| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 | /* * This file is part of the StarPU Handbook. * Copyright (C) 2009--2011  Universit@'e de Bordeaux * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017  CNRS * Copyright (C) 2011, 2012, 2016 INRIA * See the file version.doxy for copying conditions. *//*! \defgroup API_Performance_Model Performance Model\enum starpu_perfmodel_type\ingroup API_Performance_ModelTODO\var starpu_perfmodel_type::STARPU_PERFMODEL_INVALID    todo\var starpu_perfmodel_type::STARPU_PER_ARCH    Application-provided per-arch cost model function\var starpu_perfmodel_type::STARPU_COMMON    Application-provided common cost model function, with per-arch    factor\var starpu_perfmodel_type::STARPU_HISTORY_BASED    Automatic history-based cost model\var starpu_perfmodel_type::STARPU_REGRESSION_BASED    Automatic linear regression-based cost model  (alpha * size ^    beta)\var starpu_perfmodel_type::STARPU_NL_REGRESSION_BASED    Automatic non-linear regression-based cost model (a * size ^ b +    c)\var starpu_perfmodel_type::STARPU_MULTIPLE_REGRESSION_BASED    Automatic multiple linear regression-based cost model. Application    provides parameters, their combinations and exponents.\struct starpu_perfmodel_devicetodo\ingroup API_Performance_Model\var enum starpu_worker_archtype starpu_perfmodel_device::type    type of the device\var int starpu_perfmodel_device::devid    identifier of the precise device\var int starpu_perfmodel_device::ncore    number of execution in parallel, minus 1\struct starpu_perfmodel_archtodo\ingroup API_Performance_Model\var int starpu_perfmodel_arch::ndevices    number of the devices for the given arch\var struct starpu_perfmodel_device *starpu_perfmodel_arch::devices    list of the devices for the given arch\struct starpu_perfmodelContain all information about a performance model. At least thetype and symbol fields have to be filled when defining a performancemodel for a codelet. For compatibility, make sure to initialize thewhole structure to zero, either by using explicit memset, or byletting the compiler implicitly do it in e.g. static storage case. Ifnot provided, other fields have to be zero.\ingroup API_Performance_Model\var enum starpu_perfmodel_type starpu_perfmodel::type    type of performance model    <ul>    <li>    ::STARPU_HISTORY_BASED, ::STARPU_REGRESSION_BASED,    ::STARPU_NL_REGRESSION_BASED: No other fields needs to be    provided, this is purely history-based.    </li>    <li>    ::STARPU_MULTIPLE_REGRESSION_BASED: Need to provide fields    starpu_perfmodel::nparameters (number of different parameters),    starpu_perfmodel::ncombinations (number of parameters    combinations-tuples) and table starpu_perfmodel::combinations    which defines exponents of the equation. Function cl_perf_func    also needs to define how to extract parameters from the task.     </li>    <li>    ::STARPU_PER_ARCH: either field    starpu_perfmodel::arch_cost_function has to be filled with a    function that returns the cost in micro-seconds on the arch given    as parameter, or field starpu_perfmodel::per_arch has to be filled    with functions which return the cost in micro-seconds.    </li>    <li>    ::STARPU_COMMON: field starpu_perfmodel::cost_function has to be    filled with a function that returns the cost in micro-seconds on a    CPU, timing on other archs will be determined by multiplying by an    arch-specific factor.    </li>    </ul>\var const char *starpu_perfmodel::symbol    symbol name for the performance model, which will be used as file    name to store the model. It must be set otherwise the model will    be ignored.\var double (*starpu_perfmodel::cost_function)(struct starpu_task *, unsigned nimpl)    Used by ::STARPU_COMMON. Take a task and implementation number,    and must return a task duration estimation in micro-seconds.\var double (*starpu_perfmodel::arch_cost_function)(struct starpu_task *, struct starpu_perfmodel_arch* arch, unsigned nimpl)    Used by ::STARPU_COMMON. Take a task, an arch and implementation    number, and must return a task duration estimation in    micro-seconds on that arch.\var size_t (*starpu_perfmodel::size_base)(struct starpu_task *, unsigned nimpl)    Used by ::STARPU_HISTORY_BASED, ::STARPU_REGRESSION_BASED and    ::STARPU_NL_REGRESSION_BASED. If not <c>NULL</c>, take a task and    implementation number, and return the size to be used as index to    distinguish histories and as a base for regressions.\var uint32_t (*starpu_perfmodel::footprint)(struct starpu_task *)    Used by ::STARPU_HISTORY_BASED. If not <c>NULL</c>, take a task    and return the footprint to be used as index to distinguish    histories. The default is to use the starpu_task_data_footprint()    function.\var unsigned starpu_perfmodel::is_loaded\private    Whether the performance model is already loaded from the disk.\var unsigned starpu_perfmodel::benchmarking\private    todo\var unsigned starpu_perfmodel::is_init    todo\var starpu_perfmodel_state_t starpu_perfmodel::state\private    todo\var void (*starpu_perfmodel::parameters)(struct starpu_task * task, double *parameters);    todo\var const char ** starpu_perfmodel::parameters_names\private    Names of parameters used for multiple linear regression models (M,    N, K)\var unsigned starpu_perfmodel::nparameters\private    Number of parameters used for multiple linear regression models\var unsigned ** starpu_perfmodel::combinations\private    Table of combinations of parameters (and the exponents) used for    multiple linear regression models\var unsigned starpu_perfmodel::ncombinations\private    Number of combination of parameters used for multiple linear    regression models\struct starpu_perfmodel_regression_modeltodo\ingroup API_Performance_Model\var double starpu_perfmodel_regression_model::sumlny    sum of ln(measured)\var double starpu_perfmodel_regression_model::sumlnx    sum of ln(size)\var double starpu_perfmodel_regression_model::sumlnx2    sum of ln(size)^2\var unsigned long starpu_perfmodel_regression_model::minx    minimum size\var unsigned long starpu_perfmodel_regression_model::maxx    maximum size\var double starpu_perfmodel_regression_model::sumlnxlny    sum of ln(size)*ln(measured)\var double starpu_perfmodel_regression_model::alpha    estimated = alpha * size ^ beta\var double starpu_perfmodel_regression_model::beta    estimated = alpha * size ^ beta\var unsigned starpu_perfmodel_regression_model::valid    whether the linear regression model is valid (i.e. enough measures)\var double starpu_perfmodel_regression_model::a    estimated = a size ^b + c\var double starpu_perfmodel_regression_model::b    estimated = a size ^b + c\var double starpu_perfmodel_regression_model::c    estimated = a size ^b + c\var unsigned starpu_perfmodel_regression_model::nl_valid    whether the non-linear regression model is valid (i.e. enough measures)\var unsigned starpu_perfmodel_regression_model::nsample    number of sample values for non-linear regression\var double starpu_perfmodel_regression_model::coeff[]    list of computed coefficients for multiple linear regression model\var double starpu_perfmodel_regression_model::ncoeff    number of coefficients for multiple linear regression model\var double starpu_perfmodel_regression_model::multi_valid    whether the multiple linear regression model is valid\struct starpu_perfmodel_per_archcontains information about the performance model of a givenarch.\ingroup API_Performance_Model\var starpu_perfmodel_per_arch_cost_function starpu_perfmodel_per_arch::cost_function    Used by ::STARPU_PER_ARCH, must point to functions which take a    task, the target arch and implementation number (as mere    conveniency, since the array is already indexed by these), and    must return a task duration estimation in micro-seconds.\var starpu_perfmodel_per_arch_size_base starpu_perfmodel_per_arch::size_base    Same as in structure starpu_perfmodel, but per-arch, in case it    depends on the architecture-specific implementation.\var struct starpu_perfmodel_history_table *starpu_perfmodel_per_arch::history\private    The history of performance measurements.\var struct starpu_perfmodel_history_list *starpu_perfmodel_per_arch::list\private    Used by ::STARPU_HISTORY_BASED, ::STARPU_NL_REGRESSION_BASED and    ::STARPU_MULTIPLE_REGRESSION_BASED, records all execution history    measures.\var struct starpu_perfmodel_regression_model starpu_perfmodel_per_arch::regression\private    Used by ::STARPU_REGRESSION_BASED, ::STARPU_NL_REGRESSION_BASED    and ::STARPU_MULTIPLE_REGRESSION_BASED, contains the estimated    factors of the regression.\struct starpu_perfmodel_history_listtodo\ingroup API_Performance_Model\var struct starpu_perfmodel_history_list *starpu_perfmodel_history_list::next    todo\var struct starpu_perfmodel_history_entry *starpu_perfmodel_history_list::entry    todo\struct starpu_perfmodel_history_entrytodo\ingroup API_Performance_Model\var double starpu_perfmodel_history_entry::mean    mean_n = 1/n sum\var double starpu_perfmodel_history_entry::deviation    n dev_n = sum2 - 1/n (sum)^2\var double starpu_perfmodel_history_entry::sum    sum of samples (in µs)\var double starpu_perfmodel_history_entry::sum2    sum of samples^2\var unsigned starpu_perfmodel_history_entry::nsample    number of samples\var uint32_t starpu_perfmodel_history_entry::footprint    data footprint\var size_t starpu_perfmodel_history_entry::size    in bytes\var double starpu_perfmodel_history_entry::flops    Provided by the application\fn void starpu_perfmodel_init(struct starpu_perfmodel *model)\ingroup API_Performance_Modeltodo\fn void starpu_perfmodel_free_sampling_directories(void)\ingroup API_Performance_ModelFree internal memory used for sampling directorymanagement. It should only be called by an application which is notcalling starpu_shutdown() as this function already calls it. See forexample <c>tools/starpu_perfmodel_display.c</c>.\fn int starpu_perfmodel_load_file(const char *filename, struct starpu_perfmodel *model)\ingroup API_Performance_ModelLoad the performance model found in the file named \p filename. \p model has to becompletely zero, and will be filled with the information stored in the given file.\fn int starpu_perfmodel_load_symbol(const char *symbol, struct starpu_perfmodel *model)\ingroup API_Performance_ModelLoad a given performance model. \p model has to becompletely zero, and will be filled with the information stored in<c>$STARPU_HOME/.starpu</c>. The function is intended to be used byexternal tools that want to read the performance model files.\fn int starpu_perfmodel_unload_model(struct starpu_perfmodel *model)\ingroup API_Performance_ModelUnload \p model which has been previously loadedthrough the function starpu_perfmodel_load_symbol()\fn void starpu_perfmodel_debugfilepath(struct starpu_perfmodel *model, struct starpu_perfmodel_arch *arch, char *path, size_t maxlen, unsigned nimpl)\ingroup API_Performance_ModelReturn the path to the debugging information for the performance model.\fn char* starpu_perfmodel_get_archtype_name(enum starpu_worker_archtype archtype)\ingroup API_Performance_Modeltodo\fn void starpu_perfmodel_get_arch_name(struct starpu_perfmodel_arch *arch, char *archname, size_t maxlen, unsigned nimpl)\ingroup API_Performance_ModelReturn the architecture name for \p arch\fn struct starpu_perfmodel_arch *starpu_worker_get_perf_archtype(int workerid, unsigned sched_ctx_id)\ingroup API_Performance_ModelReturn the architecture type of the worker \p workerid.\fn void starpu_perfmodel_initialize(void)\ingroup API_Performance_ModelIf starpu_init is not used, starpu_perfmodel_initialize should be used before calling starpu_perfmodel_* functions.\fn int starpu_perfmodel_list(FILE *output)\ingroup API_Performance_ModelPrint a list of all performance models on \p output\fn void starpu_perfmodel_directory(FILE *output)\ingroup API_Performance_ModelPrint the directory name storing performance models on \p output\fn void starpu_perfmodel_print(struct starpu_perfmodel *model, struct starpu_perfmodel_arch *arch, unsigned nimpl, char *parameter, uint32_t *footprint, FILE *output)\ingroup API_Performance_Modeltodo\fn int starpu_perfmodel_print_all(struct starpu_perfmodel *model, char *arch, char *parameter, uint32_t *footprint, FILE *output)\ingroup API_Performance_Modeltodo\fn int starpu_perfmodel_print_estimations(struct starpu_perfmodel *model, uint32_t footprint, FILE *output)\ingroup API_Performance_Modeltodo\fn void starpu_bus_print_bandwidth(FILE *f)\ingroup API_Performance_ModelPrint a matrix of bus bandwidths on \p f.\fn void starpu_bus_print_affinity(FILE *f)\ingroup API_Performance_ModelPrint the affinity devices on \p f.\fn void starpu_bus_print_filenames(FILE *f)\ingroup API_Performance_ModelPrint on \p f the name of the files containing the matrix of bus bandwidths, the affinity devices and the latency.\fn void starpu_perfmodel_update_history(struct starpu_perfmodel *model, struct starpu_task *task, struct starpu_perfmodel_arch *arch, unsigned cpuid, unsigned nimpl, double measured);\ingroup API_Performance_ModelFeed the performance model model with an explicitmeasurement measured (in µs), in addition to measurements done by StarPUitself. This can be useful when the application already has anexisting set of measurements done in good conditions, that StarPUcould benefit from instead of doing on-line measurements. An exampleof use can be seen in \ref PerformanceModelExample.\fn double starpu_transfer_bandwidth(unsigned src_node, unsigned dst_node)\ingroup API_Performance_ModelReturn the bandwidth of data transfer between two memory nodes\fn double starpu_transfer_latency(unsigned src_node, unsigned dst_node)\ingroup API_Performance_ModelReturn the latency of data transfer between two memory nodes\fn double starpu_transfer_predict(unsigned src_node, unsigned dst_node, size_t size)\ingroup API_Performance_ModelReturn the estimated time to transfer a given size between two memory nodes.\fn double starpu_perfmodel_history_based_expected_perf(struct starpu_perfmodel *model, struct starpu_perfmodel_arch* arch, uint32_t footprint)\ingroup API_Performance_ModelReturn the estimated time of a task with the given model and the given footprint.*/
 |