basic-api.texi 119 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Management:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_driver}
  34. @table @asis
  35. @item @code{enum starpu_archtype type}
  36. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  37. STARPU_OPENCL_DRIVER are currently supported.
  38. @item @code{union id} Anonymous union
  39. @table @asis
  40. @item @code{unsigned cpu_id}
  41. Should only be used if type is STARPU_CPU_WORKER.
  42. @item @code{unsigned cuda_id}
  43. Should only be used if type is STARPU_CUDA_WORKER.
  44. @item @code{cl_device_id opencl_id}
  45. Should only be used if type is STARPU_OPENCL_WORKER.
  46. @end table
  47. @end table
  48. @end deftp
  49. @deftp {Data Type} {struct starpu_conf}
  50. This structure is passed to the @code{starpu_init} function in order
  51. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  52. When the default value is used, StarPU automatically selects the number of
  53. processing units and takes the default scheduling policy. The environment
  54. variables overwrite the equivalent parameters.
  55. @table @asis
  56. @item @code{const char *sched_policy_name} (default = NULL)
  57. This is the name of the scheduling policy. This can also be specified
  58. with the @code{STARPU_SCHED} environment variable.
  59. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  60. This is the definition of the scheduling policy. This field is ignored
  61. if @code{sched_policy_name} is set.
  62. @item @code{int ncpus} (default = -1)
  63. This is the number of CPU cores that StarPU can use. This can also be
  64. specified with the @code{STARPU_NCPU} environment variable.
  65. @item @code{int ncuda} (default = -1)
  66. This is the number of CUDA devices that StarPU can use. This can also
  67. be specified with the @code{STARPU_NCUDA} environment variable.
  68. @item @code{int nopencl} (default = -1)
  69. This is the number of OpenCL devices that StarPU can use. This can
  70. also be specified with the @code{STARPU_NOPENCL} environment variable.
  71. @item @code{int nspus} (default = -1)
  72. This is the number of Cell SPUs that StarPU can use. This can also be
  73. specified with the @code{STARPU_NGORDON} environment variable.
  74. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  75. If this flag is set, the @code{workers_bindid} array indicates where the
  76. different workers are bound, otherwise StarPU automatically selects where to
  77. bind the different workers. This can also be specified with the
  78. @code{STARPU_WORKERS_CPUID} environment variable.
  79. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  80. If the @code{use_explicit_workers_bindid} flag is set, this array
  81. indicates where to bind the different workers. The i-th entry of the
  82. @code{workers_bindid} indicates the logical identifier of the
  83. processor which should execute the i-th worker. Note that the logical
  84. ordering of the CPUs is either determined by the OS, or provided by
  85. the @code{hwloc} library in case it is available.
  86. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  87. If this flag is set, the CUDA workers will be attached to the CUDA devices
  88. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  89. CUDA devices in a round-robin fashion. This can also be specified with the
  90. @code{STARPU_WORKERS_CUDAID} environment variable.
  91. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  92. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  93. contains the logical identifiers of the CUDA devices (as used by
  94. @code{cudaGetDevice}).
  95. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  96. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  97. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  98. the OpenCL devices in a round-robin fashion. This can also be specified with
  99. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  100. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  101. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  102. contains the logical identifiers of the OpenCL devices to be used.
  103. @item @code{int calibrate} (default = 0)
  104. If this flag is set, StarPU will calibrate the performance models when
  105. executing tasks. If this value is equal to @code{-1}, the default value is
  106. used. If the value is equal to @code{1}, it will force continuing
  107. calibration. If the value is equal to @code{2}, the existing performance
  108. models will be overwritten. This can also be specified with the
  109. @code{STARPU_CALIBRATE} environment variable.
  110. @item @code{int bus_calibrate} (default = 0)
  111. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  112. to @code{-1}, the default value is used. This can also be specified with the
  113. @code{STARPU_BUS_CALIBRATE} environment variable.
  114. @item @code{int single_combined_worker} (default = 0)
  115. By default, StarPU executes parallel tasks concurrently.
  116. Some parallel libraries (e.g. most OpenMP implementations) however do
  117. not support concurrent calls to parallel code. In such case, setting this flag
  118. makes StarPU only start one parallel task at a time.
  119. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  120. @item @code{int disable_asynchronous_copy} (default = 0)
  121. This flag should be set to 1 to disable asynchronous copies between
  122. CPUs and all accelerators. This can also be specified with the
  123. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  124. The AMD implementation of OpenCL is known to
  125. fail when copying data asynchronously. When using this implementation,
  126. it is therefore necessary to disable asynchronous data transfers.
  127. This can also be specified at compilation time by giving to the
  128. configure script the option @code{--disable-asynchronous-copy}.
  129. @item @code{int disable_cuda_asynchronous_copy} (default = 0)
  130. This flag should be set to 1 to disable asynchronous copies between
  131. CPUs and CUDA accelerators. This can also be specified with the
  132. @code{STARPU_DISABLE_CUDA_ASYNCHRONOUS_COPY} environment variable.
  133. This can also be specified at compilation time by giving to the
  134. configure script the option @code{--disable-asynchronous-cuda-copy}.
  135. @item @code{int disable_opencl_asynchronous_copy} (default = 0)
  136. This flag should be set to 1 to disable asynchronous copies between
  137. CPUs and OpenCL accelerators. This can also be specified with the
  138. @code{STARPU_DISABLE_OPENCL_ASYNCHRONOUS_COPY} environment variable.
  139. The AMD implementation of OpenCL is known to
  140. fail when copying data asynchronously. When using this implementation,
  141. it is therefore necessary to disable asynchronous data transfers.
  142. This can also be specified at compilation time by giving to the
  143. configure script the option @code{--disable-asynchronous-opencl-copy}.
  144. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  145. This can be set to an array of CUDA device identifiers for which
  146. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  147. size is specified by the @code{n_cuda_opengl_interoperability} field below
  148. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  149. This has to be set to the size of the array pointed to by the
  150. @code{cuda_opengl_interoperability} field.
  151. @item @code{struct starpu_driver *not_launched_drivers}
  152. The drivers that should not be launched by StarPU.
  153. @item @code{unsigned nnot_launched_drivers}
  154. The number of StarPU drivers that should not be launched by StarPU.
  155. @end table
  156. @end deftp
  157. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  158. This function initializes the @var{conf} structure passed as argument
  159. with the default values. In case some configuration parameters are already
  160. specified through environment variables, @code{starpu_conf_init} initializes
  161. the fields of the structure according to the environment variables. For
  162. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  163. @code{.calibrate} field of the structure passed as argument.
  164. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  165. indicates that the argument was NULL.
  166. @end deftypefun
  167. @deftypefun void starpu_shutdown (void)
  168. This is StarPU termination method. It must be called at the end of the
  169. application: statistics and other post-mortem debugging information are not
  170. guaranteed to be available until this method has been called.
  171. @end deftypefun
  172. @deftypefun int starpu_asynchronous_copy_disabled ()
  173. Return 1 if asynchronous data transfers between CPU and accelerators
  174. are disabled.
  175. @end deftypefun
  176. @deftypefun int starpu_asynchronous_cuda_copy_disabled ()
  177. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  178. are disabled.
  179. @end deftypefun
  180. @deftypefun int starpu_asynchronous_opencl_copy_disabled ()
  181. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  182. are disabled.
  183. @end deftypefun
  184. @node Workers' Properties
  185. @section Workers' Properties
  186. @deftp {Data Type} {enum starpu_archtype}
  187. The different values are:
  188. @table @asis
  189. @item @code{STARPU_CPU_WORKER}
  190. @item @code{STARPU_CUDA_WORKER}
  191. @item @code{STARPU_OPENCL_WORKER}
  192. @item @code{STARPU_GORDON_WORKER}
  193. @end table
  194. @end deftp
  195. @deftypefun unsigned starpu_worker_get_count (void)
  196. This function returns the number of workers (i.e. processing units executing
  197. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  198. @end deftypefun
  199. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  200. Returns the number of workers of the given @var{type}. A positive
  201. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  202. the type is not valid otherwise.
  203. @end deftypefun
  204. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  205. This function returns the number of CPUs controlled by StarPU. The returned
  206. value should be at most @code{STARPU_MAXCPUS}.
  207. @end deftypefun
  208. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  209. This function returns the number of CUDA devices controlled by StarPU. The returned
  210. value should be at most @code{STARPU_MAXCUDADEVS}.
  211. @end deftypefun
  212. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  213. This function returns the number of OpenCL devices controlled by StarPU. The returned
  214. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  215. @end deftypefun
  216. @deftypefun unsigned starpu_spu_worker_get_count (void)
  217. This function returns the number of Cell SPUs controlled by StarPU.
  218. @end deftypefun
  219. @deftypefun int starpu_worker_get_id (void)
  220. This function returns the identifier of the current worker, i.e the one associated to the calling
  221. thread. The returned value is either -1 if the current context is not a StarPU
  222. worker (i.e. when called from the application outside a task or a callback), or
  223. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  224. @end deftypefun
  225. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  226. This function gets the list of identifiers of workers with the given
  227. type. It fills the workerids array with the identifiers of the workers that have the type
  228. indicated in the first argument. The maxsize argument indicates the size of the
  229. workids array. The returned value gives the number of identifiers that were put
  230. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  231. workers with the appropriate type: in that case, the array is filled with the
  232. maxsize first elements. To avoid such overflows, the value of maxsize can be
  233. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  234. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  235. @end deftypefun
  236. @deftypefun int starpu_worker_get_devid (int @var{id})
  237. This functions returns the device id of the given worker. The worker
  238. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  239. CUDA worker, this device identifier is the logical device identifier exposed by
  240. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  241. identifier of a CPU worker is the logical identifier of the core on which the
  242. worker was bound; this identifier is either provided by the OS or by the
  243. @code{hwloc} library in case it is available.
  244. @end deftypefun
  245. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  246. This function returns the type of processing unit associated to a
  247. worker. The worker identifier is a value returned by the
  248. @code{starpu_worker_get_id} function). The returned value
  249. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  250. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  251. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  252. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  253. identifier is unspecified.
  254. @end deftypefun
  255. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  256. This function allows to get the name of a given worker.
  257. StarPU associates a unique human readable string to each processing unit. This
  258. function copies at most the @var{maxlen} first bytes of the unique string
  259. associated to a worker identified by its identifier @var{id} into the
  260. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  261. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  262. function on an invalid identifier results in an unspecified behaviour.
  263. @end deftypefun
  264. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  265. This function returns the identifier of the memory node associated to the
  266. worker identified by @var{workerid}.
  267. @end deftypefun
  268. @deftp {Data Type} {enum starpu_node_kind}
  269. todo
  270. @table @asis
  271. @item @code{STARPU_UNUSED}
  272. @item @code{STARPU_CPU_RAM}
  273. @item @code{STARPU_CUDA_RAM}
  274. @item @code{STARPU_OPENCL_RAM}
  275. @item @code{STARPU_SPU_LS}
  276. @end table
  277. @end deftp
  278. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  279. Returns the type of the given node as defined by @code{enum
  280. starpu_node_kind}. For example, when defining a new data interface,
  281. this function should be used in the allocation function to determine
  282. on which device the memory needs to be allocated.
  283. @end deftypefun
  284. @node Data Management
  285. @section Data Management
  286. @menu
  287. * Introduction to Data Management::
  288. * Basic Data Management API::
  289. * Access registered data from the application::
  290. @end menu
  291. This section describes the data management facilities provided by StarPU.
  292. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  293. design their own data interfaces if required.
  294. @node Introduction to Data Management
  295. @subsection Introduction
  296. Data management is done at a high-level in StarPU: rather than accessing a mere
  297. list of contiguous buffers, the tasks may manipulate data that are described by
  298. a high-level construct which we call data interface.
  299. An example of data interface is the "vector" interface which describes a
  300. contiguous data array on a spefic memory node. This interface is a simple
  301. structure containing the number of elements in the array, the size of the
  302. elements, and the address of the array in the appropriate address space (this
  303. address may be invalid if there is no valid copy of the array in the memory
  304. node). More informations on the data interfaces provided by StarPU are
  305. given in @ref{Data Interfaces}.
  306. When a piece of data managed by StarPU is used by a task, the task
  307. implementation is given a pointer to an interface describing a valid copy of
  308. the data that is accessible from the current processing unit.
  309. Every worker is associated to a memory node which is a logical abstraction of
  310. the address space from which the processing unit gets its data. For instance,
  311. the memory node associated to the different CPU workers represents main memory
  312. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  313. Every memory node is identified by a logical index which is accessible from the
  314. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  315. to StarPU, the specified memory node indicates where the piece of data
  316. initially resides (we also call this memory node the home node of a piece of
  317. data).
  318. @node Basic Data Management API
  319. @subsection Basic Data Management API
  320. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  321. This function allocates data of the given size in main memory. It will also try to pin it in
  322. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  323. thus permit data transfer and computation overlapping. The allocated buffer must
  324. be freed thanks to the @code{starpu_free} function.
  325. @end deftypefun
  326. @deftypefun int starpu_free (void *@var{A})
  327. This function frees memory which has previously allocated with
  328. @code{starpu_malloc}.
  329. @end deftypefun
  330. @deftp {Data Type} {enum starpu_access_mode}
  331. This datatype describes a data access mode. The different available modes are:
  332. @table @asis
  333. @item @code{STARPU_R}: read-only mode.
  334. @item @code{STARPU_W}: write-only mode.
  335. @item @code{STARPU_RW}: read-write mode.
  336. This is equivalent to @code{STARPU_R|STARPU_W}.
  337. @item @code{STARPU_SCRATCH}: scratch memory.
  338. A temporary buffer is allocated for the task, but StarPU does not
  339. enforce data consistency---i.e. each device has its own buffer,
  340. independently from each other (even for CPUs), and no data transfer is
  341. ever performed. This is useful for temporary variables to avoid
  342. allocating/freeing buffers inside each task.
  343. Currently, no behavior is defined concerning the relation with the
  344. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  345. registration---i.e., the value of the scratch buffer is undefined at
  346. entry of the codelet function. It is being considered for future
  347. extensions at least to define the initial value. For now, data to be
  348. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  349. a @code{NULL} pointer, since the value of the provided buffer is simply
  350. ignored for now.
  351. @item @code{STARPU_REDUX} reduction mode.
  352. @end table
  353. @end deftp
  354. @deftp {Data Type} {starpu_data_handle_t}
  355. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  356. data. Once a piece of data has been registered to StarPU, it is associated to a
  357. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  358. over the entire machine, so that we can maintain data consistency and locate
  359. data replicates for instance.
  360. @end deftp
  361. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  362. Register a piece of data into the handle located at the @var{handleptr}
  363. address. The @var{data_interface} buffer contains the initial description of the
  364. data in the home node. The @var{ops} argument is a pointer to a structure
  365. describing the different methods used to manipulate this type of interface. See
  366. @ref{struct starpu_data_interface_ops} for more details on this structure.
  367. If @code{home_node} is -1, StarPU will automatically
  368. allocate the memory when it is used for the
  369. first time in write-only mode. Once such data handle has been automatically
  370. allocated, it is possible to access it using any access mode.
  371. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  372. matrix) which can be registered by the means of helper functions (e.g.
  373. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  374. @end deftypefun
  375. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  376. Register a new piece of data into the handle @var{handledst} with the
  377. same interface as the handle @var{handlesrc}.
  378. @end deftypefun
  379. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  380. This function unregisters a data handle from StarPU. If the data was
  381. automatically allocated by StarPU because the home node was -1, all
  382. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  383. is put back into the home node in the buffer that was initially registered.
  384. Using a data handle that has been unregistered from StarPU results in an
  385. undefined behaviour.
  386. @end deftypefun
  387. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  388. This is the same as starpu_data_unregister, except that StarPU does not put back
  389. a valid copy into the home node, in the buffer that was initially registered.
  390. @end deftypefun
  391. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  392. Destroy all replicates of the data handle. After data invalidation, the first
  393. access to the handle must be performed in write-only mode. Accessing an
  394. invalidated data in read-mode results in undefined behaviour.
  395. @end deftypefun
  396. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  397. Submits invalidation of the data handle after completion of previously submitted tasks.
  398. @end deftypefun
  399. @c TODO create a specific sections about user interaction with the DSM ?
  400. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  401. This function sets the write-through mask of a given data, i.e. a bitmask of
  402. nodes where the data should be always replicated after modification. It also
  403. prevents the data from being evicted from these nodes when memory gets scarse.
  404. @end deftypefun
  405. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  406. Issue a prefetch request for a given data to a given node, i.e.
  407. requests that the data be replicated to the given node, so that it is available
  408. there for tasks. If the @var{async} parameter is 0, the call will block until
  409. the transfer is achieved, else the call will return as soon as the request is
  410. scheduled (which may however have to wait for a task completion).
  411. @end deftypefun
  412. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  413. Return the handle corresponding to the data pointed to by the @var{ptr}
  414. host pointer.
  415. @end deftypefun
  416. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  417. Explicitly ask StarPU to allocate room for a piece of data on the specified
  418. memory node.
  419. @end deftypefun
  420. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  421. Query the status of the handle on the specified memory node.
  422. @end deftypefun
  423. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  424. This function allows to specify that a piece of data can be discarded
  425. without impacting the application.
  426. @end deftypefun
  427. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  428. This sets the codelets to be used for the @var{handle} when it is accessed in
  429. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  430. codelet, and reduction between per-worker buffers will be done with the
  431. @var{redux_cl} codelet.
  432. @end deftypefun
  433. @node Access registered data from the application
  434. @subsection Access registered data from the application
  435. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  436. The application must call this function prior to accessing registered data from
  437. main memory outside tasks. StarPU ensures that the application will get an
  438. up-to-date copy of the data in main memory located where the data was
  439. originally registered, and that all concurrent accesses (e.g. from tasks) will
  440. be consistent with the access mode specified in the @var{mode} argument.
  441. @code{starpu_data_release} must be called once the application does not need to
  442. access the piece of data anymore. Note that implicit data
  443. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  444. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  445. the data, unless they have been disabled explictly by calling
  446. @code{starpu_data_set_default_sequential_consistency_flag} or
  447. @code{starpu_data_set_sequential_consistency_flag}.
  448. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  449. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  450. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  451. @end deftypefun
  452. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  453. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  454. @code{starpu_data_acquire}. When the data specified in the first argument is
  455. available in the appropriate access mode, the callback function is executed.
  456. The application may access the requested data during the execution of this
  457. callback. The callback function must call @code{starpu_data_release} once the
  458. application does not need to access the piece of data anymore.
  459. Note that implicit data dependencies are also enforced by
  460. @code{starpu_data_acquire_cb} in case they are not disabled.
  461. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  462. be called from task callbacks. Upon successful completion, this function
  463. returns 0.
  464. @end deftypefun
  465. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  466. This is the same as @code{starpu_data_acquire}, except that the data will be
  467. available on the given memory node instead of main memory.
  468. @end deftypefun
  469. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  470. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  471. available on the given memory node instead of main memory.
  472. @end deftypefun
  473. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  474. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  475. except that the code to be executed in a callback is directly provided as a
  476. macro parameter, and the data handle is automatically released after it. This
  477. permits to easily execute code which depends on the value of some registered
  478. data. This is non-blocking too and may be called from task callbacks.
  479. @end defmac
  480. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  481. This function releases the piece of data acquired by the application either by
  482. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  483. @end deftypefun
  484. @node Data Interfaces
  485. @section Data Interfaces
  486. @menu
  487. * Registering Data::
  488. * Accessing Data Interfaces::
  489. @end menu
  490. @node Registering Data
  491. @subsection Registering Data
  492. There are several ways to register a memory region so that it can be managed by
  493. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  494. matrices as well as BCSR and CSR sparse matrices.
  495. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  496. Register a void interface. There is no data really associated to that
  497. interface, but it may be used as a synchronization mechanism. It also
  498. permits to express an abstract piece of data that is managed by the
  499. application internally: this makes it possible to forbid the
  500. concurrent execution of different tasks accessing the same "void" data
  501. in read-write concurrently.
  502. @end deftypefun
  503. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  504. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  505. typically a scalar, and initialize @var{handle} to represent this data
  506. item.
  507. @cartouche
  508. @smallexample
  509. float var;
  510. starpu_data_handle_t var_handle;
  511. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  512. @end smallexample
  513. @end cartouche
  514. @end deftypefun
  515. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  516. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  517. @var{ptr} and initialize @var{handle} to represent it.
  518. @cartouche
  519. @smallexample
  520. float vector[NX];
  521. starpu_data_handle_t vector_handle;
  522. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  523. sizeof(vector[0]));
  524. @end smallexample
  525. @end cartouche
  526. @end deftypefun
  527. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  528. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  529. pointed by @var{ptr} and initialize @var{handle} to represent it.
  530. @var{ld} specifies the number of elements between rows.
  531. a value greater than @var{nx} adds padding, which can be useful for
  532. alignment purposes.
  533. @cartouche
  534. @smallexample
  535. float *matrix;
  536. starpu_data_handle_t matrix_handle;
  537. matrix = (float*)malloc(width * height * sizeof(float));
  538. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  539. width, width, height, sizeof(float));
  540. @end smallexample
  541. @end cartouche
  542. @end deftypefun
  543. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  544. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  545. elements pointed by @var{ptr} and initialize @var{handle} to represent
  546. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  547. between rows and between z planes.
  548. @cartouche
  549. @smallexample
  550. float *block;
  551. starpu_data_handle_t block_handle;
  552. block = (float*)malloc(nx*ny*nz*sizeof(float));
  553. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  554. nx, nx*ny, nx, ny, nz, sizeof(float));
  555. @end smallexample
  556. @end cartouche
  557. @end deftypefun
  558. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  559. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  560. Compressed Sparse Row Representation) sparse matrix interface.
  561. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  562. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  563. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  564. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  565. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  566. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  567. or 1).
  568. @end deftypefun
  569. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  570. This variant of @code{starpu_data_register} uses the CSR (Compressed
  571. Sparse Row Representation) sparse matrix interface.
  572. TODO
  573. @end deftypefun
  574. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  575. Return the interface associated with @var{handle} on @var{memory_node}.
  576. @end deftypefun
  577. @node Accessing Data Interfaces
  578. @subsection Accessing Data Interfaces
  579. Each data interface is provided with a set of field access functions.
  580. The ones using a @code{void *} parameter aimed to be used in codelet
  581. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  582. @deftp {Data Type} {enum starpu_data_interface_id}
  583. The different values are:
  584. @table @asis
  585. @item @code{STARPU_MATRIX_INTERFACE_ID}
  586. @item @code{STARPU_BLOCK_INTERFACE_ID}
  587. @item @code{STARPU_VECTOR_INTERFACE_ID}
  588. @item @code{STARPU_CSR_INTERFACE_ID}
  589. @item @code{STARPU_BCSR_INTERFACE_ID}
  590. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  591. @item @code{STARPU_VOID_INTERFACE_ID}
  592. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  593. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  594. @end table
  595. @end deftp
  596. @menu
  597. * Accessing Handle::
  598. * Accessing Variable Data Interfaces::
  599. * Accessing Vector Data Interfaces::
  600. * Accessing Matrix Data Interfaces::
  601. * Accessing Block Data Interfaces::
  602. * Accessing BCSR Data Interfaces::
  603. * Accessing CSR Data Interfaces::
  604. @end menu
  605. @node Accessing Handle
  606. @subsubsection Handle
  607. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  608. Return the pointer associated with @var{handle} on node @var{node} or
  609. @code{NULL} if @var{handle}'s interface does not support this
  610. operation or data for this handle is not allocated on that node.
  611. @end deftypefun
  612. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  613. Return the local pointer associated with @var{handle} or @code{NULL}
  614. if @var{handle}'s interface does not have data allocated locally
  615. @end deftypefun
  616. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  617. Return the unique identifier of the interface associated with the given @var{handle}.
  618. @end deftypefun
  619. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  620. Return the size of the data associated with @var{handle}
  621. @end deftypefun
  622. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr})
  623. Allocates a buffer large enough at @var{ptr} and copy to the newly
  624. allocated buffer the data associated to @var{handle}. The interface of
  625. the data registered at @var{handle} must define a packing operation
  626. (@pxref{struct starpu_data_interface_ops}).
  627. @end deftypefun
  628. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr})
  629. Copy in @var{handle} the data located at @var{ptr} as described by the
  630. interface of the data. The interface registered at @var{handle} must
  631. define a unpacking operation (@pxref{struct starpu_data_interface_ops}).
  632. @end deftypefun
  633. @node Accessing Variable Data Interfaces
  634. @subsubsection Variable Data Interfaces
  635. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  636. Return the size of the variable designated by @var{handle}.
  637. @end deftypefun
  638. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  639. Return a pointer to the variable designated by @var{handle}.
  640. @end deftypefun
  641. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  642. Return a pointer to the variable designated by @var{interface}.
  643. @end defmac
  644. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  645. Return the size of the variable designated by @var{interface}.
  646. @end defmac
  647. @node Accessing Vector Data Interfaces
  648. @subsubsection Vector Data Interfaces
  649. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  650. Return the number of elements registered into the array designated by @var{handle}.
  651. @end deftypefun
  652. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  653. Return the size of each element of the array designated by @var{handle}.
  654. @end deftypefun
  655. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  656. Return the local pointer associated with @var{handle}.
  657. @end deftypefun
  658. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  659. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  660. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  661. @end defmac
  662. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  663. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  664. documented below has to be used in addition to this.
  665. @end defmac
  666. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  667. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  668. @end defmac
  669. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  670. Return the number of elements registered into the array designated by @var{interface}.
  671. @end defmac
  672. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  673. Return the size of each element of the array designated by @var{interface}.
  674. @end defmac
  675. @node Accessing Matrix Data Interfaces
  676. @subsubsection Matrix Data Interfaces
  677. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  678. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  679. @end deftypefun
  680. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  681. Return the number of elements on the y-axis of the matrix designated by
  682. @var{handle}.
  683. @end deftypefun
  684. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  685. Return the number of elements between each row of the matrix designated by
  686. @var{handle}. Maybe be equal to nx when there is no padding.
  687. @end deftypefun
  688. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  689. Return the local pointer associated with @var{handle}.
  690. @end deftypefun
  691. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  692. Return the size of the elements registered into the matrix designated by
  693. @var{handle}.
  694. @end deftypefun
  695. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  696. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  697. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  698. used instead.
  699. @end defmac
  700. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  701. Return a device handle for the matrix designated by @var{interface}, to be used
  702. on OpenCL. The offset documented below has to be used in addition to this.
  703. @end defmac
  704. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  705. Return the offset in the matrix designated by @var{interface}, to be used with
  706. the device handle.
  707. @end defmac
  708. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  709. Return the number of elements on the x-axis of the matrix designated by
  710. @var{interface}.
  711. @end defmac
  712. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  713. Return the number of elements on the y-axis of the matrix designated by
  714. @var{interface}.
  715. @end defmac
  716. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  717. Return the number of elements between each row of the matrix designated by
  718. @var{interface}. May be equal to nx when there is no padding.
  719. @end defmac
  720. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  721. Return the size of the elements registered into the matrix designated by
  722. @var{interface}.
  723. @end defmac
  724. @node Accessing Block Data Interfaces
  725. @subsubsection Block Data Interfaces
  726. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  727. Return the number of elements on the x-axis of the block designated by @var{handle}.
  728. @end deftypefun
  729. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  730. Return the number of elements on the y-axis of the block designated by @var{handle}.
  731. @end deftypefun
  732. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  733. Return the number of elements on the z-axis of the block designated by @var{handle}.
  734. @end deftypefun
  735. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  736. Return the number of elements between each row of the block designated by
  737. @var{handle}, in the format of the current memory node.
  738. @end deftypefun
  739. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  740. Return the number of elements between each z plane of the block designated by
  741. @var{handle}, in the format of the current memory node.
  742. @end deftypefun
  743. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  744. Return the local pointer associated with @var{handle}.
  745. @end deftypefun
  746. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  747. Return the size of the elements of the block designated by @var{handle}.
  748. @end deftypefun
  749. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  750. Return a pointer to the block designated by @var{interface}.
  751. @end defmac
  752. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  753. Return a device handle for the block designated by @var{interface}, to be used
  754. on OpenCL. The offset document below has to be used in addition to this.
  755. @end defmac
  756. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  757. Return the offset in the block designated by @var{interface}, to be used with
  758. the device handle.
  759. @end defmac
  760. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  761. Return the number of elements on the x-axis of the block designated by @var{handle}.
  762. @end defmac
  763. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  764. Return the number of elements on the y-axis of the block designated by @var{handle}.
  765. @end defmac
  766. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  767. Return the number of elements on the z-axis of the block designated by @var{handle}.
  768. @end defmac
  769. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  770. Return the number of elements between each row of the block designated by
  771. @var{interface}. May be equal to nx when there is no padding.
  772. @end defmac
  773. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  774. Return the number of elements between each z plane of the block designated by
  775. @var{interface}. May be equal to nx*ny when there is no padding.
  776. @end defmac
  777. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  778. Return the size of the elements of the matrix designated by @var{interface}.
  779. @end defmac
  780. @node Accessing BCSR Data Interfaces
  781. @subsubsection BCSR Data Interfaces
  782. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  783. Return the number of non-zero elements in the matrix designated by @var{handle}.
  784. @end deftypefun
  785. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  786. Return the number of rows (in terms of blocks of size r*c) in the matrix
  787. designated by @var{handle}.
  788. @end deftypefun
  789. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  790. Return the index at which all arrays (the column indexes, the row pointers...)
  791. of the matrix desginated by @var{handle} start.
  792. @end deftypefun
  793. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  794. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  795. @end deftypefun
  796. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  797. Return a pointer to the column index, which holds the positions of the non-zero
  798. entries in the matrix designated by @var{handle}.
  799. @end deftypefun
  800. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  801. Return the row pointer array of the matrix designated by @var{handle}.
  802. @end deftypefun
  803. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  804. Return the number of rows in a block.
  805. @end deftypefun
  806. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  807. Return the numberof columns in a block.
  808. @end deftypefun
  809. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  810. Return the size of the elements in the matrix designated by @var{handle}.
  811. @end deftypefun
  812. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  813. Return the number of non-zero values in the matrix designated by @var{interface}.
  814. @end defmac
  815. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  816. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  817. @end defmac
  818. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  819. Return a pointer to the column index of the matrix designated by @var{interface}.
  820. @end defmac
  821. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  822. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  823. @end defmac
  824. @node Accessing CSR Data Interfaces
  825. @subsubsection CSR Data Interfaces
  826. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  827. Return the number of non-zero values in the matrix designated by @var{handle}.
  828. @end deftypefun
  829. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  830. Return the size of the row pointer array of the matrix designated by @var{handle}.
  831. @end deftypefun
  832. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  833. Return the index at which all arrays (the column indexes, the row pointers...)
  834. of the matrix designated by @var{handle} start.
  835. @end deftypefun
  836. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  837. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  838. @end deftypefun
  839. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  840. Return a local pointer to the column index of the matrix designated by @var{handle}.
  841. @end deftypefun
  842. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  843. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  844. @end deftypefun
  845. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  846. Return the size of the elements registered into the matrix designated by @var{handle}.
  847. @end deftypefun
  848. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  849. Return the number of non-zero values in the matrix designated by @var{interface}.
  850. @end defmac
  851. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  852. Return the size of the row pointer array of the matrix designated by @var{interface}.
  853. @end defmac
  854. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  855. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  856. @end defmac
  857. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  858. Return a pointer to the column index of the matrix designated by @var{interface}.
  859. @end defmac
  860. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  861. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  862. @end defmac
  863. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  864. Return the index at which all arrays (the column indexes, the row pointers...)
  865. of the @var{interface} start.
  866. @end defmac
  867. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  868. Return the size of the elements registered into the matrix designated by @var{interface}.
  869. @end defmac
  870. @node Data Partition
  871. @section Data Partition
  872. @menu
  873. * Basic API::
  874. * Predefined filter functions::
  875. @end menu
  876. @node Basic API
  877. @subsection Basic API
  878. @deftp {Data Type} {struct starpu_data_filter}
  879. The filter structure describes a data partitioning operation, to be given to the
  880. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  881. for an example. The different fields are:
  882. @table @asis
  883. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  884. This function fills the @code{child_interface} structure with interface
  885. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  886. @item @code{unsigned nchildren}
  887. This is the number of parts to partition the data into.
  888. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  889. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  890. children depends on the actual data (e.g. the number of blocks in a sparse
  891. matrix).
  892. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  893. In case the resulting children use a different data interface, this function
  894. returns which interface is used by child number @code{id}.
  895. @item @code{unsigned filter_arg}
  896. Allow to define an additional parameter for the filter function.
  897. @item @code{void *filter_arg_ptr}
  898. Allow to define an additional pointer parameter for the filter
  899. function, such as the sizes of the different parts.
  900. @end table
  901. @end deftp
  902. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  903. @anchor{starpu_data_partition}
  904. This requests partitioning one StarPU data @var{initial_handle} into several
  905. subdata according to the filter @var{f}, as shown in the following example:
  906. @cartouche
  907. @smallexample
  908. struct starpu_data_filter f = @{
  909. .filter_func = starpu_block_filter_func,
  910. .nchildren = nslicesx,
  911. .get_nchildren = NULL,
  912. .get_child_ops = NULL
  913. @};
  914. starpu_data_partition(A_handle, &f);
  915. @end smallexample
  916. @end cartouche
  917. @end deftypefun
  918. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  919. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  920. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  921. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  922. @cartouche
  923. @smallexample
  924. starpu_data_unpartition(A_handle, 0);
  925. @end smallexample
  926. @end cartouche
  927. @end deftypefun
  928. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  929. This function returns the number of children.
  930. @end deftypefun
  931. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  932. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  933. @end deftypefun
  934. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  935. After partitioning a StarPU data by applying a filter,
  936. @code{starpu_data_get_sub_data} can be used to get handles for each of
  937. the data portions. @var{root_data} is the parent data that was
  938. partitioned. @var{depth} is the number of filters to traverse (in
  939. case several filters have been applied, to e.g. partition in row
  940. blocks, and then in column blocks), and the subsequent
  941. parameters are the indexes. The function returns a handle to the
  942. subdata.
  943. @cartouche
  944. @smallexample
  945. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  946. @end smallexample
  947. @end cartouche
  948. @end deftypefun
  949. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  950. This function is similar to @code{starpu_data_get_sub_data} but uses a
  951. va_list for the parameter list.
  952. @end deftypefun
  953. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  954. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  955. recursively. @var{nfilters} pointers to variables of the type
  956. starpu_data_filter should be given.
  957. @end deftypefun
  958. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  959. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  960. recursively. It uses a va_list of pointers to variables of the typer
  961. starpu_data_filter.
  962. @end deftypefun
  963. @node Predefined filter functions
  964. @subsection Predefined filter functions
  965. @menu
  966. * Partitioning Vector Data::
  967. * Partitioning Matrix Data::
  968. * Partitioning 3D Matrix Data::
  969. * Partitioning BCSR Data::
  970. @end menu
  971. This section gives a partial list of the predefined partitioning functions.
  972. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  973. list can be found in @code{starpu_data_filters.h} .
  974. @node Partitioning Vector Data
  975. @subsubsection Partitioning Vector Data
  976. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  977. Return in @code{*@var{child_interface}} the @var{id}th element of the
  978. vector represented by @var{father_interface} once partitioned in
  979. @var{nparts} chunks of equal size.
  980. @end deftypefun
  981. @deftypefun void starpu_block_shadow_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  982. Return in @code{*@var{child_interface}} the @var{id}th element of the
  983. vector represented by @var{father_interface} once partitioned in
  984. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  985. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  986. IMPORTANT: This can only be used for read-only access, as no coherency is
  987. enforced for the shadowed parts.
  988. A usage example is available in examples/filters/shadow.c
  989. @end deftypefun
  990. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  991. Return in @code{*@var{child_interface}} the @var{id}th element of the
  992. vector represented by @var{father_interface} once partitioned into
  993. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  994. @code{*@var{f}}.
  995. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  996. @code{uint32_t} elements, each of which specifies the number of elements
  997. in each chunk of the partition.
  998. @end deftypefun
  999. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1000. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1001. vector represented by @var{father_interface} once partitioned in two
  1002. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1003. @code{0} or @code{1}.
  1004. @end deftypefun
  1005. @node Partitioning Matrix Data
  1006. @subsubsection Partitioning Matrix Data
  1007. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1008. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1009. matrices. If nparts does not divide x, the last submatrix contains the
  1010. remainder.
  1011. @end deftypefun
  1012. @deftypefun void starpu_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1013. This partitions a dense Matrix along the x dimension, with a shadow border
  1014. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1015. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1016. remainder.
  1017. IMPORTANT: This can only be used for read-only access, as no coherency is
  1018. enforced for the shadowed parts.
  1019. A usage example is available in examples/filters/shadow2d.c
  1020. @end deftypefun
  1021. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1022. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1023. matrices. If nparts does not divide y, the last submatrix contains the
  1024. remainder.
  1025. @end deftypefun
  1026. @deftypefun void starpu_vertical_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1027. This partitions a dense Matrix along the y dimension, with a shadow border
  1028. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1029. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1030. remainder.
  1031. IMPORTANT: This can only be used for read-only access, as no coherency is
  1032. enforced for the shadowed parts.
  1033. A usage example is available in examples/filters/shadow2d.c
  1034. @end deftypefun
  1035. @node Partitioning 3D Matrix Data
  1036. @subsubsection Partitioning 3D Matrix Data
  1037. A usage example is available in examples/filters/shadow3d.c
  1038. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1039. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1040. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1041. remainder.
  1042. @end deftypefun
  1043. @deftypefun void starpu_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1044. This partitions a 3D matrix along the X dimension, with a shadow border
  1045. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1046. matrices. If nparts does not divide x, the last submatrix contains the
  1047. remainder.
  1048. IMPORTANT: This can only be used for read-only access, as no coherency is
  1049. enforced for the shadowed parts.
  1050. @end deftypefun
  1051. @deftypefun void starpu_vertical_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1052. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1053. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1054. remainder.
  1055. @end deftypefun
  1056. @deftypefun void starpu_vertical_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1057. This partitions a 3D matrix along the Y dimension, with a shadow border
  1058. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1059. matrices. If nparts does not divide y, the last submatrix contains the
  1060. remainder.
  1061. IMPORTANT: This can only be used for read-only access, as no coherency is
  1062. enforced for the shadowed parts.
  1063. @end deftypefun
  1064. @deftypefun void starpu_depth_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1065. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1066. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1067. remainder.
  1068. @end deftypefun
  1069. @deftypefun void starpu_depth_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1070. This partitions a 3D matrix along the Z dimension, with a shadow border
  1071. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1072. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1073. remainder.
  1074. IMPORTANT: This can only be used for read-only access, as no coherency is
  1075. enforced for the shadowed parts.
  1076. @end deftypefun
  1077. @node Partitioning BCSR Data
  1078. @subsubsection Partitioning BCSR Data
  1079. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1080. This partitions a block-sparse matrix into dense matrices.
  1081. @end deftypefun
  1082. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1083. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1084. @end deftypefun
  1085. @node Codelets and Tasks
  1086. @section Codelets and Tasks
  1087. This section describes the interface to manipulate codelets and tasks.
  1088. @deftp {Data Type} {enum starpu_codelet_type}
  1089. Describes the type of parallel task. The different values are:
  1090. @table @asis
  1091. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1092. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1093. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1094. @code{starpu_combined_worker_get_rank} to distribute the work
  1095. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1096. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1097. determine how many threads should be started.
  1098. @end table
  1099. See @ref{Parallel Tasks} for details.
  1100. @end deftp
  1101. @defmac STARPU_CPU
  1102. This macro is used when setting the field @code{where} of a @code{struct
  1103. starpu_codelet} to specify the codelet may be executed on a CPU
  1104. processing unit.
  1105. @end defmac
  1106. @defmac STARPU_CUDA
  1107. This macro is used when setting the field @code{where} of a @code{struct
  1108. starpu_codelet} to specify the codelet may be executed on a CUDA
  1109. processing unit.
  1110. @end defmac
  1111. @defmac STARPU_SPU
  1112. This macro is used when setting the field @code{where} of a @code{struct
  1113. starpu_codelet} to specify the codelet may be executed on a SPU
  1114. processing unit.
  1115. @end defmac
  1116. @defmac STARPU_GORDON
  1117. This macro is used when setting the field @code{where} of a @code{struct
  1118. starpu_codelet} to specify the codelet may be executed on a Cell
  1119. processing unit.
  1120. @end defmac
  1121. @defmac STARPU_OPENCL
  1122. This macro is used when setting the field @code{where} of a @code{struct
  1123. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1124. processing unit.
  1125. @end defmac
  1126. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1127. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1128. with this macro indicates the codelet will have several
  1129. implementations. The use of this macro is deprecated. One should
  1130. always only define the field @code{cpu_funcs}.
  1131. @end defmac
  1132. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1133. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1134. with this macro indicates the codelet will have several
  1135. implementations. The use of this macro is deprecated. One should
  1136. always only define the field @code{cuda_funcs}.
  1137. @end defmac
  1138. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1139. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1140. with this macro indicates the codelet will have several
  1141. implementations. The use of this macro is deprecated. One should
  1142. always only define the field @code{opencl_funcs}.
  1143. @end defmac
  1144. @deftp {Data Type} {struct starpu_codelet}
  1145. The codelet structure describes a kernel that is possibly implemented on various
  1146. targets. For compatibility, make sure to initialize the whole structure to zero,
  1147. either by using explicit memset, or by letting the compiler implicitly do it in
  1148. e.g. static storage case.
  1149. @table @asis
  1150. @item @code{uint32_t where} (optional)
  1151. Indicates which types of processing units are able to execute the
  1152. codelet. The different values
  1153. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  1154. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  1155. on which types of processing units the codelet can be executed.
  1156. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1157. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  1158. indicates that it is only available on Cell SPUs. If the field is
  1159. unset, its value will be automatically set based on the availability
  1160. of the @code{XXX_funcs} fields defined below.
  1161. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1162. Defines a function which should return 1 if the worker designated by
  1163. @var{workerid} can execute the @var{nimpl}th implementation of the
  1164. given @var{task}, 0 otherwise.
  1165. @item @code{enum starpu_codelet_type type} (optional)
  1166. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1167. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1168. implementation is also available. See @ref{Parallel Tasks} for details.
  1169. @item @code{int max_parallelism} (optional)
  1170. If a parallel implementation is available, this denotes the maximum combined
  1171. worker size that StarPU will use to execute parallel tasks for this codelet.
  1172. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1173. This field has been made deprecated. One should use instead the
  1174. @code{cpu_funcs} field.
  1175. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1176. Is an array of function pointers to the CPU implementations of the codelet.
  1177. It must be terminated by a NULL value.
  1178. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1179. argument being the array of data managed by the data management library, and
  1180. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1181. field of the @code{starpu_task} structure.
  1182. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1183. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1184. field, it must be non-null otherwise.
  1185. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1186. This field has been made deprecated. One should use instead the
  1187. @code{cuda_funcs} field.
  1188. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1189. Is an array of function pointers to the CUDA implementations of the codelet.
  1190. It must be terminated by a NULL value.
  1191. @emph{The functions must be host-functions written in the CUDA runtime
  1192. API}. Their prototype must
  1193. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1194. If the @code{where} field is set, then the @code{cuda_funcs}
  1195. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1196. field, it must be non-null otherwise.
  1197. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1198. This field has been made deprecated. One should use instead the
  1199. @code{opencl_funcs} field.
  1200. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1201. Is an array of function pointers to the OpenCL implementations of the codelet.
  1202. It must be terminated by a NULL value.
  1203. The functions prototype must be:
  1204. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1205. If the @code{where} field is set, then the @code{opencl_funcs} field
  1206. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1207. field, it must be non-null otherwise.
  1208. @item @code{uint8_t gordon_func} (optional)
  1209. This field has been made deprecated. One should use instead the
  1210. @code{gordon_funcs} field.
  1211. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1212. Is an array of index of the Cell SPU implementations of the codelet within the
  1213. Gordon library.
  1214. It must be terminated by a NULL value.
  1215. See Gordon documentation for more details on how to register a kernel and
  1216. retrieve its index.
  1217. @item @code{unsigned nbuffers}
  1218. Specifies the number of arguments taken by the codelet. These arguments are
  1219. managed by the DSM and are accessed from the @code{void *buffers[]}
  1220. array. The constant argument passed with the @code{cl_arg} field of the
  1221. @code{starpu_task} structure is not counted in this number. This value should
  1222. not be above @code{STARPU_NMAXBUFS}.
  1223. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1224. Is an array of @code{enum starpu_access_mode}. It describes the
  1225. required access modes to the data neeeded by the codelet (e.g.
  1226. @code{STARPU_RW}). The number of entries in this array must be
  1227. specified in the @code{nbuffers} field (defined above), and should not
  1228. exceed @code{STARPU_NMAXBUFS}.
  1229. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1230. option when configuring StarPU.
  1231. @item @code{struct starpu_perfmodel *model} (optional)
  1232. This is a pointer to the task duration performance model associated to this
  1233. codelet. This optional field is ignored when set to @code{NULL} or
  1234. when its @code{symbol} field is not set.
  1235. @item @code{struct starpu_perfmodel *power_model} (optional)
  1236. This is a pointer to the task power consumption performance model associated
  1237. to this codelet. This optional field is ignored when set to
  1238. @code{NULL} or when its @code{symbol} field is not set.
  1239. In the case of parallel codelets, this has to account for all processing units
  1240. involved in the parallel execution.
  1241. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1242. Statistics collected at runtime: this is filled by StarPU and should not be
  1243. accessed directly, but for example by calling the
  1244. @code{starpu_display_codelet_stats} function (See
  1245. @ref{starpu_display_codelet_stats} for details).
  1246. @item @code{const char *name} (optional)
  1247. Define the name of the codelet. This can be useful for debugging purposes.
  1248. @end table
  1249. @end deftp
  1250. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1251. Initialize @var{cl} with default values. Codelets should preferably be
  1252. initialized statically as shown in @ref{Defining a Codelet}. However
  1253. such a initialisation is not always possible, e.g. when using C++.
  1254. @end deftypefun
  1255. @deftp {Data Type} {enum starpu_task_status}
  1256. State of a task, can be either of
  1257. @table @asis
  1258. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1259. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1260. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1261. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1262. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1263. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1264. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1265. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1266. @end table
  1267. @end deftp
  1268. @deftp {Data Type} {struct starpu_buffer_descr}
  1269. This type is used to describe a data handle along with an
  1270. access mode.
  1271. @table @asis
  1272. @item @code{starpu_data_handle_t handle} describes a data,
  1273. @item @code{enum starpu_access_mode mode} describes its access mode
  1274. @end table
  1275. @end deftp
  1276. @deftp {Data Type} {struct starpu_task}
  1277. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1278. processing units managed by StarPU. It instantiates a codelet. It can either be
  1279. allocated dynamically with the @code{starpu_task_create} method, or declared
  1280. statically. In the latter case, the programmer has to zero the
  1281. @code{starpu_task} structure and to fill the different fields properly. The
  1282. indicated default values correspond to the configuration of a task allocated
  1283. with @code{starpu_task_create}.
  1284. @table @asis
  1285. @item @code{struct starpu_codelet *cl}
  1286. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1287. describes where the kernel should be executed, and supplies the appropriate
  1288. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1289. such empty tasks can be useful for synchronization purposes.
  1290. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1291. This field has been made deprecated. One should use instead the
  1292. @code{handles} field to specify the handles to the data accessed by
  1293. the task. The access modes are now defined in the @code{mode} field of
  1294. the @code{struct starpu_codelet cl} field defined above.
  1295. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1296. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1297. to the different pieces of data accessed by the task. The number
  1298. of entries in this array must be specified in the @code{nbuffers} field of the
  1299. @code{struct starpu_codelet} structure, and should not exceed
  1300. @code{STARPU_NMAXBUFS}.
  1301. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1302. option when configuring StarPU.
  1303. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1304. The actual data pointers to the memory node where execution will happen, managed
  1305. by the DSM.
  1306. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1307. This pointer is passed to the codelet through the second argument
  1308. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1309. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1310. argument.
  1311. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1312. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1313. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1314. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1315. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1316. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1317. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1318. codelets, where the @code{cl_arg} pointer is given as such.
  1319. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1320. This is a function pointer of prototype @code{void (*f)(void *)} which
  1321. specifies a possible callback. If this pointer is non-null, the callback
  1322. function is executed @emph{on the host} after the execution of the task. Tasks
  1323. which depend on it might already be executing. The callback is passed the
  1324. value contained in the @code{callback_arg} field. No callback is executed if the
  1325. field is set to @code{NULL}.
  1326. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1327. This is the pointer passed to the callback function. This field is ignored if
  1328. the @code{callback_func} is set to @code{NULL}.
  1329. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1330. If set, this flag indicates that the task should be associated with the tag
  1331. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1332. with the task and to express task dependencies easily.
  1333. @item @code{starpu_tag_t tag_id}
  1334. This fields contains the tag associated to the task if the @code{use_tag} field
  1335. was set, it is ignored otherwise.
  1336. @item @code{unsigned synchronous}
  1337. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1338. returns only when the task has been executed (or if no worker is able to
  1339. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1340. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1341. This field indicates a level of priority for the task. This is an integer value
  1342. that must be set between the return values of the
  1343. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1344. and that of the @code{starpu_sched_get_max_priority} for the most important
  1345. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1346. are provided for convenience and respectively returns value of
  1347. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1348. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1349. order to allow static task initialization. Scheduling strategies that take
  1350. priorities into account can use this parameter to take better scheduling
  1351. decisions, but the scheduling policy may also ignore it.
  1352. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1353. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1354. task to the worker specified by the @code{workerid} field.
  1355. @item @code{unsigned workerid} (optional)
  1356. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1357. which is the identifier of the worker that should process this task (as
  1358. returned by @code{starpu_worker_get_id}). This field is ignored if
  1359. @code{execute_on_a_specific_worker} field is set to 0.
  1360. @item @code{starpu_task_bundle_t bundle} (optional)
  1361. The bundle that includes this task. If no bundle is used, this should be NULL.
  1362. @item @code{int detach} (optional) (default: @code{1})
  1363. If this flag is set, it is not possible to synchronize with the task
  1364. by the means of @code{starpu_task_wait} later on. Internal data structures
  1365. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1366. flag is not set.
  1367. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1368. If this flag is set, the task structure will automatically be freed, either
  1369. after the execution of the callback if the task is detached, or during
  1370. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1371. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1372. called explicitly. Setting this flag for a statically allocated task structure
  1373. will result in undefined behaviour. The flag is set to 1 when the task is
  1374. created by calling @code{starpu_task_create()}. Note that
  1375. @code{starpu_task_wait_for_all} will not free any task.
  1376. @item @code{int regenerate} (optional)
  1377. If this flag is set, the task will be re-submitted to StarPU once it has been
  1378. executed. This flag must not be set if the destroy flag is set too.
  1379. @item @code{enum starpu_task_status status} (optional)
  1380. Current state of the task.
  1381. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1382. Profiling information for the task.
  1383. @item @code{double predicted} (output field)
  1384. Predicted duration of the task. This field is only set if the scheduling
  1385. strategy used performance models.
  1386. @item @code{double predicted_transfer} (optional)
  1387. Predicted data transfer duration for the task in microseconds. This field is
  1388. only valid if the scheduling strategy uses performance models.
  1389. @item @code{struct starpu_task *prev}
  1390. A pointer to the previous task. This should only be used by StarPU.
  1391. @item @code{struct starpu_task *next}
  1392. A pointer to the next task. This should only be used by StarPU.
  1393. @item @code{unsigned int mf_skip}
  1394. This is only used for tasks that use multiformat handle. This should only be
  1395. used by StarPU.
  1396. @item @code{void *starpu_private}
  1397. This is private to StarPU, do not modify. If the task is allocated by hand
  1398. (without starpu_task_create), this field should be set to NULL.
  1399. @item @code{int magic}
  1400. This field is set when initializing a task. It prevents a task from being
  1401. submitted if it has not been properly initialized.
  1402. @end table
  1403. @end deftp
  1404. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1405. Initialize @var{task} with default values. This function is implicitly
  1406. called by @code{starpu_task_create}. By default, tasks initialized with
  1407. @code{starpu_task_init} must be deinitialized explicitly with
  1408. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1409. using @code{STARPU_TASK_INITIALIZER} defined below.
  1410. @end deftypefun
  1411. @defmac STARPU_TASK_INITIALIZER
  1412. It is possible to initialize statically allocated tasks with this
  1413. value. This is equivalent to initializing a starpu_task structure with
  1414. the @code{starpu_task_init} function defined above.
  1415. @end defmac
  1416. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1417. Allocate a task structure and initialize it with default values. Tasks
  1418. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1419. task is terminated. This means that the task pointer can not be used any more
  1420. once the task is submitted, since it can be executed at any time (unless
  1421. dependencies make it wait) and thus freed at any time.
  1422. If the destroy flag is explicitly unset, the resources used
  1423. by the task have to be freed by calling
  1424. @code{starpu_task_destroy}.
  1425. @end deftypefun
  1426. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1427. Release all the structures automatically allocated to execute @var{task}, but
  1428. not the task structure itself and values set by the user remain unchanged.
  1429. It is thus useful for statically allocated tasks for instance.
  1430. It is also useful when the user wants to execute the same operation several
  1431. times with as least overhead as possible.
  1432. It is called automatically by @code{starpu_task_destroy}.
  1433. It has to be called only after explicitly waiting for the task or after
  1434. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1435. still manipulates the task after calling the callback).
  1436. @end deftypefun
  1437. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1438. Free the resource allocated during @code{starpu_task_create} and
  1439. associated with @var{task}. This function is already called automatically
  1440. after the execution of a task when the @code{destroy} flag of the
  1441. @code{starpu_task} structure is set, which is the default for tasks created by
  1442. @code{starpu_task_create}. Calling this function on a statically allocated task
  1443. results in an undefined behaviour.
  1444. @end deftypefun
  1445. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1446. This function blocks until @var{task} has been executed. It is not possible to
  1447. synchronize with a task more than once. It is not possible to wait for
  1448. synchronous or detached tasks.
  1449. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1450. indicates that the specified task was either synchronous or detached.
  1451. @end deftypefun
  1452. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1453. This function submits @var{task} to StarPU. Calling this function does
  1454. not mean that the task will be executed immediately as there can be data or task
  1455. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1456. scheduling this task with respect to such dependencies.
  1457. This function returns immediately if the @code{synchronous} field of the
  1458. @code{starpu_task} structure was set to 0, and block until the termination of
  1459. the task otherwise. It is also possible to synchronize the application with
  1460. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1461. function for instance.
  1462. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1463. means that there is no worker able to process this task (e.g. there is no GPU
  1464. available and this task is only implemented for CUDA devices).
  1465. starpu_task_submit() can be called from anywhere, including codelet
  1466. functions and callbacks, provided that the @code{synchronous} field of the
  1467. @code{starpu_task} structure is left to 0.
  1468. @end deftypefun
  1469. @deftypefun int starpu_task_wait_for_all (void)
  1470. This function blocks until all the tasks that were submitted are terminated. It
  1471. does not destroy these tasks.
  1472. @end deftypefun
  1473. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1474. This function returns the task currently executed by the worker, or
  1475. NULL if it is called either from a thread that is not a task or simply
  1476. because there is no task being executed at the moment.
  1477. @end deftypefun
  1478. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1479. @anchor{starpu_display_codelet_stats}
  1480. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1481. @end deftypefun
  1482. @deftypefun int starpu_task_wait_for_no_ready (void)
  1483. This function waits until there is no more ready task.
  1484. @end deftypefun
  1485. @c Callbacks: what can we put in callbacks ?
  1486. @node Explicit Dependencies
  1487. @section Explicit Dependencies
  1488. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1489. Declare task dependencies between a @var{task} and an array of tasks of length
  1490. @var{ndeps}. This function must be called prior to the submission of the task,
  1491. but it may called after the submission or the execution of the tasks in the
  1492. array, provided the tasks are still valid (ie. they were not automatically
  1493. destroyed). Calling this function on a task that was already submitted or with
  1494. an entry of @var{task_array} that is not a valid task anymore results in an
  1495. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1496. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1497. same task, in this case, the dependencies are added. It is possible to have
  1498. redundancy in the task dependencies.
  1499. @end deftypefun
  1500. @deftp {Data Type} {starpu_tag_t}
  1501. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1502. dependencies between tasks by the means of those tags. To do so, fill the
  1503. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1504. be arbitrary) and set the @code{use_tag} field to 1.
  1505. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1506. not be started until the tasks which holds the declared dependency tags are
  1507. completed.
  1508. @end deftp
  1509. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1510. Specify the dependencies of the task identified by tag @var{id}. The first
  1511. argument specifies the tag which is configured, the second argument gives the
  1512. number of tag(s) on which @var{id} depends. The following arguments are the
  1513. tags which have to be terminated to unlock the task.
  1514. This function must be called before the associated task is submitted to StarPU
  1515. with @code{starpu_task_submit}.
  1516. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1517. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1518. typically need to be explicitly casted. Using the
  1519. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1520. @cartouche
  1521. @smallexample
  1522. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1523. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1524. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1525. @end smallexample
  1526. @end cartouche
  1527. @end deftypefun
  1528. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1529. This function is similar to @code{starpu_tag_declare_deps}, except
  1530. that its does not take a variable number of arguments but an array of
  1531. tags of size @var{ndeps}.
  1532. @cartouche
  1533. @smallexample
  1534. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1535. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1536. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1537. @end smallexample
  1538. @end cartouche
  1539. @end deftypefun
  1540. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1541. This function blocks until the task associated to tag @var{id} has been
  1542. executed. This is a blocking call which must therefore not be called within
  1543. tasks or callbacks, but only from the application directly. It is possible to
  1544. synchronize with the same tag multiple times, as long as the
  1545. @code{starpu_tag_remove} function is not called. Note that it is still
  1546. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1547. data structure was freed (e.g. if the @code{destroy} flag of the
  1548. @code{starpu_task} was enabled).
  1549. @end deftypefun
  1550. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1551. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1552. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1553. terminated.
  1554. @end deftypefun
  1555. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1556. This function can be used to clear the "already notified" status
  1557. of a tag which is not associated with a task. Before that, calling
  1558. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1559. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1560. successors.
  1561. @end deftypefun
  1562. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1563. This function releases the resources associated to tag @var{id}. It can be
  1564. called once the corresponding task has been executed and when there is
  1565. no other tag that depend on this tag anymore.
  1566. @end deftypefun
  1567. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1568. This function explicitly unlocks tag @var{id}. It may be useful in the
  1569. case of applications which execute part of their computation outside StarPU
  1570. tasks (e.g. third-party libraries). It is also provided as a
  1571. convenient tool for the programmer, for instance to entirely construct the task
  1572. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1573. called several times on the same tag, notification will be done only on first
  1574. call, thus implementing "OR" dependencies, until the tag is restarted using
  1575. @code{starpu_tag_restart}.
  1576. @end deftypefun
  1577. @node Implicit Data Dependencies
  1578. @section Implicit Data Dependencies
  1579. In this section, we describe how StarPU makes it possible to insert implicit
  1580. task dependencies in order to enforce sequential data consistency. When this
  1581. data consistency is enabled on a specific data handle, any data access will
  1582. appear as sequentially consistent from the application. For instance, if the
  1583. application submits two tasks that access the same piece of data in read-only
  1584. mode, and then a third task that access it in write mode, dependencies will be
  1585. added between the two first tasks and the third one. Implicit data dependencies
  1586. are also inserted in the case of data accesses from the application.
  1587. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1588. Set the default sequential consistency flag. If a non-zero value is passed, a
  1589. sequential data consistency will be enforced for all handles registered after
  1590. this function call, otherwise it is disabled. By default, StarPU enables
  1591. sequential data consistency. It is also possible to select the data consistency
  1592. mode of a specific data handle with the
  1593. @code{starpu_data_set_sequential_consistency_flag} function.
  1594. @end deftypefun
  1595. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1596. Return the default sequential consistency flag
  1597. @end deftypefun
  1598. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1599. Sets the data consistency mode associated to a data handle. The consistency
  1600. mode set using this function has the priority over the default mode which can
  1601. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1602. @end deftypefun
  1603. @node Performance Model API
  1604. @section Performance Model API
  1605. @deftp {Data Type} {enum starpu_perf_archtype}
  1606. Enumerates the various types of architectures.
  1607. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1608. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1609. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1610. @table @asis
  1611. @item @code{STARPU_CPU_DEFAULT}
  1612. @item @code{STARPU_CUDA_DEFAULT}
  1613. @item @code{STARPU_OPENCL_DEFAULT}
  1614. @item @code{STARPU_GORDON_DEFAULT}
  1615. @end table
  1616. @end deftp
  1617. @deftp {Data Type} {enum starpu_perfmodel_type}
  1618. The possible values are:
  1619. @table @asis
  1620. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1621. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1622. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1623. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1624. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1625. @end table
  1626. @end deftp
  1627. @deftp {Data Type} {struct starpu_perfmodel}
  1628. @anchor{struct starpu_perfmodel}
  1629. contains all information about a performance model. At least the
  1630. @code{type} and @code{symbol} fields have to be filled when defining a
  1631. performance model for a codelet. For compatibility, make sure to initialize the
  1632. whole structure to zero, either by using explicit memset, or by letting the
  1633. compiler implicitly do it in e.g. static storage case.
  1634. If not provided, other fields have to be zero.
  1635. @table @asis
  1636. @item @code{type}
  1637. is the type of performance model @code{enum starpu_perfmodel_type}:
  1638. @code{STARPU_HISTORY_BASED},
  1639. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1640. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1641. @code{per_arch} has to be filled with functions which return the cost in
  1642. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1643. a function that returns the cost in micro-seconds on a CPU, timing on other
  1644. archs will be determined by multiplying by an arch-specific factor.
  1645. @item @code{const char *symbol}
  1646. is the symbol name for the performance model, which will be used as
  1647. file name to store the model. It must be set otherwise the model will
  1648. be ignored.
  1649. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1650. This field is deprecated. Use instead the @code{cost_function} field.
  1651. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1652. Used by @code{STARPU_COMMON}: takes a task and
  1653. implementation number, and must return a task duration estimation in micro-seconds.
  1654. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1655. Used by @code{STARPU_HISTORY_BASED} and
  1656. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1657. implementation number, and returns the size to be used as index for
  1658. history and regression.
  1659. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1660. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1661. starpu_per_arch_perfmodel} structures.
  1662. @item @code{unsigned is_loaded}
  1663. Whether the performance model is already loaded from the disk.
  1664. @item @code{unsigned benchmarking}
  1665. Whether the performance model is still being calibrated.
  1666. @item @code{pthread_rwlock_t model_rwlock}
  1667. Lock to protect concurrency between loading from disk (W), updating the values
  1668. (W), and making a performance estimation (R).
  1669. @end table
  1670. @end deftp
  1671. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1672. @table @asis
  1673. @item @code{double sumlny} sum of ln(measured)
  1674. @item @code{double sumlnx} sum of ln(size)
  1675. @item @code{double sumlnx2} sum of ln(size)^2
  1676. @item @code{unsigned long minx} minimum size
  1677. @item @code{unsigned long maxx} maximum size
  1678. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1679. @item @code{double alpha} estimated = alpha * size ^ beta
  1680. @item @code{double beta}
  1681. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1682. @item @code{double a, b, c} estimaed = a size ^b + c
  1683. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1684. @item @code{unsigned nsample} number of sample values for non-linear regression
  1685. @end table
  1686. @end deftp
  1687. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1688. contains information about the performance model of a given arch.
  1689. @table @asis
  1690. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1691. This field is deprecated. Use instead the @code{cost_function} field.
  1692. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1693. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1694. target arch and implementation number (as mere conveniency, since the array
  1695. is already indexed by these), and must return a task duration estimation in
  1696. micro-seconds.
  1697. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1698. starpu_perf_archtype arch, unsigned nimpl)}
  1699. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1700. case it depends on the architecture-specific implementation.
  1701. @item @code{struct starpu_htbl32_node *history}
  1702. The history of performance measurements.
  1703. @item @code{struct starpu_perfmodel_history_list *list}
  1704. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1705. records all execution history measures.
  1706. @item @code{struct starpu_perfmodel_regression_model regression}
  1707. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1708. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1709. regression.
  1710. @end table
  1711. @end deftp
  1712. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1713. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$HOME/.starpu} (@code{$USERPROFILE/.starpu} in windows environments).
  1714. @end deftypefun
  1715. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1716. returns the path to the debugging information for the performance model.
  1717. @end deftypefun
  1718. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1719. returns the architecture name for @var{arch}.
  1720. @end deftypefun
  1721. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1722. returns the architecture type of a given worker.
  1723. @end deftypefun
  1724. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1725. prints a list of all performance models on @var{output}.
  1726. @end deftypefun
  1727. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1728. todo
  1729. @end deftypefun
  1730. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1731. todo
  1732. @end deftypefun
  1733. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1734. prints a matrix of bus bandwidths on @var{f}.
  1735. @end deftypefun
  1736. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1737. prints the affinity devices on @var{f}.
  1738. @end deftypefun
  1739. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1740. prints a description of the topology on @var{f}.
  1741. @end deftypefun
  1742. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1743. This feeds the performance model @var{model} with an explicit measurement
  1744. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1745. useful when the application already has an existing set of measurements done
  1746. in good conditions, that StarPU could benefit from instead of doing on-line
  1747. measurements. And example of use can be see in @ref{Performance model example}.
  1748. @end deftypefun
  1749. @node Profiling API
  1750. @section Profiling API
  1751. @deftypefun int starpu_profiling_status_set (int @var{status})
  1752. Thie function sets the profiling status. Profiling is activated by passing
  1753. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1754. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1755. resets all profiling measurements. When profiling is enabled, the
  1756. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1757. to a valid @code{struct starpu_task_profiling_info} structure containing
  1758. information about the execution of the task.
  1759. Negative return values indicate an error, otherwise the previous status is
  1760. returned.
  1761. @end deftypefun
  1762. @deftypefun int starpu_profiling_status_get (void)
  1763. Return the current profiling status or a negative value in case there was an error.
  1764. @end deftypefun
  1765. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1766. This function sets the ID used for profiling trace filename
  1767. @end deftypefun
  1768. @deftp {Data Type} {struct starpu_task_profiling_info}
  1769. This structure contains information about the execution of a task. It is
  1770. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1771. structure if profiling was enabled. The different fields are:
  1772. @table @asis
  1773. @item @code{struct timespec submit_time}
  1774. Date of task submission (relative to the initialization of StarPU).
  1775. @item @code{struct timespec push_start_time}
  1776. Time when the task was submitted to the scheduler.
  1777. @item @code{struct timespec push_end_time}
  1778. Time when the scheduler finished with the task submission.
  1779. @item @code{struct timespec pop_start_time}
  1780. Time when the scheduler started to be requested for a task, and eventually gave
  1781. that task.
  1782. @item @code{struct timespec pop_end_time}
  1783. Time when the scheduler finished providing the task for execution.
  1784. @item @code{struct timespec acquire_data_start_time}
  1785. Time when the worker started fetching input data.
  1786. @item @code{struct timespec acquire_data_end_time}
  1787. Time when the worker finished fetching input data.
  1788. @item @code{struct timespec start_time}
  1789. Date of task execution beginning (relative to the initialization of StarPU).
  1790. @item @code{struct timespec end_time}
  1791. Date of task execution termination (relative to the initialization of StarPU).
  1792. @item @code{struct timespec release_data_start_time}
  1793. Time when the worker started releasing data.
  1794. @item @code{struct timespec release_data_end_time}
  1795. Time when the worker finished releasing data.
  1796. @item @code{struct timespec callback_start_time}
  1797. Time when the worker started the application callback for the task.
  1798. @item @code{struct timespec callback_end_time}
  1799. Time when the worker finished the application callback for the task.
  1800. @item @code{workerid}
  1801. Identifier of the worker which has executed the task.
  1802. @item @code{uint64_t used_cycles}
  1803. Number of cycles used by the task, only available in the MoviSim
  1804. @item @code{uint64_t stall_cycles}
  1805. Number of cycles stalled within the task, only available in the MoviSim
  1806. @item @code{double power_consumed}
  1807. Power consumed by the task, only available in the MoviSim
  1808. @end table
  1809. @end deftp
  1810. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1811. This structure contains the profiling information associated to a
  1812. worker. The different fields are:
  1813. @table @asis
  1814. @item @code{struct timespec start_time}
  1815. Starting date for the reported profiling measurements.
  1816. @item @code{struct timespec total_time}
  1817. Duration of the profiling measurement interval.
  1818. @item @code{struct timespec executing_time}
  1819. Time spent by the worker to execute tasks during the profiling measurement interval.
  1820. @item @code{struct timespec sleeping_time}
  1821. Time spent idling by the worker during the profiling measurement interval.
  1822. @item @code{int executed_tasks}
  1823. Number of tasks executed by the worker during the profiling measurement interval.
  1824. @item @code{uint64_t used_cycles}
  1825. Number of cycles used by the worker, only available in the MoviSim
  1826. @item @code{uint64_t stall_cycles}
  1827. Number of cycles stalled within the worker, only available in the MoviSim
  1828. @item @code{double power_consumed}
  1829. Power consumed by the worker, only available in the MoviSim
  1830. @end table
  1831. @end deftp
  1832. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1833. Get the profiling info associated to the worker identified by @var{workerid},
  1834. and reset the profiling measurements. If the @var{worker_info} argument is
  1835. NULL, only reset the counters associated to worker @var{workerid}.
  1836. Upon successful completion, this function returns 0. Otherwise, a negative
  1837. value is returned.
  1838. @end deftypefun
  1839. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1840. The different fields are:
  1841. @table @asis
  1842. @item @code{struct timespec start_time}
  1843. Time of bus profiling startup.
  1844. @item @code{struct timespec total_time}
  1845. Total time of bus profiling.
  1846. @item @code{int long long transferred_bytes}
  1847. Number of bytes transferred during profiling.
  1848. @item @code{int transfer_count}
  1849. Number of transfers during profiling.
  1850. @end table
  1851. @end deftp
  1852. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1853. Get the profiling info associated to the worker designated by @var{workerid},
  1854. and reset the profiling measurements. If worker_info is NULL, only reset the
  1855. counters.
  1856. @end deftypefun
  1857. @deftypefun int starpu_bus_get_count (void)
  1858. Return the number of buses in the machine.
  1859. @end deftypefun
  1860. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1861. Return the identifier of the bus between @var{src} and @var{dst}
  1862. @end deftypefun
  1863. @deftypefun int starpu_bus_get_src (int @var{busid})
  1864. Return the source point of bus @var{busid}
  1865. @end deftypefun
  1866. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1867. Return the destination point of bus @var{busid}
  1868. @end deftypefun
  1869. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1870. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1871. @end deftypefun
  1872. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1873. Converts the given timespec @var{ts} into microseconds.
  1874. @end deftypefun
  1875. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1876. Displays statistics about the bus on stderr.
  1877. @end deftypefun
  1878. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1879. Displays statistics about the workers on stderr.
  1880. @end deftypefun
  1881. @node CUDA extensions
  1882. @section CUDA extensions
  1883. @defmac STARPU_USE_CUDA
  1884. This macro is defined when StarPU has been installed with CUDA
  1885. support. It should be used in your code to detect the availability of
  1886. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1887. @end defmac
  1888. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1889. This function gets the current worker's CUDA stream.
  1890. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1891. function is only provided for convenience so that programmers can easily use
  1892. asynchronous operations within codelets without having to create a stream by
  1893. hand. Note that the application is not forced to use the stream provided by
  1894. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1895. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1896. the likelihood of having all transfers overlapped.
  1897. @end deftypefun
  1898. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1899. This function returns a pointer to device properties for worker @var{workerid}
  1900. (assumed to be a CUDA worker).
  1901. @end deftypefun
  1902. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1903. Return the size of the global memory of CUDA device @var{devid}.
  1904. @end deftypefun
  1905. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1906. Report a CUDA error.
  1907. @end deftypefun
  1908. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1909. Calls starpu_cuda_report_error, passing the current function, file and line
  1910. position.
  1911. @end defmac
  1912. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  1913. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  1914. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  1915. The function first tries to copy the data asynchronous (unless
  1916. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  1917. @var{stream} is @code{NULL}, it copies the data synchronously.
  1918. The function returns @code{-EAGAIN} if the asynchronous copy was
  1919. successfull. It returns 0 if the synchronous copy was successful, or
  1920. fails otherwise.
  1921. @end deftypefun
  1922. @deftypefun void starpu_cuda_set_device (int @var{devid})
  1923. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  1924. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  1925. the @code{starpu_conf} structure.
  1926. @end deftypefun
  1927. @deftypefun void starpu_helper_cublas_init (void)
  1928. This function initializes CUBLAS on every CUDA device.
  1929. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1930. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1931. controlled by StarPU. This call blocks until CUBLAS has been properly
  1932. initialized on every device.
  1933. @end deftypefun
  1934. @deftypefun void starpu_helper_cublas_shutdown (void)
  1935. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1936. @end deftypefun
  1937. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1938. Report a cublas error.
  1939. @end deftypefun
  1940. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1941. Calls starpu_cublas_report_error, passing the current function, file and line
  1942. position.
  1943. @end defmac
  1944. @node OpenCL extensions
  1945. @section OpenCL extensions
  1946. @menu
  1947. * Writing OpenCL kernels:: Writing OpenCL kernels
  1948. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1949. * Loading OpenCL kernels:: Loading OpenCL kernels
  1950. * OpenCL statistics:: Collecting statistics from OpenCL
  1951. * OpenCL utilities:: Utilities for OpenCL
  1952. @end menu
  1953. @defmac STARPU_USE_OPENCL
  1954. This macro is defined when StarPU has been installed with OpenCL
  1955. support. It should be used in your code to detect the availability of
  1956. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1957. @end defmac
  1958. @node Writing OpenCL kernels
  1959. @subsection Writing OpenCL kernels
  1960. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1961. Return the size of global device memory in bytes.
  1962. @end deftypefun
  1963. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1964. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1965. @end deftypefun
  1966. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1967. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1968. @end deftypefun
  1969. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1970. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1971. @end deftypefun
  1972. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1973. Return the context of the current worker.
  1974. @end deftypefun
  1975. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1976. Return the computation kernel command queue of the current worker.
  1977. @end deftypefun
  1978. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1979. Sets the arguments of a given kernel. The list of arguments must be given as
  1980. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1981. The last argument must be 0. Returns the number of arguments that were
  1982. successfully set. In case of failure, returns the id of the argument
  1983. that could not be set and @var{err} is set to the error returned by
  1984. OpenCL. Otherwise, returns the number of arguments that were set.
  1985. @cartouche
  1986. @smallexample
  1987. int n;
  1988. cl_int err;
  1989. cl_kernel kernel;
  1990. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  1991. sizeof(foo), &foo,
  1992. sizeof(bar), &bar,
  1993. 0);
  1994. if (n != 2)
  1995. fprintf(stderr, "Error : %d\n", err);
  1996. @end smallexample
  1997. @end cartouche
  1998. @end deftypefun
  1999. @node Compiling OpenCL kernels
  2000. @subsection Compiling OpenCL kernels
  2001. Source codes for OpenCL kernels can be stored in a file or in a
  2002. string. StarPU provides functions to build the program executable for
  2003. each available OpenCL device as a @code{cl_program} object. This
  2004. program executable can then be loaded within a specific queue as
  2005. explained in the next section. These are only helpers, Applications
  2006. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2007. use (e.g. different programs on the different OpenCL devices, for
  2008. relocation purpose for instance).
  2009. @deftp {Data Type} {struct starpu_opencl_program}
  2010. Stores the OpenCL programs as compiled for the different OpenCL devices.
  2011. @table @asis
  2012. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2013. Stores each program for each OpenCL device.
  2014. @end table
  2015. @end deftp
  2016. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2017. @anchor{starpu_opencl_load_opencl_from_file}
  2018. This function compiles an OpenCL source code stored in a file.
  2019. @end deftypefun
  2020. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2021. This function compiles an OpenCL source code stored in a string.
  2022. @end deftypefun
  2023. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2024. This function unloads an OpenCL compiled code.
  2025. @end deftypefun
  2026. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2027. Store the contents of the file @var{source_file_name} in the buffer
  2028. @var{opencl_program_source}. The file @var{source_file_name} can be
  2029. located in the current directory, or in the directory specified by the
  2030. environment variable @code{STARPU_OPENCL_PROGRAM_DIR}, or in the
  2031. directory @code{share/starpu/opencl} of the installation directory of
  2032. StarPU, or in the source directory of StarPU.
  2033. When the file is found, @code{located_file_name} is the full name of
  2034. the file as it has been located on the system, @code{located_dir_name}
  2035. the directory where it has been located. Otherwise, they are both set
  2036. to the empty string.
  2037. @end deftypefun
  2038. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char*} @var{build_options})
  2039. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2040. with the given options @code{build_options} and stores the result in
  2041. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2042. filename as @code{source_file_name} (@code{$USERPROFILE/.starpu/opencl} in
  2043. windows environments). The compilation is done for every
  2044. OpenCL device, and the filename is suffixed with the vendor id and the
  2045. device id of the OpenCL device.
  2046. @end deftypefun
  2047. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2048. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2049. with the given options @code{build_options} and stores the result in
  2050. the directory @code{$STARPU_HOME/.starpu/opencl}
  2051. (@code{$USERPROFILE/.starpu/opencl} in windows environments) with the filename
  2052. @code{file_name}. The compilation is done for every
  2053. OpenCL device, and the filename is suffixed with the vendor id and the
  2054. device id of the OpenCL device.
  2055. @end deftypefun
  2056. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2057. Compile the binary OpenCL kernel identified with @var{id}. For every
  2058. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2059. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2060. @end deftypefun
  2061. @node Loading OpenCL kernels
  2062. @subsection Loading OpenCL kernels
  2063. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2064. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2065. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2066. @var{kernel_name}
  2067. @end deftypefun
  2068. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2069. Release the given @var{kernel}, to be called after kernel execution.
  2070. @end deftypefun
  2071. @node OpenCL statistics
  2072. @subsection OpenCL statistics
  2073. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2074. This function allows to collect statistics on a kernel execution.
  2075. After termination of the kernels, the OpenCL codelet should call this function
  2076. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2077. collect statistics about the kernel execution (used cycles, consumed power).
  2078. @end deftypefun
  2079. @node OpenCL utilities
  2080. @subsection OpenCL utilities
  2081. @deftypefun {const char *}starpu_opencl_error_string (cl_int @var{status})
  2082. Return the error message in English corresponding to @var{status}, an
  2083. OpenCL error code.
  2084. @end deftypefun
  2085. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2086. Given a valid error @var{status}, prints the corresponding error message on
  2087. stdout, along with the given function name @var{func}, the given filename
  2088. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2089. @end deftypefun
  2090. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2091. Call the function @code{starpu_opencl_display_error} with the given
  2092. error @var{status}, the current function name, current file and line
  2093. number, and a empty message.
  2094. @end defmac
  2095. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2096. Call the function @code{starpu_opencl_display_error} and abort.
  2097. @end deftypefun
  2098. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2099. Call the function @code{starpu_opencl_report_error} with the given
  2100. error @var{status}, with the current function name, current file and
  2101. line number, and a empty message.
  2102. @end defmac
  2103. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2104. Call the function @code{starpu_opencl_report_error} with the given
  2105. message and the given error @var{status}, with the current function
  2106. name, current file and line number.
  2107. @end defmac
  2108. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2109. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2110. valid combination of cl_mem_flags values.
  2111. @end deftypefun
  2112. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2113. Copy @var{size} bytes from the given @var{ptr} on
  2114. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  2115. @var{offset} is the offset, in bytes, in @var{buffer}.
  2116. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2117. synchronised before returning. If non NULL, @var{event} can be used
  2118. after the call to wait for this particular copy to complete.
  2119. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2120. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2121. was successful, or to 0 if event was NULL.
  2122. @end deftypefun
  2123. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2124. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2125. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  2126. @var{offset} is the offset, in bytes, in @var{buffer}.
  2127. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2128. synchronised before returning. If non NULL, @var{event} can be used
  2129. after the call to wait for this particular copy to complete.
  2130. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2131. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2132. was successful, or to 0 if event was NULL.
  2133. @end deftypefun
  2134. @node Cell extensions
  2135. @section Cell extensions
  2136. nothing yet.
  2137. @node Miscellaneous helpers
  2138. @section Miscellaneous helpers
  2139. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2140. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2141. The @var{asynchronous} parameter indicates whether the function should
  2142. block or not. In the case of an asynchronous call, it is possible to
  2143. synchronize with the termination of this operation either by the means of
  2144. implicit dependencies (if enabled) or by calling
  2145. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2146. this callback function is executed after the handle has been copied, and it is
  2147. given the @var{callback_arg} pointer as argument.
  2148. @end deftypefun
  2149. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2150. This function executes the given function on a subset of workers.
  2151. When calling this method, the offloaded function specified by the first argument is
  2152. executed by every StarPU worker that may execute the function.
  2153. The second argument is passed to the offloaded function.
  2154. The last argument specifies on which types of processing units the function
  2155. should be executed. Similarly to the @var{where} field of the
  2156. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2157. should be executed on every CUDA device and every CPU by passing
  2158. @code{STARPU_CPU|STARPU_CUDA}.
  2159. This function blocks until the function has been executed on every appropriate
  2160. processing units, so that it may not be called from a callback function for
  2161. instance.
  2162. @end deftypefun