table @asis
  1527. @item @emph{Description}:
  1528. If this variable is set to 1, the performance models are calibrated during
  1529. the execution. If it is set to 2, the previous values are dropped to restart
  1530. calibration from scratch.
  1531. Note: this currently only applies to dm and dmda scheduling policies.
  1532. @end table
  1533. @node STARPU_PREFETCH
  1534. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1535. @table @asis
  1536. @item @emph{Description}:
  1537. This variable indicates whether data prefetching should be enabled (0 means
  1538. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1539. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1540. advance, so that data is already present on the GPU when the task starts. As a
  1541. result, computation and data transfers are overlapped.
  1542. @end table
  1543. @node STARPU_SCHED_ALPHA
  1544. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1545. @table @asis
  1546. @item @emph{Description}:
  1547. To estimate the cost of a task StarPU takes into account the estimated
  1548. computation time (obtained thanks to performance models). The alpha factor is
  1549. the coefficient to be applied to it before adding it to the communication part.
  1550. @end table
  1551. @node STARPU_SCHED_BETA
  1552. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1553. @table @asis
  1554. @item @emph{Description}:
  1555. To estimate the cost of a task StarPU takes into account the estimated
  1556. data transfer time (obtained thanks to performance models). The beta factor is
  1557. the coefficient to be applied to it before adding it to the computation part.
  1558. @end table
  1559. @node Misc
  1560. @subsection Miscellaneous and debug
  1561. @menu
  1562. * STARPU_LOGFILENAME:: Select debug file name
  1563. * STARPU_FXT_PREFIX:: FxT trace location
  1564. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1565. @end menu
  1566. @node STARPU_LOGFILENAME
  1567. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1568. @table @asis
  1569. @item @emph{Description}:
  1570. This variable specifies in which file the debugging output should be saved to.
  1571. @end table
  1572. @node STARPU_FXT_PREFIX
  1573. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1574. @table @asis
  1575. @item @emph{Description}
  1576. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1577. @end table
  1578. @node STARPU_LIMIT_GPU_MEM
  1579. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1580. @table @asis
  1581. @item @emph{Description}
  1582. This variable specifies the maximum number of megabytes that should be
  1583. available to the application on each GPUs. In case this value is smaller than
  1584. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1585. on the device. This variable is intended to be used for experimental purposes
  1586. as it emulates devices that have a limited amount of memory.
  1587. @end table
  1588. @c ---------------------------------------------------------------------
  1589. @c StarPU API
  1590. @c ---------------------------------------------------------------------
  1591. @node StarPU API
  1592. @chapter StarPU API
  1593. @menu
  1594. * Initialization and Termination:: Initialization and Termination methods
  1595. * Workers' Properties:: Methods to enumerate workers' properties
  1596. * Data Library:: Methods to manipulate data
  1597. * Data Interfaces::
  1598. * Data Partition::
  1599. * Codelets and Tasks:: Methods to construct tasks
  1600. * Explicit Dependencies:: Explicit Dependencies
  1601. * Implicit Data Dependencies:: Implicit Data Dependencies
  1602. * Performance Model API::
  1603. * Profiling API:: Profiling API
  1604. * CUDA extensions:: CUDA extensions
  1605. * OpenCL extensions:: OpenCL extensions
  1606. * Cell extensions:: Cell extensions
  1607. * Miscellaneous helpers::
  1608. @end menu
  1609. @node Initialization and Termination
  1610. @section Initialization and Termination
  1611. @menu
  1612. * starpu_init:: Initialize StarPU
  1613. * struct starpu_conf:: StarPU runtime configuration
  1614. * starpu_shutdown:: Terminate StarPU
  1615. @end menu
  1616. @node starpu_init
  1617. @subsection @code{starpu_init} -- Initialize StarPU
  1618. @table @asis
  1619. @item @emph{Description}:
  1620. This is StarPU initialization method, which must be called prior to any other
  1621. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1622. policy, number of cores, ...) by passing a non-null argument. Default
  1623. configuration is used if the passed argument is @code{NULL}.
  1624. @item @emph{Return value}:
  1625. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1626. indicates that no worker was available (so that StarPU was not initialized).
  1627. @item @emph{Prototype}:
  1628. @code{int starpu_init(struct starpu_conf *conf);}
  1629. @end table
  1630. @node struct starpu_conf
  1631. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1632. @table @asis
  1633. @item @emph{Description}:
  1634. This structure is passed to the @code{starpu_init} function in order
  1635. to configure StarPU.
  1636. When the default value is used, StarPU automatically selects the number
  1637. of processing units and takes the default scheduling policy. This parameter
  1638. overwrites the equivalent environment variables.
  1639. @item @emph{Fields}:
  1640. @table @asis
  1641. @item @code{sched_policy_name} (default = NULL):
  1642. This is the name of the scheduling policy. This can also be specified with the
  1643. @code{STARPU_SCHED} environment variable.
  1644. @item @code{sched_policy} (default = NULL):
  1645. This is the definition of the scheduling policy. This field is ignored
  1646. if @code{sched_policy_name} is set.
  1647. @item @code{ncpus} (default = -1):
  1648. This is the maximum number of CPU cores that StarPU can use. This can also be
  1649. specified with the @code{STARPU_NCPUS} environment variable.
  1650. @item @code{ncuda} (default = -1):
  1651. This is the maximum number of CUDA devices that StarPU can use. This can also be
  1652. specified with the @code{STARPU_NCUDA} environment variable.
  1653. @item @code{nopencl} (default = -1):
  1654. This is the maximum number of OpenCL devices that StarPU can use. This can also be
  1655. specified with the @code{STARPU_NOPENCL} environment variable.
  1656. @item @code{nspus} (default = -1):
  1657. This is the maximum number of Cell SPUs that StarPU can use. This can also be
  1658. specified with the @code{STARPU_NGORDON} environment variable.
  1659. @item @code{use_explicit_workers_bindid} (default = 0)
  1660. If this flag is set, the @code{workers_bindid} array indicates where the
  1661. different workers are bound, otherwise StarPU automatically selects where to
  1662. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1663. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1664. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1665. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1666. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1667. where to bind the different workers. The i-th entry of the
  1668. @code{workers_bindid} indicates the logical identifier of the processor which
  1669. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1670. either determined by the OS, or provided by the @code{hwloc} library in case it
  1671. is available.
  1672. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1673. ignored.
  1674. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1675. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1676. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1677. CUDA devices in a round-robin fashion.
  1678. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1679. ignored.
  1680. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1681. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1682. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1683. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1684. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1685. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1686. OpenCL devices in a round-robin fashion.
  1687. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1688. @item @code{calibrate} (default = 0):
  1689. If this flag is set, StarPU will calibrate the performance models when
  1690. executing tasks. If this value is equal to -1, the default value is used. The
  1691. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1692. variable when it is set.
  1693. @end table
  1694. @end table
  1695. @node starpu_shutdown
  1696. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1697. @table @asis
  1698. @item @emph{Description}:
  1699. This is StarPU termination method. It must be called at the end of the
  1700. application: statistics and other post-mortem debugging information are not
  1701. guaranteed to be available until this method has been called.
  1702. @item @emph{Prototype}:
  1703. @code{void starpu_shutdown(void);}
  1704. @end table
  1705. @node Workers' Properties
  1706. @section Workers' Properties
  1707. @menu
  1708. * starpu_worker_get_count:: Get the number of processing units
  1709. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1710. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1711. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1712. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1713. * starpu_worker_get_id:: Get the identifier of the current worker
  1714. * starpu_worker_get_devid:: Get the device identifier of a worker
  1715. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1716. * starpu_worker_get_name:: Get the name of a worker
  1717. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1718. @end menu
  1719. @node starpu_worker_get_count
  1720. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1721. @table @asis
  1722. @item @emph{Description}:
  1723. This function returns the number of workers (i.e. processing units executing
  1724. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1725. @item @emph{Prototype}:
  1726. @code{unsigned starpu_worker_get_count(void);}
  1727. @end table
  1728. @node starpu_cpu_worker_get_count
  1729. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1730. @table @asis
  1731. @item @emph{Description}:
  1732. This function returns the number of CPUs controlled by StarPU. The returned
  1733. value should be at most @code{STARPU_NMAXCPUS}.
  1734. @item @emph{Prototype}:
  1735. @code{unsigned starpu_cpu_worker_get_count(void);}
  1736. @end table
  1737. @node starpu_cuda_worker_get_count
  1738. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1739. @table @asis
  1740. @item @emph{Description}:
  1741. This function returns the number of CUDA devices controlled by StarPU. The returned
  1742. value should be at most @code{STARPU_MAXCUDADEVS}.
  1743. @item @emph{Prototype}:
  1744. @code{unsigned starpu_cuda_worker_get_count(void);}
  1745. @end table
  1746. @node starpu_opencl_worker_get_count
  1747. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1748. @table @asis
  1749. @item @emph{Description}:
  1750. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1751. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1752. @item @emph{Prototype}:
  1753. @code{unsigned starpu_opencl_worker_get_count(void);}
  1754. @end table
  1755. @node starpu_spu_worker_get_count
  1756. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1757. @table @asis
  1758. @item @emph{Description}:
  1759. This function returns the number of Cell SPUs controlled by StarPU.
  1760. @item @emph{Prototype}:
  1761. @code{unsigned starpu_opencl_worker_get_count(void);}
  1762. @end table
  1763. @node starpu_worker_get_id
  1764. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1765. @table @asis
  1766. @item @emph{Description}:
  1767. This function returns the identifier of the worker associated to the calling
  1768. thread. The returned value is either -1 if the current context is not a StarPU
  1769. worker (i.e. when called from the application outside a task or a callback), or
  1770. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1771. @item @emph{Prototype}:
  1772. @code{int starpu_worker_get_id(void);}
  1773. @end table
  1774. @node starpu_worker_get_devid
  1775. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  1776. @table @asis
  1777. @item @emph{Description}:
  1778. This functions returns the device id of the worker associated to an identifier
  1779. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  1780. CUDA worker, this device identifier is the logical device identifier exposed by
  1781. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  1782. identifier of a CPU worker is the logical identifier of the core on which the
  1783. worker was bound; this identifier is either provided by the OS or by the
  1784. @code{hwloc} library in case it is available.
  1785. @item @emph{Prototype}:
  1786. @code{int starpu_worker_get_devid(int id);}
  1787. @end table
  1788. @node starpu_worker_get_type
  1789. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  1790. @table @asis
  1791. @item @emph{Description}:
  1792. This function returns the type of worker associated to an identifier (as
  1793. returned by the @code{starpu_worker_get_id} function). The returned value
  1794. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  1795. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  1796. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  1797. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  1798. identifier is unspecified.
  1799. @item @emph{Prototype}:
  1800. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  1801. @end table
  1802. @node starpu_worker_get_name
  1803. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  1804. @table @asis
  1805. @item @emph{Description}:
  1806. StarPU associates a unique human readable string to each processing unit. This
  1807. function copies at most the @code{maxlen} first bytes of the unique string
  1808. associated to a worker identified by its identifier @code{id} into the
  1809. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  1810. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  1811. function on an invalid identifier results in an unspecified behaviour.
  1812. @item @emph{Prototype}:
  1813. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  1814. @end table
  1815. @node starpu_worker_get_memory_node
  1816. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  1817. @table @asis
  1818. @item @emph{Description}:
  1819. This function returns the identifier of the memory node associated to the
  1820. worker identified by @code{workerid}.
  1821. @item @emph{Prototype}:
  1822. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  1823. @end table
  1824. @node Data Library
  1825. @section Data Library
  1826. This section describes the data management facilities provided by StarPU.
  1827. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  1828. design their own data interfaces if required.
  1829. @menu
  1830. * starpu_access_mode:: starpu_access_mode
  1831. * unsigned memory_node:: Memory node
  1832. * starpu_data_handle:: StarPU opaque data handle
  1833. * void *interface:: StarPU data interface
  1834. * starpu_data_register:: Register a piece of data to StarPU
  1835. * starpu_data_unregister:: Unregister a piece of data from StarPU
  1836. * starpu_data_invalidate:: Invalidate all data replicates
  1837. * starpu_data_acquire:: Access registered data from the application
  1838. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  1839. * starpu_data_release:: Release registered data from the application
  1840. @end menu
  1841. @node starpu_access_mode
  1842. @subsection @code{starpu_access_mode} -- Data access mode
  1843. This datatype describes a data access mode. The different available modes are:
  1844. @table @asis
  1845. @table @asis
  1846. @item @code{STARPU_R} read-only mode.
  1847. @item @code{STARPU_W} write-only mode.
  1848. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  1849. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  1850. @end table
  1851. @end table
  1852. @node unsigned memory_node
  1853. @subsection @code{unsigned memory_node} -- Memory node
  1854. @table @asis
  1855. @item @emph{Description}:
  1856. Every worker is associated to a memory node which is a logical abstraction of
  1857. the address space from which the processing unit gets its data. For instance,
  1858. the memory node associated to the different CPU workers represents main memory
  1859. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  1860. Every memory node is identified by a logical index which is accessible from the
  1861. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  1862. to StarPU, the specified memory node indicates where the piece of data
  1863. initially resides (we also call this memory node the home node of a piece of
  1864. data).
  1865. @end table
  1866. @node starpu_data_handle
  1867. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  1868. @table @asis
  1869. @item @emph{Description}:
  1870. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  1871. data. Once a piece of data has been registered to StarPU, it is associated to a
  1872. @code{starpu_data_handle} which keeps track of the state of the piece of data
  1873. over the entire machine, so that we can maintain data consistency and locate
  1874. data replicates for instance.
  1875. @end table
  1876. @node void *interface
  1877. @subsection @code{void *interface} -- StarPU data interface
  1878. @table @asis
  1879. @item @emph{Description}:
  1880. Data management is done at a high-level in StarPU: rather than accessing a mere
  1881. list of contiguous buffers, the tasks may manipulate data that are described by
  1882. a high-level construct which we call data interface.
  1883. An example of data interface is the "vector" interface which describes a
  1884. contiguous data array on a spefic memory node. This interface is a simple
  1885. structure containing the number of elements in the array, the size of the
  1886. elements, and the address of the array in the appropriate address space (this
  1887. address may be invalid if there is no valid copy of the array in the memory
  1888. node). More informations on the data interfaces provided by StarPU are
  1889. given in @ref{Data Interfaces}.
  1890. When a piece of data managed by StarPU is used by a task, the task
  1891. implementation is given a pointer to an interface describing a valid copy of
  1892. the data that is accessible from the current processing unit.
  1893. @end table
  1894. @node starpu_data_register
  1895. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  1896. @table @asis
  1897. @item @emph{Description}:
  1898. Register a piece of data into the handle located at the @code{handleptr}
  1899. address. The @code{interface} buffer contains the initial description of the
  1900. data in the home node. The @code{ops} argument is a pointer to a structure
  1901. describing the different methods used to manipulate this type of interface. See
  1902. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  1903. If @code{home_node} is not a valid memory node, StarPU will automatically
  1904. allocate the memory described by the interface the data handle is used for the
  1905. first time in write-only mode. Once such data handle has been automatically
  1906. allocated, it is possible to access it using any access mode.
  1907. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  1908. matrix) which can be registered by the means of helper functions (e.g.
  1909. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  1910. @item @emph{Prototype}:
  1911. @code{void starpu_data_register(starpu_data_handle *handleptr,
  1912. uint32_t home_node,
  1913. void *interface,
  1914. struct starpu_data_interface_ops_t *ops);}
  1915. @end table
  1916. @node starpu_data_unregister
  1917. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  1918. @table @asis
  1919. @item @emph{Description}:
  1920. This function unregisters a data handle from StarPU. If the data was
  1921. automatically allocated by StarPU because the home node was not valid, all
  1922. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  1923. is put back into the home node in the buffer that was initially registered.
  1924. Using a data handle that has been unregistered from StarPU results in an
  1925. undefined behaviour.
  1926. @item @emph{Prototype}:
  1927. @code{void starpu_data_unregister(starpu_data_handle handle);}
  1928. @end table
  1929. @node starpu_data_invalidate
  1930. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  1931. @table @asis
  1932. @item @emph{Description}:
  1933. Destroy all replicates of the data handle. After data invalidation, the first
  1934. access to the handle must be performed in write-only mode. Accessing an
  1935. invalidated data in read-mode results in undefined behaviour.
  1936. @item @emph{Prototype}:
  1937. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  1938. @end table
  1939. @c TODO create a specific sections about user interaction with the DSM ?
  1940. @node starpu_data_acquire
  1941. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  1942. @table @asis
  1943. @item @emph{Description}:
  1944. The application must call this function prior to accessing registered data from
  1945. main memory outside tasks. StarPU ensures that the application will get an
  1946. up-to-date copy of the data in main memory located where the data was
  1947. originally registered, and that all concurrent accesses (e.g. from tasks) will
  1948. be consistent with the access mode specified in the @code{mode} argument.
  1949. @code{starpu_data_release} must be called once the application does not need to
  1950. access the piece of data anymore.
  1951. Note that implicit data dependencies are also enforced by
  1952. @code{starpu_data_acquire} in case they are enabled.
  1953. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  1954. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  1955. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  1956. @item @emph{Prototype}:
  1957. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  1958. @end table
  1959. @node starpu_data_acquire_cb
  1960. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  1961. @table @asis
  1962. @item @emph{Description}:
  1963. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  1964. @code{starpu_data_release}. When the data specified in the first argument is
  1965. available in the appropriate access mode, the callback function is executed.
  1966. The application may access the requested data during the execution of this
  1967. callback. The callback function must call @code{starpu_data_release} once the
  1968. application does not need to access the piece of data anymore.
  1969. Note that implicit data dependencies are also enforced by
  1970. @code{starpu_data_acquire} in case they are enabled.
  1971. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  1972. be called from task callbacks. Upon successful completion, this function
  1973. returns 0.
  1974. @item @emph{Prototype}:
  1975. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  1976. @end table
  1977. @node starpu_data_release
  1978. @subsection @code{starpu_data_release} -- Release registered data from the application
  1979. @table @asis
  1980. @item @emph{Description}:
  1981. This function releases the piece of data acquired by the application either by
  1982. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  1983. @item @emph{Prototype}:
  1984. @code{void starpu_data_release(starpu_data_handle handle);}
  1985. @end table
  1986. @node Data Interfaces
  1987. @section Data Interfaces
  1988. @menu
  1989. * Variable Interface::
  1990. * Vector Interface::
  1991. * Matrix Interface::
  1992. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  1993. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  1994. * Block Interface::
  1995. @end menu
  1996. @node Variable Interface
  1997. @subsection Variable Interface
  1998. @table @asis
  1999. @item @emph{Description}:
  2000. @item @emph{Prototype}:
  2001. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2002. uint32_t home_node,
  2003. uintptr_t ptr, size_t elemsize);}
  2004. @item @emph{Example}:
  2005. @cartouche
  2006. @smallexample
  2007. float var;
  2008. starpu_data_handle var_handle;
  2009. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2010. @end smallexample
  2011. @end cartouche
  2012. @end table
  2013. @node Vector Interface
  2014. @subsection Vector Interface
  2015. @table @asis
  2016. @item @emph{Description}:
  2017. @item @emph{Prototype}:
  2018. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2019. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2020. @item @emph{Example}:
  2021. @cartouche
  2022. @smallexample
  2023. float vector[NX];
  2024. starpu_data_handle vector_handle;
  2025. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2026. sizeof(vector[0]));
  2027. @end smallexample
  2028. @end cartouche
  2029. @end table
  2030. @node Matrix Interface
  2031. @subsection Matrix Interface
  2032. @table @asis
  2033. @item @emph{Description}:
  2034. @item @emph{Prototype}:
  2035. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2036. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2037. uint32_t ny, size_t elemsize);}
  2038. @item @emph{Example}:
  2039. @cartouche
  2040. @smallexample
  2041. float *matrix;
  2042. starpu_data_handle matrix_handle;
  2043. matrix = (float*)malloc(width * height * sizeof(float));
  2044. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2045. width, width, height, sizeof(float));
  2046. @end smallexample
  2047. @end cartouche
  2048. @end table
  2049. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2050. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2051. @table @asis
  2052. @item @emph{Description}:
  2053. @item @emph{Prototype}:
  2054. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2055. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2056. @item @emph{Example}:
  2057. @cartouche
  2058. @smallexample
  2059. @end smallexample
  2060. @end cartouche
  2061. @end table
  2062. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2063. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2064. @table @asis
  2065. @item @emph{Description}:
  2066. @item @emph{Prototype}:
  2067. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2068. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2069. @item @emph{Example}:
  2070. @cartouche
  2071. @smallexample
  2072. @end smallexample
  2073. @end cartouche
  2074. @end table
  2075. @node Block Interface
  2076. @subsection Block Interface
  2077. @table @asis
  2078. @item @emph{Description}:
  2079. @item @emph{Prototype}:
  2080. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2081. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2082. uint32_t ny, uint32_t nz, size_t elemsize);}
  2083. @item @emph{Example}:
  2084. @cartouche
  2085. @smallexample
  2086. float *block;
  2087. starpu_data_handle block_handle;
  2088. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2089. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2090. nx, nx*ny, nx, ny, nz, sizeof(float));
  2091. @end smallexample
  2092. @end cartouche
  2093. @end table
  2094. @node Data Partition
  2095. @section Data Partition
  2096. @menu
  2097. * struct starpu_data_filter:: StarPU filter structure
  2098. * starpu_data_partition:: Partition Data
  2099. * starpu_data_unpartition:: Unpartition Data
  2100. * starpu_data_get_nb_children::
  2101. * starpu_data_get_sub_data::
  2102. * Predefined filter functions::
  2103. @end menu
  2104. @node struct starpu_data_filter
  2105. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2106. @table @asis
  2107. @item @emph{Description}:
  2108. The filter structure describes a data partitioning function.
  2109. @item @emph{Fields}:
  2110. @table @asis
  2111. @item @code{filter_func}:
  2112. TODO
  2113. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2114. @item @code{get_nchildren}:
  2115. TODO
  2116. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2117. @item @code{get_child_ops}:
  2118. TODO
  2119. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2120. @item @code{filter_arg}:
  2121. TODO
  2122. @item @code{nchildren}:
  2123. TODO
  2124. @item @code{filter_arg_ptr}:
  2125. TODO
  2126. @end table
  2127. @end table
  2128. @node starpu_data_partition
  2129. @subsection starpu_data_partition -- Partition Data
  2130. @table @asis
  2131. @item @emph{Description}:
  2132. TODO
  2133. @item @emph{Prototype}:
  2134. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2135. @end table
  2136. @node starpu_data_unpartition
  2137. @subsection starpu_data_unpartition -- Unpartition data
  2138. @table @asis
  2139. @item @emph{Description}:
  2140. TODO
  2141. @item @emph{Prototype}:
  2142. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2143. @end table
  2144. @node starpu_data_get_nb_children
  2145. @subsection starpu_data_get_nb_children
  2146. @table @asis
  2147. @item @emph{Description}:
  2148. TODO
  2149. @item @emph{Return value}:
  2150. This function returns returns the number of children.
  2151. @item @emph{Prototype}:
  2152. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2153. @end table
  2154. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2155. @node starpu_data_get_sub_data
  2156. @subsection starpu_data_get_sub_data
  2157. @table @asis
  2158. @item @emph{Description}:
  2159. TODO
  2160. @item @emph{Return value}:
  2161. TODO
  2162. @item @emph{Prototype}:
  2163. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2164. @end table
  2165. @node Predefined filter functions
  2166. @subsection Predefined filter functions
  2167. @menu
  2168. * Partitioning BCSR Data::
  2169. * Partitioning BLAS interface::
  2170. * Partitioning Vector Data::
  2171. * Partitioning Block Data::
  2172. @end menu
  2173. This section gives a list of the predefined partitioning functions.
  2174. Examples on how to use them are shown in @ref{Partitioning Data}.
  2175. @node Partitioning BCSR Data
  2176. @subsubsection Partitioning BCSR Data
  2177. @itemize
  2178. @item
  2179. TODO
  2180. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2181. @item
  2182. TODO
  2183. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2184. @end itemize
  2185. @node Partitioning BLAS interface
  2186. @subsubsection Partitioning BLAS interface
  2187. @itemize
  2188. @item
  2189. TODO
  2190. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2191. @item
  2192. TODO
  2193. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2194. @end itemize
  2195. @node Partitioning Vector Data
  2196. @subsubsection Partitioning Vector Data
  2197. @itemize
  2198. @item
  2199. TODO
  2200. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2201. @item
  2202. TODO
  2203. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2204. @item
  2205. TODO
  2206. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2207. @end itemize
  2208. @node Partitioning Block Data
  2209. @subsubsection Partitioning Block Data
  2210. @itemize
  2211. @item
  2212. TODO
  2213. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2214. @end itemize
  2215. @node Codelets and Tasks
  2216. @section Codelets and Tasks
  2217. @menu
  2218. * struct starpu_codelet:: StarPU codelet structure
  2219. * struct starpu_task:: StarPU task structure
  2220. * starpu_task_init:: Initialize a Task
  2221. * starpu_task_create:: Allocate and Initialize a Task
  2222. * starpu_task_deinit:: Release all the resources used by a Task
  2223. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2224. * starpu_task_wait:: Wait for the termination of a Task
  2225. * starpu_task_submit:: Submit a Task
  2226. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2227. * starpu_get_current_task:: Return the task currently executed by the worker
  2228. * starpu_display_codelet_stats:: Display statistics
  2229. @end menu
  2230. @node struct starpu_codelet
  2231. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2232. @table @asis
  2233. @item @emph{Description}:
  2234. The codelet structure describes a kernel that is possibly implemented on
  2235. various targets.
  2236. @item @emph{Fields}:
  2237. @table @asis
  2238. @item @code{where}:
  2239. Indicates which types of processing units are able to execute the codelet.
  2240. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2241. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2242. indicates that it is only available on Cell SPUs.
  2243. @item @code{cpu_func} (optional):
  2244. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2245. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2246. argument being the array of data managed by the data management library, and
  2247. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2248. field of the @code{starpu_task} structure.
  2249. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2250. the @code{where} field, it must be non-null otherwise.
  2251. @item @code{cuda_func} (optional):
  2252. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2253. must be a host-function written in the CUDA runtime API}. Its prototype must
  2254. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2255. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2256. field, it must be non-null otherwise.
  2257. @item @code{opencl_func} (optional):
  2258. Is a function pointer to the OpenCL implementation of the codelet. Its
  2259. prototype must be:
  2260. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2261. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2262. @code{where} field, it must be non-null otherwise.
  2263. @item @code{gordon_func} (optional):
  2264. This is the index of the Cell SPU implementation within the Gordon library.
  2265. See Gordon documentation for more details on how to register a kernel and
  2266. retrieve its index.
  2267. @item @code{nbuffers}:
  2268. Specifies the number of arguments taken by the codelet. These arguments are
  2269. managed by the DSM and are accessed from the @code{void *buffers[]}
  2270. array. The constant argument passed with the @code{cl_arg} field of the
  2271. @code{starpu_task} structure is not counted in this number. This value should
  2272. not be above @code{STARPU_NMAXBUFS}.
  2273. @item @code{model} (optional):
  2274. This is a pointer to the performance model associated to this codelet. This
  2275. optional field is ignored when set to @code{NULL}. TODO
  2276. @end table
  2277. @end table
  2278. @node struct starpu_task
  2279. @subsection @code{struct starpu_task} -- StarPU task structure
  2280. @table @asis
  2281. @item @emph{Description}:
  2282. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2283. processing units managed by StarPU. It instantiates a codelet. It can either be
  2284. allocated dynamically with the @code{starpu_task_create} method, or declared
  2285. statically. In the latter case, the programmer has to zero the
  2286. @code{starpu_task} structure and to fill the different fields properly. The
  2287. indicated default values correspond to the configuration of a task allocated
  2288. with @code{starpu_task_create}.
  2289. @item @emph{Fields}:
  2290. @table @asis
  2291. @item @code{cl}:
  2292. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2293. describes where the kernel should be executed, and supplies the appropriate
  2294. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2295. such empty tasks can be useful for synchronization purposes.
  2296. @item @code{buffers}:
  2297. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2298. different pieces of data accessed by the task, and how they should be accessed.
  2299. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2300. @code{handle} field specifies the handle of the piece of data, and the
  2301. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2302. of entries in this array must be specified in the @code{nbuffers} field of the
  2303. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2304. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2305. option when configuring StarPU.
  2306. @item @code{cl_arg} (optional) (default = NULL):
  2307. This pointer is passed to the codelet through the second argument
  2308. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2309. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2310. argument.
  2311. @item @code{cl_arg_size} (optional, Cell specific):
  2312. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2313. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2314. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2315. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2316. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2317. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2318. codelets.
  2319. @item @code{callback_func} (optional) (default = @code{NULL}):
  2320. This is a function pointer of prototype @code{void (*f)(void *)} which
  2321. specifies a possible callback. If this pointer is non-null, the callback
  2322. function is executed @emph{on the host} after the execution of the task. The
  2323. callback is passed the value contained in the @code{callback_arg} field. No
  2324. callback is executed if the field is set to @code{NULL}.
  2325. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2326. This is the pointer passed to the callback function. This field is ignored if
  2327. the @code{callback_func} is set to @code{NULL}.
  2328. @item @code{use_tag} (optional) (default = 0):
  2329. If set, this flag indicates that the task should be associated with the tag
  2330. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2331. with the task and to express task dependencies easily.
  2332. @item @code{tag_id}:
  2333. This fields contains the tag associated to the task if the @code{use_tag} field
  2334. was set, it is ignored otherwise.
  2335. @item @code{synchronous}:
  2336. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2337. returns only when the task has been executed (or if no worker is able to
  2338. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2339. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2340. This field indicates a level of priority for the task. This is an integer value
  2341. that must be set between the return values of the
  2342. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2343. and that of the @code{starpu_sched_get_max_priority} for the most important
  2344. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2345. are provided for convenience and respectively returns value of
  2346. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2347. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2348. order to allow static task initialization. Scheduling strategies that take
  2349. priorities into account can use this parameter to take better scheduling
  2350. decisions, but the scheduling policy may also ignore it.
  2351. @item @code{execute_on_a_specific_worker} (default = 0):
  2352. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2353. task to the worker specified by the @code{workerid} field.
  2354. @item @code{workerid} (optional):
  2355. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2356. which is the identifier of the worker that should process this task (as
  2357. returned by @code{starpu_worker_get_id}). This field is ignored if
  2358. @code{execute_on_a_specific_worker} field is set to 0.
  2359. @item @code{detach} (optional) (default = 1):
  2360. If this flag is set, it is not possible to synchronize with the task
  2361. by the means of @code{starpu_task_wait} later on. Internal data structures
  2362. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2363. flag is not set.
  2364. @item @code{destroy} (optional) (default = 1):
  2365. If this flag is set, the task structure will automatically be freed, either
  2366. after the execution of the callback if the task is detached, or during
  2367. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2368. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2369. called explicitly. Setting this flag for a statically allocated task structure
  2370. will result in undefined behaviour.
  2371. @item @code{predicted} (output field):
  2372. Predicted duration of the task. This field is only set if the scheduling
  2373. strategy used performance models.
  2374. @end table
  2375. @end table
  2376. @node starpu_task_init
  2377. @subsection @code{starpu_task_init} -- Initialize a Task
  2378. @table @asis
  2379. @item @emph{Description}:
  2380. Initialize a task structure with default values. This function is implicitly
  2381. called by @code{starpu_task_create}. By default, tasks initialized with
  2382. @code{starpu_task_init} must be deinitialized explicitly with
  2383. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2384. constant @code{STARPU_TASK_INITIALIZER}.
  2385. @item @emph{Prototype}:
  2386. @code{void starpu_task_init(struct starpu_task *task);}
  2387. @end table
  2388. @node starpu_task_create
  2389. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2390. @table @asis
  2391. @item @emph{Description}:
  2392. Allocate a task structure and initialize it with default values. Tasks
  2393. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2394. task is terminated. If the destroy flag is explicitly unset, the resources used
  2395. by the task are freed by calling
  2396. @code{starpu_task_destroy}.
  2397. @item @emph{Prototype}:
  2398. @code{struct starpu_task *starpu_task_create(void);}
  2399. @end table
  2400. @node starpu_task_deinit
  2401. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2402. @table @asis
  2403. @item @emph{Description}:
  2404. Release all the structures automatically allocated to execute the task. This is
  2405. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2406. freed. This should be used for statically allocated tasks for instance.
  2407. @item @emph{Prototype}:
  2408. @code{void starpu_task_deinit(struct starpu_task *task);}
  2409. @end table
  2410. @node starpu_task_destroy
  2411. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2412. @table @asis
  2413. @item @emph{Description}:
  2414. Free the resource allocated during @code{starpu_task_create}. This function can be
  2415. called automatically after the execution of a task by setting the
  2416. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2417. Calling this function on a statically allocated task results in an undefined
  2418. behaviour.
  2419. @item @emph{Prototype}:
  2420. @code{void starpu_task_destroy(struct starpu_task *task);}
  2421. @end table
  2422. @node starpu_task_wait
  2423. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2424. @table @asis
  2425. @item @emph{Description}:
  2426. This function blocks until the task has been executed. It is not possible to
  2427. synchronize with a task more than once. It is not possible to wait for
  2428. synchronous or detached tasks.
  2429. @item @emph{Return value}:
  2430. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2431. indicates that the specified task was either synchronous or detached.
  2432. @item @emph{Prototype}:
  2433. @code{int starpu_task_wait(struct starpu_task *task);}
  2434. @end table
  2435. @node starpu_task_submit
  2436. @subsection @code{starpu_task_submit} -- Submit a Task
  2437. @table @asis
  2438. @item @emph{Description}:
  2439. This function submits a task to StarPU. Calling this function does
  2440. not mean that the task will be executed immediately as there can be data or task
  2441. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2442. scheduling this task with respect to such dependencies.
  2443. This function returns immediately if the @code{synchronous} field of the
  2444. @code{starpu_task} structure was set to 0, and block until the termination of
  2445. the task otherwise. It is also possible to synchronize the application with
  2446. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2447. function for instance.
  2448. @item @emph{Return value}:
  2449. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2450. means that there is no worker able to process this task (e.g. there is no GPU
  2451. available and this task is only implemented for CUDA devices).
  2452. @item @emph{Prototype}:
  2453. @code{int starpu_task_submit(struct starpu_task *task);}
  2454. @end table
  2455. @node starpu_task_wait_for_all
  2456. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2457. @table @asis
  2458. @item @emph{Description}:
  2459. This function blocks until all the tasks that were submitted are terminated.
  2460. @item @emph{Prototype}:
  2461. @code{void starpu_task_wait_for_all(void);}
  2462. @end table
  2463. @node starpu_get_current_task
  2464. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2465. @table @asis
  2466. @item @emph{Description}:
  2467. This function returns the task currently executed by the worker, or
  2468. NULL if it is called either from a thread that is not a task or simply
  2469. because there is no task being executed at the moment.
  2470. @item @emph{Prototype}:
  2471. @code{struct starpu_task *starpu_get_current_task(void);}
  2472. @end table
  2473. @node starpu_display_codelet_stats
  2474. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2475. @table @asis
  2476. @item @emph{Description}:
  2477. TODO
  2478. @item @emph{Prototype}:
  2479. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2480. @end table
  2481. @c Callbacks : what can we put in callbacks ?
  2482. @node Explicit Dependencies
  2483. @section Explicit Dependencies
  2484. @menu
  2485. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2486. * starpu_tag_t:: Task logical identifier
  2487. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2488. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2489. * starpu_tag_wait:: Block until a Tag is terminated
  2490. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2491. * starpu_tag_remove:: Destroy a Tag
  2492. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2493. @end menu
  2494. @node starpu_task_declare_deps_array
  2495. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2496. @table @asis
  2497. @item @emph{Description}:
  2498. Declare task dependencies between a @code{task} and an array of tasks of length
  2499. @code{ndeps}. This function must be called prior to the submission of the task,
  2500. but it may called after the submission or the execution of the tasks in the
  2501. array provided the tasks are still valid (ie. they were not automatically
  2502. destroyed). Calling this function on a task that was already submitted or with
  2503. an entry of @code{task_array} that is not a valid task anymore results in an
  2504. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2505. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2506. same task, in this case, the dependencies are added. It is possible to have
  2507. redundancy in the task dependencies.
  2508. @item @emph{Prototype}:
  2509. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2510. @end table
  2511. @node starpu_tag_t
  2512. @subsection @code{starpu_tag_t} -- Task logical identifier
  2513. @table @asis
  2514. @item @emph{Description}:
  2515. It is possible to associate a task with a unique ``tag'' and to express
  2516. dependencies between tasks by the means of those tags. To do so, fill the
  2517. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2518. be arbitrary) and set the @code{use_tag} field to 1.
  2519. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2520. not be started until the tasks which holds the declared dependency tags are
  2521. completed.
  2522. @end table
  2523. @node starpu_tag_declare_deps
  2524. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2525. @table @asis
  2526. @item @emph{Description}:
  2527. Specify the dependencies of the task identified by tag @code{id}. The first
  2528. argument specifies the tag which is configured, the second argument gives the
  2529. number of tag(s) on which @code{id} depends. The following arguments are the
  2530. tags which have to be terminated to unlock the task.
  2531. This function must be called before the associated task is submitted to StarPU
  2532. with @code{starpu_task_submit}.
  2533. @item @emph{Remark}
  2534. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2535. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2536. typically need to be explicitly casted. Using the
  2537. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2538. @item @emph{Prototype}:
  2539. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2540. @item @emph{Example}:
  2541. @cartouche
  2542. @example
  2543. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2544. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2545. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2546. @end example
  2547. @end cartouche
  2548. @end table
  2549. @node starpu_tag_declare_deps_array
  2550. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2551. @table @asis
  2552. @item @emph{Description}:
  2553. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2554. does not take a variable number of arguments but an array of tags of size
  2555. @code{ndeps}.
  2556. @item @emph{Prototype}:
  2557. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2558. @item @emph{Example}:
  2559. @cartouche
  2560. @example
  2561. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2562. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2563. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2564. @end example
  2565. @end cartouche
  2566. @end table
  2567. @node starpu_tag_wait
  2568. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2569. @table @asis
  2570. @item @emph{Description}:
  2571. This function blocks until the task associated to tag @code{id} has been
  2572. executed. This is a blocking call which must therefore not be called within
  2573. tasks or callbacks, but only from the application directly. It is possible to
  2574. synchronize with the same tag multiple times, as long as the
  2575. @code{starpu_tag_remove} function is not called. Note that it is still
  2576. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2577. data structure was freed (e.g. if the @code{destroy} flag of the
  2578. @code{starpu_task} was enabled).
  2579. @item @emph{Prototype}:
  2580. @code{void starpu_tag_wait(starpu_tag_t id);}
  2581. @end table
  2582. @node starpu_tag_wait_array
  2583. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2584. @table @asis
  2585. @item @emph{Description}:
  2586. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2587. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2588. terminated.
  2589. @item @emph{Prototype}:
  2590. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2591. @end table
  2592. @node starpu_tag_remove
  2593. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2594. @table @asis
  2595. @item @emph{Description}:
  2596. This function releases the resources associated to tag @code{id}. It can be
  2597. called once the corresponding task has been executed and when there is
  2598. no other tag that depend on this tag anymore.
  2599. @item @emph{Prototype}:
  2600. @code{void starpu_tag_remove(starpu_tag_t id);}
  2601. @end table
  2602. @node starpu_tag_notify_from_apps
  2603. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2604. @table @asis
  2605. @item @emph{Description}:
  2606. This function explicitly unlocks tag @code{id}. It may be useful in the
  2607. case of applications which execute part of their computation outside StarPU
  2608. tasks (e.g. third-party libraries). It is also provided as a
  2609. convenient tool for the programmer, for instance to entirely construct the task
  2610. DAG before actually giving StarPU the opportunity to execute the tasks.
  2611. @item @emph{Prototype}:
  2612. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2613. @end table
  2614. @node Implicit Data Dependencies
  2615. @section Implicit Data Dependencies
  2616. @menu
  2617. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2618. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2619. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2620. @end menu
  2621. In this section, we describe how StarPU makes it possible to insert implicit
  2622. task dependencies in order to enforce sequential data consistency. When this
  2623. data consistency is enabled on a specific data handle, any data access will
  2624. appear as sequentially consistent from the application. For instance, if the
  2625. application submits two tasks that access the same piece of data in read-only
  2626. mode, and then a third task that access it in write mode, dependencies will be
  2627. added between the two first tasks and the third one. Implicit data dependencies
  2628. are also inserted in the case of data accesses from the application.
  2629. @node starpu_data_set_default_sequential_consistency_flag
  2630. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2631. @table @asis
  2632. @item @emph{Description}:
  2633. Set the default sequential consistency flag. If a non-zero value is passed, a
  2634. sequential data consistency will be enforced for all handles registered after
  2635. this function call, otherwise it is disabled. By default, StarPU enables
  2636. sequential data consistency. It is also possible to select the data consistency
  2637. mode of a specific data handle with the
  2638. @code{starpu_data_set_sequential_consistency_flag} function.
  2639. @item @emph{Prototype}:
  2640. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2641. @end table
  2642. @node starpu_data_get_default_sequential_consistency_flag
  2643. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2644. @table @asis
  2645. @item @emph{Description}:
  2646. This function returns the current default sequential consistency flag.
  2647. @item @emph{Prototype}:
  2648. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2649. @end table
  2650. @node starpu_data_set_sequential_consistency_flag
  2651. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2652. @table @asis
  2653. @item @emph{Description}:
  2654. Select the data consistency mode associated to a data handle. The consistency
  2655. mode set using this function has the priority over the default mode which can
  2656. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2657. @item @emph{Prototype}:
  2658. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2659. @end table
  2660. @node Performance Model API
  2661. @section Performance Model API
  2662. @menu
  2663. * starpu_load_history_debug::
  2664. * starpu_perfmodel_debugfilepath::
  2665. * starpu_perfmodel_get_arch_name::
  2666. * starpu_force_bus_sampling::
  2667. @end menu
  2668. @node starpu_load_history_debug
  2669. @subsection @code{starpu_load_history_debug}
  2670. @table @asis
  2671. @item @emph{Description}:
  2672. TODO
  2673. @item @emph{Prototype}:
  2674. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  2675. @end table
  2676. @node starpu_perfmodel_debugfilepath
  2677. @subsection @code{starpu_perfmodel_debugfilepath}
  2678. @table @asis
  2679. @item @emph{Description}:
  2680. TODO
  2681. @item @emph{Prototype}:
  2682. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  2683. @end table
  2684. @node starpu_perfmodel_get_arch_name
  2685. @subsection @code{starpu_perfmodel_get_arch_name}
  2686. @table @asis
  2687. @item @emph{Description}:
  2688. TODO
  2689. @item @emph{Prototype}:
  2690. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  2691. @end table
  2692. @node starpu_force_bus_sampling
  2693. @subsection @code{starpu_force_bus_sampling}
  2694. @table @asis
  2695. @item @emph{Description}:
  2696. TODO
  2697. @item @emph{Prototype}:
  2698. @code{void starpu_force_bus_sampling(void);}
  2699. @end table
  2700. @node Profiling API
  2701. @section Profiling API
  2702. @menu
  2703. * starpu_profiling_status_set:: starpu_profiling_status_set
  2704. * starpu_profiling_status_get:: starpu_profiling_status_get
  2705. * struct starpu_task_profiling_info:: task profiling information
  2706. * struct starpu_worker_profiling_info:: worker profiling information
  2707. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  2708. * struct starpu_bus_profiling_info:: bus profiling information
  2709. * starpu_bus_get_count::
  2710. * starpu_bus_get_id::
  2711. * starpu_bus_get_src::
  2712. * starpu_bus_get_dst::
  2713. * starpu_timing_timespec_delay_us::
  2714. * starpu_timing_timespec_to_us::
  2715. * starpu_bus_profiling_helper_display_summary::
  2716. @end menu
  2717. @node starpu_profiling_status_set
  2718. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  2719. @table @asis
  2720. @item @emph{Description}:
  2721. Thie function sets the profiling status. Profiling is activated by passing
  2722. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  2723. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2724. resets all profiling measurements. When profiling is enabled, the
  2725. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2726. to a valid @code{struct starpu_task_profiling_info} structure containing
  2727. information about the execution of the task.
  2728. @item @emph{Return value}:
  2729. Negative return values indicate an error, otherwise the previous status is
  2730. returned.
  2731. @item @emph{Prototype}:
  2732. @code{int starpu_profiling_status_set(int status);}
  2733. @end table
  2734. @node starpu_profiling_status_get
  2735. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  2736. @table @asis
  2737. @item @emph{Description}:
  2738. Return the current profiling status or a negative value in case there was an error.
  2739. @item @emph{Prototype}:
  2740. @code{int starpu_profiling_status_get(void);}
  2741. @end table
  2742. @node struct starpu_task_profiling_info
  2743. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  2744. @table @asis
  2745. @item @emph{Description}:
  2746. This structure contains information about the execution of a task. It is
  2747. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2748. structure if profiling was enabled.
  2749. @item @emph{Fields}:
  2750. @table @asis
  2751. @item @code{submit_time}:
  2752. Date of task submission (relative to the initialization of StarPU).
  2753. @item @code{start_time}:
  2754. Date of task execution beginning (relative to the initialization of StarPU).
  2755. @item @code{end_time}:
  2756. Date of task execution termination (relative to the initialization of StarPU).
  2757. @item @code{workerid}:
  2758. Identifier of the worker which has executed the task.
  2759. @end table
  2760. @end table
  2761. @node struct starpu_worker_profiling_info
  2762. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  2763. @table @asis
  2764. @item @emph{Description}:
  2765. This structure contains the profiling information associated to a worker.
  2766. @item @emph{Fields}:
  2767. @table @asis
  2768. @item @code{start_time}:
  2769. Starting date for the reported profiling measurements.
  2770. @item @code{total_time}:
  2771. Duration of the profiling measurement interval.
  2772. @item @code{executing_time}:
  2773. Time spent by the worker to execute tasks during the profiling measurement interval.
  2774. @item @code{sleeping_time}:
  2775. Time spent idling by the worker during the profiling measurement interval.
  2776. @item @code{executed_tasks}:
  2777. Number of tasks executed by the worker during the profiling measurement interval.
  2778. @end table
  2779. @end table
  2780. @node starpu_worker_get_profiling_info
  2781. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  2782. @table @asis
  2783. @item @emph{Description}:
  2784. Get the profiling info associated to the worker identified by @code{workerid},
  2785. and reset the profiling measurements. If the @code{worker_info} argument is
  2786. NULL, only reset the counters associated to worker @code{workerid}.
  2787. @item @emph{Return value}:
  2788. Upon successful completion, this function returns 0. Otherwise, a negative
  2789. value is returned.
  2790. @item @emph{Prototype}:
  2791. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  2792. @end table
  2793. @node struct starpu_bus_profiling_info
  2794. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  2795. @table @asis
  2796. @item @emph{Description}:
  2797. TODO
  2798. @item @emph{Fields}:
  2799. @table @asis
  2800. @item @code{start_time}:
  2801. TODO
  2802. @item @code{total_time}:
  2803. TODO
  2804. @item @code{transferred_bytes}:
  2805. TODO
  2806. @item @code{transfer_count}:
  2807. TODO
  2808. @end table
  2809. @end table
  2810. @node starpu_bus_get_count
  2811. @subsection @code{starpu_bus_get_count}
  2812. @table @asis
  2813. @item @emph{Description}:
  2814. TODO
  2815. @item @emph{Prototype}:
  2816. @code{int starpu_bus_get_count(void);}
  2817. @end table
  2818. @node starpu_bus_get_id
  2819. @subsection @code{starpu_bus_get_id}
  2820. @table @asis
  2821. @item @emph{Description}:
  2822. TODO
  2823. @item @emph{Prototype}:
  2824. @code{int starpu_bus_get_id(int src, int dst);}
  2825. @end table
  2826. @node starpu_bus_get_src
  2827. @subsection @code{starpu_bus_get_src}
  2828. @table @asis
  2829. @item @emph{Description}:
  2830. TODO
  2831. @item @emph{Prototype}:
  2832. @code{int starpu_bus_get_src(int busid);}
  2833. @end table
  2834. @node starpu_bus_get_dst
  2835. @subsection @code{starpu_bus_get_dst}
  2836. @table @asis
  2837. @item @emph{Description}:
  2838. TODO
  2839. @item @emph{Prototype}:
  2840. @code{int starpu_bus_get_dst(int busid);}
  2841. @end table
  2842. @node starpu_timing_timespec_delay_us
  2843. @subsection @code{starpu_timing_timespec_delay_us}
  2844. @table @asis
  2845. @item @emph{Description}:
  2846. TODO
  2847. @item @emph{Prototype}:
  2848. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  2849. @end table
  2850. @node starpu_timing_timespec_to_us
  2851. @subsection @code{starpu_timing_timespec_to_us}
  2852. @table @asis
  2853. @item @emph{Description}:
  2854. TODO
  2855. @item @emph{Prototype}:
  2856. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  2857. @end table
  2858. @node starpu_bus_profiling_helper_display_summary
  2859. @subsection @code{starpu_bus_profiling_helper_display_summary}
  2860. @table @asis
  2861. @item @emph{Description}:
  2862. TODO
  2863. @item @emph{Prototype}:
  2864. @code{void starpu_bus_profiling_helper_display_summary(void);}
  2865. @end table
  2866. @node CUDA extensions
  2867. @section CUDA extensions
  2868. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  2869. @menu
  2870. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  2871. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  2872. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  2873. @end menu
  2874. @node starpu_cuda_get_local_stream
  2875. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  2876. @table @asis
  2877. @item @emph{Description}:
  2878. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2879. function is only provided for convenience so that programmers can easily use
  2880. asynchronous operations within codelets without having to create a stream by
  2881. hand. Note that the application is not forced to use the stream provided by
  2882. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2883. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2884. the likelihood of having all transfers overlapped.
  2885. @item @emph{Prototype}:
  2886. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  2887. @end table
  2888. @node starpu_helper_cublas_init
  2889. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  2890. @table @asis
  2891. @item @emph{Description}:
  2892. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2893. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2894. controlled by StarPU. This call blocks until CUBLAS has been properly
  2895. initialized on every device.
  2896. @item @emph{Prototype}:
  2897. @code{void starpu_helper_cublas_init(void);}
  2898. @end table
  2899. @node starpu_helper_cublas_shutdown
  2900. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  2901. @table @asis
  2902. @item @emph{Description}:
  2903. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2904. @item @emph{Prototype}:
  2905. @code{void starpu_helper_cublas_shutdown(void);}
  2906. @end table
  2907. @node OpenCL extensions
  2908. @section OpenCL extensions
  2909. @menu
  2910. * Enabling OpenCL:: Enabling OpenCL
  2911. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2912. * Loading OpenCL kernels:: Loading OpenCL kernels
  2913. @end menu
  2914. @node Enabling OpenCL
  2915. @subsection Enabling OpenCL
  2916. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  2917. enabled by default. To enable OpenCL, you need either to disable CUDA
  2918. when configuring StarPU:
  2919. @example
  2920. % ./configure --disable-cuda
  2921. @end example
  2922. or when running applications:
  2923. @example
  2924. % STARPU_NCUDA=0 ./application
  2925. @end example
  2926. OpenCL will automatically be started on any device not yet used by
  2927. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  2928. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  2929. so:
  2930. @example
  2931. % STARPU_NCUDA=2 ./application
  2932. @end example
  2933. @node Compiling OpenCL kernels
  2934. @subsection Compiling OpenCL kernels
  2935. Source codes for OpenCL kernels can be stored in a file or in a
  2936. string. StarPU provides functions to build the program executable for
  2937. each available OpenCL device as a @code{cl_program} object. This
  2938. program executable can then be loaded within a specific queue as
  2939. explained in the next section. These are only helpers, Applications
  2940. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2941. use (e.g. different programs on the different OpenCL devices, for
  2942. relocation purpose for instance).
  2943. @menu
  2944. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  2945. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  2946. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  2947. @end menu
  2948. @node starpu_opencl_load_opencl_from_file
  2949. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  2950. @table @asis
  2951. @item @emph{Description}:
  2952. TODO
  2953. @item @emph{Prototype}:
  2954. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  2955. @end table
  2956. @node starpu_opencl_load_opencl_from_string
  2957. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  2958. @table @asis
  2959. @item @emph{Description}:
  2960. TODO
  2961. @item @emph{Prototype}:
  2962. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  2963. @end table
  2964. @node starpu_opencl_unload_opencl
  2965. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  2966. @table @asis
  2967. @item @emph{Description}:
  2968. TODO
  2969. @item @emph{Prototype}:
  2970. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  2971. @end table
  2972. @node Loading OpenCL kernels
  2973. @subsection Loading OpenCL kernels
  2974. @menu
  2975. * starpu_opencl_load_kernel:: Loading a kernel
  2976. * starpu_opencl_relase_kernel:: Releasing a kernel
  2977. @end menu
  2978. @node starpu_opencl_load_kernel
  2979. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  2980. @table @asis
  2981. @item @emph{Description}:
  2982. TODO
  2983. @item @emph{Prototype}:
  2984. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  2985. }
  2986. @end table
  2987. @node starpu_opencl_relase_kernel
  2988. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  2989. @table @asis
  2990. @item @emph{Description}:
  2991. TODO
  2992. @item @emph{Prototype}:
  2993. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  2994. @end table
  2995. @node Cell extensions
  2996. @section Cell extensions
  2997. nothing yet.
  2998. @node Miscellaneous helpers
  2999. @section Miscellaneous helpers
  3000. @menu
  3001. * starpu_data_cpy:: Copy a data handle into another data handle
  3002. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3003. @end menu
  3004. @node starpu_data_cpy
  3005. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3006. @table @asis
  3007. @item @emph{Description}:
  3008. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3009. The @code{asynchronous} parameter indicates whether the function should
  3010. block or not. In the case of an asynchronous call, it is possible to
  3011. synchronize with the termination of this operation either by the means of
  3012. implicit dependencies (if enabled) or by calling
  3013. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3014. this callback function is executed after the handle has been copied, and it is
  3015. given the @code{callback_arg} pointer as argument.
  3016. @item @emph{Prototype}:
  3017. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3018. @end table
  3019. @node starpu_execute_on_each_worker
  3020. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3021. @table @asis
  3022. @item @emph{Description}:
  3023. When calling this method, the offloaded function specified by the first argument is
  3024. executed by every StarPU worker that may execute the function.
  3025. The second argument is passed to the offloaded function.
  3026. The last argument specifies on which types of processing units the function
  3027. should be executed. Similarly to the @code{where} field of the
  3028. @code{starpu_codelet} structure, it is possible to specify that the function
  3029. should be executed on every CUDA device and every CPU by passing
  3030. @code{STARPU_CPU|STARPU_CUDA}.
  3031. This function blocks until the function has been executed on every appropriate
  3032. processing units, so that it may not be called from a callback function for
  3033. instance.
  3034. @item @emph{Prototype}:
  3035. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3036. @end table
  3037. @c ---------------------------------------------------------------------
  3038. @c Advanced Topics
  3039. @c ---------------------------------------------------------------------
  3040. @node Advanced Topics
  3041. @chapter Advanced Topics
  3042. @menu
  3043. * Defining a new data interface::
  3044. * Defining a new scheduling policy::
  3045. @end menu
  3046. @node Defining a new data interface
  3047. @section Defining a new data interface
  3048. @menu
  3049. * struct starpu_data_interface_ops_t:: Per-interface methods
  3050. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3051. * An example of data interface:: An example of data interface
  3052. @end menu
  3053. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3054. @node struct starpu_data_interface_ops_t
  3055. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3056. @table @asis
  3057. @item @emph{Description}:
  3058. TODO describe all the different fields
  3059. @end table
  3060. @node struct starpu_data_copy_methods
  3061. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3062. @table @asis
  3063. @item @emph{Description}:
  3064. TODO describe all the different fields
  3065. @end table
  3066. @node An example of data interface
  3067. @subsection An example of data interface
  3068. @table @asis
  3069. TODO
  3070. @end table
  3071. @node Defining a new scheduling policy
  3072. @section Defining a new scheduling policy
  3073. TODO
  3074. A full example showing how to define a new scheduling policy is available in
  3075. the StarPU sources in the directory @code{examples/scheduler/}.
  3076. @menu
  3077. * struct starpu_sched_policy_s::
  3078. * starpu_worker_set_sched_condition::
  3079. * starpu_sched_set_min_priority:: Set the minimum priority level
  3080. * starpu_sched_set_max_priority:: Set the maximum priority level
  3081. * Source code::
  3082. @end menu
  3083. @node struct starpu_sched_policy_s
  3084. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3085. @table @asis
  3086. @item @emph{Description}:
  3087. This structure contains all the methods that implement a scheduling policy. An
  3088. application may specify which scheduling strategy in the @code{sched_policy}
  3089. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3090. function.
  3091. @item @emph{Fields}:
  3092. @table @asis
  3093. @item @code{init_sched}:
  3094. Initialize the scheduling policy.
  3095. @item @code{deinit_sched}:
  3096. Cleanup the scheduling policy.
  3097. @item @code{push_task}:
  3098. Insert a task into the scheduler.
  3099. @item @code{push_prio_task}:
  3100. Insert a priority task into the scheduler.
  3101. @item @code{pop_task}:
  3102. Get a task from the scheduler. The mutex associated to the worker is already
  3103. taken when this method is called.
  3104. @item @code{pop_every_task}:
  3105. Remove all available tasks from the scheduler (tasks are chained by the means
  3106. of the prev and next fields of the starpu_task structure). The mutex associated
  3107. to the worker is already taken when this method is called.
  3108. @item @code{post_exec_hook} (optionnal):
  3109. This method is called every time a task has been executed.
  3110. @item @code{policy_name}:
  3111. Name of the policy (optionnal).
  3112. @item @code{policy_description}:
  3113. Description of the policy (optionnal).
  3114. @end table
  3115. @end table
  3116. @node starpu_worker_set_sched_condition
  3117. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3118. @table @asis
  3119. @item @emph{Description}:
  3120. When there is no available task for a worker, StarPU blocks this worker on a
  3121. condition variable. This function specifies which condition variable (and the
  3122. associated mutex) should be used to block (and to wake up) a worker. Note that
  3123. multiple workers may use the same condition variable. For instance, in the case
  3124. of a scheduling strategy with a single task queue, the same condition variable
  3125. would be used to block and wake up all workers.
  3126. The initialization method of a scheduling strategy (@code{init_sched}) must
  3127. call this function once per worker.
  3128. @item @emph{Prototype}:
  3129. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3130. @end table
  3131. @node starpu_sched_set_min_priority
  3132. @subsection @code{starpu_sched_set_min_priority}
  3133. @table @asis
  3134. @item @emph{Description}:
  3135. Defines the minimum priority level supported by the scheduling policy. The
  3136. default minimum priority level is the same as the default priority level which
  3137. is 0 by convention. The application may access that value by calling the
  3138. @code{starpu_sched_get_min_priority} function. This function should only be
  3139. called from the initialization method of the scheduling policy, and should not
  3140. be used directly from the application.
  3141. @item @emph{Prototype}:
  3142. @code{void starpu_sched_set_min_priority(int min_prio)}
  3143. @end table
  3144. @node starpu_sched_set_max_priority
  3145. @subsection @code{starpu_sched_set_max_priority}
  3146. @table @asis
  3147. @item @emph{Description}:
  3148. Defines the maximum priority level supported by the scheduling policy. The
  3149. default maximum priority level is 1. The application may access that value by
  3150. calling the @code{starpu_sched_get_max_priority} function. This function should
  3151. only be called from the initialization method of the scheduling policy, and
  3152. should not be used directly from the application.
  3153. @item @emph{Prototype}:
  3154. @code{void starpu_sched_set_min_priority(int max_prio)}
  3155. @end table
  3156. @node Source code
  3157. @subsection Source code
  3158. @cartouche
  3159. @smallexample
  3160. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3161. .init_sched = init_dummy_sched,
  3162. .deinit_sched = deinit_dummy_sched,
  3163. .push_task = push_task_dummy,
  3164. .push_prio_task = NULL,
  3165. .pop_task = pop_task_dummy,
  3166. .post_exec_hook = NULL,
  3167. .pop_every_task = NULL,
  3168. .policy_name = "dummy",
  3169. .policy_description = "dummy scheduling strategy"
  3170. @};
  3171. @end smallexample
  3172. @end cartouche
  3173. @c ---------------------------------------------------------------------
  3174. @c Appendices
  3175. @c ---------------------------------------------------------------------
  3176. @c ---------------------------------------------------------------------
  3177. @c Full source code for the 'Scaling a Vector' example
  3178. @c ---------------------------------------------------------------------
  3179. @node Full source code for the 'Scaling a Vector' example
  3180. @appendix Full source code for the 'Scaling a Vector' example
  3181. @menu
  3182. * Main application::
  3183. * CPU Kernel::
  3184. * CUDA Kernel::
  3185. * OpenCL Kernel::
  3186. @end menu
  3187. @node Main application
  3188. @section Main application
  3189. @smallexample
  3190. @include vector_scal_c.texi
  3191. @end smallexample
  3192. @node CPU Codelet
  3193. @section CPU Codelet
  3194. @smallexample
  3195. @include vector_scal_cpu.texi
  3196. @end smallexample
  3197. @node CUDA Kernel
  3198. @section CUDA Kernel
  3199. @smallexample
  3200. @include vector_scal_cuda.texi
  3201. @end smallexample
  3202. @node OpenCL Kernel
  3203. @section OpenCL Kernel
  3204. @menu
  3205. * Invoking the kernel::
  3206. * Source of the kernel::
  3207. @end menu
  3208. @node Invoking the kernel
  3209. @subsection Invoking the kernel
  3210. @smallexample
  3211. @include vector_scal_opencl.texi
  3212. @end smallexample
  3213. @node Source of the kernel
  3214. @subsection Source of the kernel
  3215. @smallexample
  3216. @include vector_scal_opencl_codelet.texi
  3217. @end smallexample
  3218. @bye