123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- /*
- * This file is part of the StarPU Handbook.
- * Copyright (C) 2009--2011 Universit@'e de Bordeaux
- * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016 CNRS
- * Copyright (C) 2011, 2012, 2016 INRIA
- * See the file version.doxy for copying conditions.
- */
- /*! \defgroup API_Performance_Model Performance Model
- \enum starpu_perfmodel_type
- \ingroup API_Performance_Model
- TODO
- \var starpu_perfmodel_type::STARPU_PER_ARCH
- \ingroup API_Performance_Model
- Application-provided per-arch cost model function
- \var starpu_perfmodel_type::STARPU_COMMON
- \ingroup API_Performance_Model
- Application-provided common cost model function, with per-arch factor
- \var starpu_perfmodel_type::STARPU_HISTORY_BASED
- \ingroup API_Performance_Model
- Automatic history-based cost model
- \var starpu_perfmodel_type::STARPU_REGRESSION_BASED
- \ingroup API_Performance_Model
- Automatic linear regression-based cost model (alpha * size ^ beta)
- \var starpu_perfmodel_type::STARPU_NL_REGRESSION_BASED
- \ingroup API_Performance_Model
- Automatic non-linear regression-based cost model (a * size ^ b + c)
- \var starpu_perfmodel_type::STARPU_MULTIPLE_REGRESSION_BASED
- \ingroup API_Performance_Model
- Automatic multiple linear regression-based cost model. Application provides parameters, their combinations and exponents
- \struct starpu_perfmodel_device
- todo
- \ingroup API_Performance_Model
- \var enum starpu_worker_archtype starpu_perfmodel_device::type
- is the type of the device
- \var int starpu_perfmodel_device::devid
- is the identifier of the precise device
- \var int starpu_perfmodel_device::ncore
- is the number of execution in parallel, minus 1
- \struct starpu_perfmodel_arch
- todo
- \ingroup API_Performance_Model
- \var int starpu_perfmodel_arch::ndevices
- is the number of the devices for the given arch
- \var struct starpu_perfmodel_device *starpu_perfmodel_arch::devices
- is the list of the devices for the given arch
- \struct starpu_perfmodel
- Contains all information about a performance model. At least the
- type and symbol fields have to be filled when defining a performance
- model for a codelet. For compatibility, make sure to initialize the
- whole structure to zero, either by using explicit memset, or by
- letting the compiler implicitly do it in e.g. static storage case. If
- not provided, other fields have to be zero.
- \ingroup API_Performance_Model
- \var enum starpu_perfmodel_type starpu_perfmodel::type
- is the type of performance model
- <ul>
- <li>::STARPU_HISTORY_BASED, ::STARPU_REGRESSION_BASED,
- ::STARPU_NL_REGRESSION_BASED: No other fields needs to be provided,
- this is purely history-based.
- </li>
- <li> ::STARPU_MULTIPLE_REGRESSION_BASED: Need to provide fields starpu_perfmodel::nparameters (number of different parameters), starpu_perfmodel::ncombinations (number of parameters combinations-tuples) and table starpu_perfmodel::combinations which defines exponents of the equation. Function cl_perf_func also needs to define how to extract parameters from the task.
- </li>
- <li> ::STARPU_PER_ARCH: either field starpu_perfmodel::arch_cost_function has to be
- filled with a function that returns the cost in micro-seconds on the arch given
- as parameter, or field starpu_perfmodel::per_arch has to be
- filled with functions which return the cost in micro-seconds.
- </li>
- <li> ::STARPU_COMMON: field starpu_perfmodel::cost_function has to be
- filled with a function that returns the cost in micro-seconds on a
- CPU, timing on other archs will be determined by multiplying by an
- arch-specific factor.
- </li>
- </ul>
- \var const char *starpu_perfmodel::symbol
- is the symbol name for the performance model, which will be used as
- file name to store the model. It must be set otherwise the model will
- be ignored.
- \var double (*starpu_perfmodel::cost_function)(struct starpu_task *, unsigned nimpl)
- Used by ::STARPU_COMMON: takes a task and implementation number, and
- must return a task duration estimation in micro-seconds.
- \var double (*starpu_perfmodel::arch_cost_function)(struct starpu_task *, struct starpu_perfmodel_arch* arch, unsigned nimpl)
- Used by ::STARPU_COMMON: takes a task, an arch and implementation number, and
- must return a task duration estimation in micro-seconds on that arch.
- \var size_t (*starpu_perfmodel::size_base)(struct starpu_task *, unsigned nimpl)
- Used by ::STARPU_HISTORY_BASED, ::STARPU_REGRESSION_BASED and
- ::STARPU_NL_REGRESSION_BASED. If not NULL, takes a task and
- implementation number, and returns the size to be used as index to distinguish
- histories and as a base for regressions.
- \var uint32_t (*starpu_perfmodel::footprint)(struct starpu_task *)
- Used by ::STARPU_HISTORY_BASED. If not NULL, takes a task and returns the
- footprint to be used as index to distinguish histories. The default is to use
- the starpu_task_data_footprint function.
- \var unsigned starpu_perfmodel::is_loaded
- \private
- Whether the performance model is already loaded from the disk.
- \var unsigned starpu_perfmodel::benchmarking
- \private
- \var unsigned starpu_perfmodel::is_init
- todo
- \var starpu_perfmodel_state_t starpu_perfmodel::state
- \private
- \var const char ** starpu_perfmodel::parameters_names
- \private
- Names of parameters used for multiple linear regression models (M, N, K)
- \var unsigned starpu_perfmodel::nparameters
- \private
- Number of parameters used for multiple linear regression models
- \var unsigned ** starpu_perfmodel::combinations
- \private
- Table of combinations of parameters (and the exponents) used for multiple linear regression models
- \var unsigned starpu_perfmodel::ncombinations
- \private
- Number of combination of parameters used for multiple linear regression models
- \struct starpu_perfmodel_regression_model
- ...
- \ingroup API_Performance_Model
- \var double starpu_perfmodel_regression_model::sumlny
- sum of ln(measured)
- \var double starpu_perfmodel_regression_model::sumlnx
- sum of ln(size)
- \var double starpu_perfmodel_regression_model::sumlnx2
- sum of ln(size)^2
- \var unsigned long starpu_perfmodel_regression_model::minx
- minimum size
- \var unsigned long starpu_perfmodel_regression_model::maxx
- maximum size
- \var double starpu_perfmodel_regression_model::sumlnxlny
- sum of ln(size)*ln(measured)
- \var double starpu_perfmodel_regression_model::alpha
- estimated = alpha * size ^ beta
- \var double starpu_perfmodel_regression_model::beta
- estimated = alpha * size ^ beta
- \var unsigned starpu_perfmodel_regression_model::valid
- whether the linear regression model is valid (i.e. enough measures)
- \var double starpu_perfmodel_regression_model::a
- estimated = a size ^b + c
- \var double starpu_perfmodel_regression_model::b
- estimated = a size ^b + c
- \var double starpu_perfmodel_regression_model::c
- estimated = a size ^b + c
- \var unsigned starpu_perfmodel_regression_model::nl_valid
- whether the non-linear regression model is valid (i.e. enough measures)
- \var unsigned starpu_perfmodel_regression_model::nsample
- number of sample values for non-linear regression
- \var double starpu_perfmodel_regression_model::coeff[]
- list of computed coefficients for multiple linear regression model
- \var double starpu_perfmodel_regression_model::ncoeff
- number of coefficients for multiple linear regression model
- \var double starpu_perfmodel_regression_model::multi_valid
- whether the multiple linear regression model is valid
- \struct starpu_perfmodel_per_arch
- contains information about the performance model of a given
- arch.
- \ingroup API_Performance_Model
- \var starpu_perfmodel_per_arch_cost_function starpu_perfmodel_per_arch::cost_function
- Used by ::STARPU_PER_ARCH, must point to functions which take a task,
- the target arch and implementation number (as mere conveniency, since
- the array is already indexed by these), and must return a task
- duration estimation in micro-seconds.
- \var starpu_perfmodel_per_arch_size_base starpu_perfmodel_per_arch::size_base
- Same as in structure starpu_perfmodel, but per-arch, in case it
- depends on the architecture-specific implementation.
- \var struct starpu_perfmodel_history_table *starpu_perfmodel_per_arch::history
- \private
- The history of performance measurements.
- \var struct starpu_perfmodel_history_list *starpu_perfmodel_per_arch::list
- \private
- Used by ::STARPU_HISTORY_BASED, ::STARPU_NL_REGRESSION_BASED and ::STARPU_MULTIPLE_REGRESSION_BASED,
- records all execution history measures.
- \var struct starpu_perfmodel_regression_model starpu_perfmodel_per_arch::regression
- \private
- Used by ::STARPU_REGRESSION_BASED,
- ::STARPU_NL_REGRESSION_BASED and ::STARPU_MULTIPLE_REGRESSION_BASED, contains the estimated factors of the
- regression.
- \struct starpu_perfmodel_history_list
- todo
- \ingroup API_Performance_Model
- \var struct starpu_perfmodel_history_list *starpu_perfmodel_history_list::next
- todo
- \var struct starpu_perfmodel_history_entry *starpu_perfmodel_history_list::entry
- todo
- \struct starpu_perfmodel_history_entry
- todo
- \ingroup API_Performance_Model
- \var double starpu_perfmodel_history_entry::mean
- mean_n = 1/n sum
- \var double starpu_perfmodel_history_entry::deviation
- n dev_n = sum2 - 1/n (sum)^2
- \var double starpu_perfmodel_history_entry::sum
- sum of samples (in µs)
- \var double starpu_perfmodel_history_entry::sum2
- sum of samples^2
- \var unsigned starpu_perfmodel_history_entry::nsample
- number of samples
- \var uint32_t starpu_perfmodel_history_entry::footprint
- data footprint
- \var size_t starpu_perfmodel_history_entry::size
- in bytes
- \var double starpu_perfmodel_history_entry::flops
- Provided by the application
- \fn void starpu_perfmodel_init(struct starpu_perfmodel *model)
- \ingroup API_Performance_Model
- todo
- \fn void starpu_perfmodel_free_sampling_directories(void)
- \ingroup API_Performance_Model
- this function frees internal memory used for sampling directory
- management. It should only be called by an application which is not
- calling starpu_shutdown as this function already calls it. See for
- example <c>tools/starpu_perfmodel_display.c</c>.
- \fn int starpu_perfmodel_load_file(const char *filename, struct starpu_perfmodel *model)
- \ingroup API_Performance_Model
- loads the performance model found in the given file. The model structure has to be
- completely zero, and will be filled with the information stored in the given file.
- \fn int starpu_perfmodel_load_symbol(const char *symbol, struct starpu_perfmodel *model)
- \ingroup API_Performance_Model
- loads a given performance model. The model structure has to be
- completely zero, and will be filled with the information saved in
- <c>$STARPU_HOME/.starpu</c>. The function is intended to be used by
- external tools that should read the performance model files.
- \fn int starpu_perfmodel_unload_model(struct starpu_perfmodel *model)
- \ingroup API_Performance_Model
- unloads the given model which has been previously loaded
- through the function starpu_perfmodel_load_symbol()
- \fn void starpu_perfmodel_debugfilepath(struct starpu_perfmodel *model, struct starpu_perfmodel_arch *arch, char *path, size_t maxlen, unsigned nimpl)
- \ingroup API_Performance_Model
- returns the path to the debugging information for the performance model.
- \fn char* starpu_perfmodel_get_archtype_name(enum starpu_worker_archtype archtype)
- \ingroup API_Performance_Model
- todo
- \fn void starpu_perfmodel_get_arch_name(struct starpu_perfmodel_arch *arch, char *archname, size_t maxlen, unsigned nimpl)
- \ingroup API_Performance_Model
- returns the architecture name for \p arch
- \fn struct starpu_perfmodel_arch *starpu_worker_get_perf_archtype(int workerid, unsigned sched_ctx_id)
- \ingroup API_Performance_Model
- returns the architecture type of a given worker.
- \fn int starpu_perfmodel_list(FILE *output)
- \ingroup API_Performance_Model
- prints a list of all performance models on \p output
- \fn void starpu_perfmodel_directory(FILE *output)
- \ingroup API_Performance_Model
- prints the directory name storing performance models on \p output
- \fn void starpu_perfmodel_print(struct starpu_perfmodel *model, struct starpu_perfmodel_arch *arch, unsigned nimpl, char *parameter, uint32_t *footprint, FILE *output)
- \ingroup API_Performance_Model
- todo
- \fn int starpu_perfmodel_print_all(struct starpu_perfmodel *model, char *arch, char *parameter, uint32_t *footprint, FILE *output)
- \ingroup API_Performance_Model
- todo
- \fn int starpu_perfmodel_print_estimations(struct starpu_perfmodel *model, uint32_t footprint, FILE *output)
- \ingroup API_Performance_Model
- todo
- \fn void starpu_bus_print_bandwidth(FILE *f)
- \ingroup API_Performance_Model
- prints a matrix of bus bandwidths on \p f.
- \fn void starpu_bus_print_affinity(FILE *f)
- \ingroup API_Performance_Model
- prints the affinity devices on \p f.
- \fn void starpu_bus_print_filenames(FILE *f)
- \ingroup API_Performance_Model
- prints on \p f the name of the files containing the matrix of bus bandwidths, the affinity devices and the latency.
- \fn void starpu_perfmodel_update_history(struct starpu_perfmodel *model, struct starpu_task *task, struct starpu_perfmodel_arch *arch, unsigned cpuid, unsigned nimpl, double measured);
- \ingroup API_Performance_Model
- This feeds the performance model model with an explicit
- measurement measured (in µs), in addition to measurements done by StarPU
- itself. This can be useful when the application already has an
- existing set of measurements done in good conditions, that StarPU
- could benefit from instead of doing on-line measurements. And example
- of use can be seen in \ref PerformanceModelExample.
- \fn double starpu_transfer_bandwidth(unsigned src_node, unsigned dst_node)
- \ingroup API_Performance_Model
- Return the bandwidth of data transfer between two memory nodes
- \fn double starpu_transfer_latency(unsigned src_node, unsigned dst_node)
- \ingroup API_Performance_Model
- Return the latency of data transfer between two memory nodes
- \fn double starpu_transfer_predict(unsigned src_node, unsigned dst_node, size_t size)
- \ingroup API_Performance_Model
- Return the estimated time to transfer a given size between two memory nodes.
- \fn double starpu_perfmodel_history_based_expected_perf(struct starpu_perfmodel *model, struct starpu_perfmodel_arch* arch, uint32_t footprint)
- \ingroup API_Performance_Model
- Return the estimated time of a task whose model is named \p and whose footprint is \p footprint
- */
|