data_partition.doxy 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux
  4. * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2017 CNRS
  5. * Copyright (C) 2011, 2012 INRIA
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \defgroup API_Data_Partition Data Partition
  9. \struct starpu_data_filter
  10. The filter structure describes a data partitioning operation, to be
  11. given to the starpu_data_partition() function.
  12. \ingroup API_Data_Partition
  13. \var void (*starpu_data_filter::filter_func)(void *father_interface, void *child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)
  14. Fill the \p child_interface structure with interface information
  15. for the \p id -th child of the parent \p father_interface (among
  16. \p nparts).
  17. \var unsigned starpu_data_filter::nchildren
  18. Number of parts to partition the data into.
  19. \var unsigned (*starpu_data_filter::get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)
  20. Return the number of children. This can be used instead of
  21. starpu_data_filter::nchildren when the number of children depends
  22. on the actual data (e.g. the number of blocks in a sparse matrix).
  23. \var struct starpu_data_interface_ops *(*starpu_data_filter::get_child_ops)(struct starpu_data_filter *, unsigned id)
  24. In case the resulting children use a different data interface,
  25. this function returns which interface is used by child number \p
  26. id.
  27. \var unsigned starpu_data_filter::filter_arg
  28. Allow to define an additional parameter for the filter function.
  29. \var void *starpu_data_filter::filter_arg_ptr
  30. Allow to define an additional pointer parameter for the filter
  31. function, such as the sizes of the different parts.
  32. @name Basic API
  33. \ingroup API_Data_Partition
  34. \fn void starpu_data_partition(starpu_data_handle_t initial_handle, struct starpu_data_filter *f)
  35. \ingroup API_Data_Partition
  36. Request the partitioning of \p initial_handle into several subdata
  37. according to the filter \p f.
  38. Here an example of how to use the function.
  39. \code{.c}
  40. struct starpu_data_filter f =
  41. {
  42. .filter_func = starpu_matrix_filter_block,
  43. .nchildren = nslicesx
  44. };
  45. starpu_data_partition(A_handle, &f);
  46. \endcode
  47. \fn void starpu_data_unpartition(starpu_data_handle_t root_data, unsigned gathering_node)
  48. \ingroup API_Data_Partition
  49. Unapply the filter which has been applied to \p root_data, thus
  50. unpartitioning the data. The pieces of data are collected back into
  51. one big piece in the \p gathering_node (usually ::STARPU_MAIN_RAM).
  52. Tasks working on the partitioned data must be already finished when
  53. calling starpu_data_unpartition().
  54. Here an example of how to use the function.
  55. \code{.c}
  56. starpu_data_unpartition(A_handle, STARPU_MAIN_RAM);
  57. \endcode
  58. \fn int starpu_data_get_nb_children(starpu_data_handle_t handle)
  59. \ingroup API_Data_Partition
  60. Return the number of children \p handle has been partitioned into.
  61. \fn starpu_data_handle_t starpu_data_get_child(starpu_data_handle_t handle, unsigned i)
  62. \ingroup API_Data_Partition
  63. Return the \p i -th child of the given \p handle, which must have been
  64. partitionned beforehand.
  65. \fn starpu_data_handle_t starpu_data_get_sub_data(starpu_data_handle_t root_data, unsigned depth, ... )
  66. \ingroup API_Data_Partition
  67. After partitioning a StarPU data by applying a filter,
  68. starpu_data_get_sub_data() can be used to get handles for each of the
  69. data portions. \p root_data is the parent data that was partitioned.
  70. \p depth is the number of filters to traverse (in case several filters
  71. have been applied, to e.g. partition in row blocks, and then in column
  72. blocks), and the subsequent parameters are the indexes. The function
  73. returns a handle to the subdata.
  74. Here an example of how to use the function.
  75. \code{.c}
  76. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  77. \endcode
  78. \fn starpu_data_handle_t starpu_data_vget_sub_data(starpu_data_handle_t root_data, unsigned depth, va_list pa)
  79. \ingroup API_Data_Partition
  80. This function is similar to starpu_data_get_sub_data() but uses a
  81. va_list for the parameter list.
  82. \fn void starpu_data_map_filters(starpu_data_handle_t root_data, unsigned nfilters, ...)
  83. \ingroup API_Data_Partition
  84. Apply \p nfilters filters to the handle designated by
  85. \p root_handle recursively. \p nfilters pointers to variables of the type
  86. starpu_data_filter should be given.
  87. \fn void starpu_data_vmap_filters(starpu_data_handle_t root_data, unsigned nfilters, va_list pa)
  88. \ingroup API_Data_Partition
  89. Apply \p nfilters filters to the handle designated by
  90. \p root_handle recursively. It uses a va_list of pointers to variables of
  91. the type starpu_data_filter.
  92. @name Asynchronous API
  93. \ingroup API_Data_Partition
  94. \fn void starpu_data_partition_plan(starpu_data_handle_t initial_handle, struct starpu_data_filter *f, starpu_data_handle_t *children)
  95. \ingroup API_Data_Partition
  96. Plan to partition \p initial_handle into several subdata according to
  97. the filter \p f.
  98. The handles are returned into the \p children array, which has to be
  99. the same size as the number of parts described in \p f. These handles
  100. are not immediately usable, starpu_data_partition_submit() has to be
  101. called to submit the actual partitioning.
  102. Here is an example of how to use the function:
  103. \code{.c}
  104. starpu_data_handle_t children[nslicesx];
  105. struct starpu_data_filter f =
  106. {
  107. .filter_func = starpu_matrix_filter_block,
  108. .nchildren = nslicesx
  109. };
  110. starpu_data_partition_plan(A_handle, &f, children);
  111. \endcode
  112. \fn void starpu_data_partition_submit(starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t *children)
  113. \ingroup API_Data_Partition
  114. Submit the actual partitioning of \p initial_handle into the \p nparts
  115. \p children handles. This call is asynchronous, it only submits that the
  116. partitioning should be done, so that the \p children handles can now be used to
  117. submit tasks, and \p initial_handle can not be used to submit tasks any more (to
  118. guarantee coherency).
  119. For instance,
  120. \code{.c}
  121. starpu_data_partition_submit(A_handle, nslicesx, children);
  122. \endcode
  123. \fn void starpu_data_partition_readonly_submit(starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t *children)
  124. \ingroup API_Data_Partition
  125. This is the same as starpu_data_partition_submit(), but it does not invalidate \p
  126. initial_handle. This allows to continue using it, but the application has to be
  127. careful not to write to \p initial_handle or \p children handles, only read from
  128. them, since the coherency is otherwise not guaranteed. This thus allows to
  129. submit various tasks which concurrently read from various partitions of the data.
  130. When the application wants to write to \p initial_handle again, it should call
  131. starpu_data_unpartition_submit(), which will properly add dependencies between the
  132. reads on the \p children and the writes to be submitted.
  133. If instead the application wants to write to \p children handles, it should
  134. call starpu_data_partition_readwrite_upgrade_submit(), which will correctly add
  135. dependencies between the reads on the \p initial_handle and the writes to be
  136. submitted.
  137. \fn void starpu_data_partition_readwrite_upgrade_submit(starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t *children)
  138. \ingroup API_Data_Partition
  139. This assumes that a partitioning of \p initial_handle has already been submited
  140. in readonly mode through starpu_data_partition_readonly_submit(), and will upgrade
  141. that partitioning into read-write mode for the \p children, by invalidating \p
  142. initial_handle, and adding the necessary dependencies.
  143. \fn void starpu_data_unpartition_submit(starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t *children, int gathering_node)
  144. \ingroup API_Data_Partition
  145. This assumes that \p initial_handle is partitioned into \p children, and submits
  146. an unpartitionning of it, i.e. submitting a gathering of the pieces on the
  147. requested \p gathering_node memory node, and submitting an invalidation of the
  148. children.
  149. \p gathering_node can be set to -1 to let the runtime decide which memory node
  150. should be used to gather the pieces.
  151. \fn void starpu_data_unpartition_readonly_submit(starpu_data_handle_t initial_handle, unsigned nparts, starpu_data_handle_t *children, int gathering_node)
  152. \ingroup API_Data_Partition
  153. This assumes that \p initial_handle is partitioned into \p children, and submits
  154. just a readonly unpartitionning of it, i.e. submitting a gathering of the pieces
  155. on the requested \p gathering_node memory node. It does not invalidate the
  156. children. This brings \p initial_handle and \p children handles to the same
  157. state as obtained with starpu_data_partition_readonly_submit().
  158. \p gathering_node can be set to -1 to let the runtime decide which memory node
  159. should be used to gather the pieces.
  160. \fn void starpu_data_partition_clean(starpu_data_handle_t root_data, unsigned nparts, starpu_data_handle_t *children)
  161. \ingroup API_Data_Partition
  162. This should be used to clear the partition planning established between \p
  163. root_data and \p children with starpu_data_partition_plan(). This will notably
  164. submit an unregister all the \p children, which can thus not be used any more
  165. afterwards.
  166. @name Predefined Vector Filter Functions
  167. \ingroup API_Data_Partition
  168. This section gives a partial list of the predefined partitioning
  169. functions for vector data. Examples on how to use them are shown in
  170. \ref PartitioningData. The complete list can be found in the file
  171. <c>starpu_data_filters.h</c>.
  172. \fn void starpu_vector_filter_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  173. \ingroup API_Data_Partition
  174. Return in \p child_interface the \p id th element of the vector
  175. represented by \p father_interface once partitioned in \p nparts chunks of
  176. equal size.
  177. \fn void starpu_vector_filter_block_shadow(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  178. \ingroup API_Data_Partition
  179. Return in \p child_interface the \p id th element of the vector
  180. represented by \p father_interface once partitioned in \p nparts chunks of
  181. equal size with a shadow border <c>filter_arg_ptr</c>, thus getting a vector
  182. of size <c>(n-2*shadow)/nparts+2*shadow</c>. The <c>filter_arg_ptr</c> field
  183. of \p f must be the shadow size casted into \c void*.
  184. <b>IMPORTANT</b>: This can only be used for read-only access, as no coherency is
  185. enforced for the shadowed parts. An usage example is available in
  186. examples/filters/shadow.c
  187. \fn void starpu_vector_filter_list(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  188. \ingroup API_Data_Partition
  189. Return in \p child_interface the \p id th element of the vector
  190. represented by \p father_interface once partitioned into \p nparts chunks
  191. according to the <c>filter_arg_ptr</c> field of \p f. The
  192. <c>filter_arg_ptr</c> field must point to an array of \p nparts uint32_t
  193. elements, each of which specifies the number of elements in each chunk
  194. of the partition.
  195. \fn void starpu_vector_filter_divide_in_2(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  196. \ingroup API_Data_Partition
  197. Return in \p child_interface the \p id th element of the vector
  198. represented by \p father_interface once partitioned in <c>2</c> chunks of
  199. equal size, ignoring nparts. Thus, \p id must be <c>0</c> or <c>1</c>.
  200. @name Predefined Matrix Filter Functions
  201. \ingroup API_Data_Partition
  202. This section gives a partial list of the predefined partitioning
  203. functions for matrix data. Examples on how to use them are shown in
  204. \ref PartitioningData. The complete list can be found in the file
  205. <c>starpu_data_filters.h</c>.
  206. \fn void starpu_matrix_filter_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  207. \ingroup API_Data_Partition
  208. Partition a dense Matrix along the x dimension, thus
  209. getting (x/\p nparts ,y) matrices. If \p nparts does not divide x, the
  210. last submatrix contains the remainder.
  211. \fn void starpu_matrix_filter_block_shadow(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  212. \ingroup API_Data_Partition
  213. Partition a dense Matrix along the x dimension, with a
  214. shadow border <c>filter_arg_ptr</c>, thus getting ((x-2*shadow)/\p
  215. nparts +2*shadow,y) matrices. If \p nparts does not divide x-2*shadow,
  216. the last submatrix contains the remainder.
  217. <b>IMPORTANT</b>: This can
  218. only be used for read-only access, as no coherency is enforced for the
  219. shadowed parts. A usage example is available in
  220. examples/filters/shadow2d.c
  221. \fn void starpu_matrix_filter_vertical_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  222. \ingroup API_Data_Partition
  223. Partition a dense Matrix along the y dimension, thus
  224. getting (x,y/\p nparts) matrices. If \p nparts does not divide y, the
  225. last submatrix contains the remainder.
  226. \fn void starpu_matrix_filter_vertical_block_shadow(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  227. \ingroup API_Data_Partition
  228. Partition a dense Matrix along the y dimension, with a
  229. shadow border <c>filter_arg_ptr</c>, thus getting
  230. (x,(y-2*shadow)/\p nparts +2*shadow) matrices. If \p nparts does not
  231. divide y-2*shadow, the last submatrix contains the remainder.
  232. <b>IMPORTANT</b>: This can only be used for read-only access, as no
  233. coherency is enforced for the shadowed parts. A usage example is
  234. available in examples/filters/shadow2d.c
  235. @name Predefined Block Filter Functions
  236. \ingroup API_Data_Partition
  237. This section gives a partial list of the predefined partitioning
  238. functions for block data. Examples on how to use them are shown in
  239. \ref PartitioningData. The complete list can be found in the file
  240. <c>starpu_data_filters.h</c>. A usage example is available in
  241. examples/filters/shadow3d.c
  242. \fn void starpu_block_filter_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  243. \ingroup API_Data_Partition
  244. Partition a block along the X dimension, thus getting
  245. (x/\p nparts ,y,z) 3D matrices. If \p nparts does not divide x, the last
  246. submatrix contains the remainder.
  247. \fn void starpu_block_filter_block_shadow(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  248. \ingroup API_Data_Partition
  249. Partition a block along the X dimension, with a
  250. shadow border <c>filter_arg_ptr</c>, thus getting
  251. ((x-2*shadow)/\p nparts +2*shadow,y,z) blocks. If \p nparts does not
  252. divide x, the last submatrix contains the remainder.
  253. <b>IMPORTANT</b>:
  254. This can only be used for read-only access, as no coherency is
  255. enforced for the shadowed parts.
  256. \fn void starpu_block_filter_vertical_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  257. \ingroup API_Data_Partition
  258. Partition a block along the Y dimension, thus getting
  259. (x,y/\p nparts ,z) blocks. If \p nparts does not divide y, the last
  260. submatrix contains the remainder.
  261. \fn void starpu_block_filter_vertical_block_shadow(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  262. \ingroup API_Data_Partition
  263. Partition a block along the Y dimension, with a
  264. shadow border <c>filter_arg_ptr</c>, thus getting
  265. (x,(y-2*shadow)/\p nparts +2*shadow,z) 3D matrices. If \p nparts does not
  266. divide y, the last submatrix contains the remainder.
  267. <b>IMPORTANT</b>:
  268. This can only be used for read-only access, as no coherency is
  269. enforced for the shadowed parts.
  270. \fn void starpu_block_filter_depth_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  271. \ingroup API_Data_Partition
  272. Partition a block along the Z dimension, thus getting
  273. (x,y,z/\p nparts) blocks. If \p nparts does not divide z, the last
  274. submatrix contains the remainder.
  275. \fn void starpu_block_filter_depth_block_shadow(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  276. \ingroup API_Data_Partition
  277. Partition a block along the Z dimension, with a
  278. shadow border <c>filter_arg_ptr</c>, thus getting
  279. (x,y,(z-2*shadow)/\p nparts +2*shadow) blocks. If \p nparts does not
  280. divide z, the last submatrix contains the remainder.
  281. <b>IMPORTANT</b>:
  282. This can only be used for read-only access, as no coherency is
  283. enforced for the shadowed parts.
  284. @name Predefined BCSR Filter Functions
  285. \ingroup API_Data_Partition
  286. This section gives a partial list of the predefined partitioning
  287. functions for BCSR data. Examples on how to use them are shown in
  288. \ref PartitioningData. The complete list can be found in the file
  289. <c>starpu_data_filters.h</c>.
  290. \fn void starpu_bcsr_filter_canonical_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  291. \ingroup API_Data_Partition
  292. Partition a block-sparse matrix into dense matrices.
  293. \fn void starpu_csr_filter_vertical_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts)
  294. \ingroup API_Data_Partition
  295. Partition a block-sparse matrix into vertical block-sparse matrices.
  296. */