310_data_management.doxy 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux
  4. * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 CNRS
  5. * Copyright (C) 2011, 2012 INRIA
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page DataManagement Data Management
  9. TODO: intro qui parle de coherency entre autres
  10. \section DataInterface Data Interface
  11. StarPU provides several data interfaces for programmers to describe the data layout of their application. There are predefined interfaces already available in StarPU. Users can define new data interfaces as explained in \ref DefiningANewDataInterface. All functions provided by StarPU are documented in \ref API_Data_Interfaces. You will find a short list below.
  12. \subsection VariableDataInterface Variable Data Interface
  13. A variable is a given size byte element, typically a scalar. Here an
  14. example of how to register a variable data to StarPU by using
  15. starpu_variable_data_register().
  16. \code{.c}
  17. float var = 42.0;
  18. starpu_data_handle_t var_handle;
  19. starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (uintptr_t)&var, sizeof(var));
  20. \endcode
  21. \subsection VectorDataInterface Vector Data Interface
  22. A vector is a fixed number of elements of a given size. Here an
  23. example of how to register a vector data to StarPU by using
  24. starpu_vector_data_register().
  25. \code{.c}
  26. float vector[NX];
  27. starpu_data_handle_t vector_handle;
  28. starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
  29. \endcode
  30. \subsection MatrixDataInterface Matrix Data Interface
  31. To register 2-D matrices with a potential padding, one can use the
  32. matrix data interface. Here an example of how to register a matrix
  33. data to StarPU by using starpu_matrix_data_register().
  34. \code{.c}
  35. float *matrix;
  36. starpu_data_handle_t matrix_handle;
  37. matrix = (float*)malloc(width * height * sizeof(float));
  38. starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, width, width, height, sizeof(float));
  39. \endcode
  40. \subsection BlockDataInterface Block Data Interface
  41. To register 3-D blocks with potential paddings on Y and Z dimensions,
  42. one can use the block data interface. Here an example of how to
  43. register a block data to StarPU by using starpu_block_data_register().
  44. \code{.c}
  45. float *block;
  46. starpu_data_handle_t block_handle;
  47. block = (float*)malloc(nx*ny*nz*sizeof(float));
  48. starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx, ny, nz, sizeof(float));
  49. \endcode
  50. \subsection BCSRDataInterface BCSR Data Interface
  51. BCSR (Blocked Compressed Sparse Row Representation) sparse matrix data
  52. can be registered to StarPU using the bcsr data interface. Here an
  53. example on how to do so by using starpu_bcsr_data_register().
  54. \code{.c}
  55. /*
  56. * We use the following matrix:
  57. *
  58. * +----------------+
  59. * | 0 1 0 0 |
  60. * | 2 3 0 0 |
  61. * | 4 5 8 9 |
  62. * | 6 7 10 11 |
  63. * +----------------+
  64. *
  65. * nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]
  66. * colind = [0, 0, 1]
  67. * rowptr = [0, 1 ]
  68. * r = c = 2
  69. */
  70. /* Size of the blocks */
  71. int R = 2;
  72. int C = 2;
  73. int NROW = 2;
  74. int NNZ_BLOCKS = 3; /* out of 4 */
  75. int NZVAL_SIZE = (R*C*NNZ_BLOCKS);
  76. int nzval[NZVAL_SIZE] =
  77. {
  78. 0, 1, 2, 3, /* First block */
  79. 4, 5, 6, 7, /* Second block */
  80. 8, 9, 10, 11 /* Third block */
  81. };
  82. uint32_t colind[NNZ_BLOCKS] =
  83. {
  84. 0, /* block-column index for first block in nzval */
  85. 0, /* block-column index for second block in nzval */
  86. 1 /* block-column index for third block in nzval */
  87. };
  88. uint32_t rowptr[NROW] =
  89. {
  90. 0, / * block-index in nzval of the first block of the first row. */
  91. 1 / * block-index in nzval of the first block of the second row. */
  92. };
  93. starpu_data_handle_t bcsr_handle;
  94. starpu_bcsr_data_register(&bcsr_handle,
  95. STARPU_MAIN_RAM,
  96. NNZ_BLOCKS,
  97. NROW,
  98. (uintptr_t) nzval,
  99. colind,
  100. rowptr,
  101. 0, /* firstentry */
  102. R,
  103. C,
  104. sizeof(nzval[0]));
  105. \endcode
  106. StarPU provides an example on how to deal with such matrices in
  107. <c>examples/spmv</c>.
  108. \subsection CSRDataInterface CSR Data Interface
  109. TODO
  110. \section DataManagement Data Management
  111. When the application allocates data, whenever possible it should use
  112. the starpu_malloc() function, which will ask CUDA or OpenCL to make
  113. the allocation itself and pin the corresponding allocated memory, or to use the
  114. starpu_memory_pin() function to pin memory allocated by other ways, such as local arrays. This
  115. is needed to permit asynchronous data transfer, i.e. permit data
  116. transfer to overlap with computations. Otherwise, the trace will show
  117. that the <c>DriverCopyAsync</c> state takes a lot of time, this is
  118. because CUDA or OpenCL then reverts to synchronous transfers.
  119. By default, StarPU leaves replicates of data wherever they were used, in case they
  120. will be re-used by other tasks, thus saving the data transfer time. When some
  121. task modifies some data, all the other replicates are invalidated, and only the
  122. processing unit which ran that task will have a valid replicate of the data. If the application knows
  123. that this data will not be re-used by further tasks, it should advise StarPU to
  124. immediately replicate it to a desired list of memory nodes (given through a
  125. bitmask). This can be understood like the write-through mode of CPU caches.
  126. \code{.c}
  127. starpu_data_set_wt_mask(img_handle, 1<<0);
  128. \endcode
  129. will for instance request to always automatically transfer a replicate into the
  130. main memory (node <c>0</c>), as bit <c>0</c> of the write-through bitmask is being set.
  131. \code{.c}
  132. starpu_data_set_wt_mask(img_handle, ~0U);
  133. \endcode
  134. will request to always automatically broadcast the updated data to all memory
  135. nodes.
  136. Setting the write-through mask to <c>~0U</c> can also be useful to make sure all
  137. memory nodes always have a copy of the data, so that it is never evicted when
  138. memory gets scarse.
  139. Implicit data dependency computation can become expensive if a lot
  140. of tasks access the same piece of data. If no dependency is required
  141. on some piece of data (e.g. because it is only accessed in read-only
  142. mode, or because write accesses are actually commutative), use the
  143. function starpu_data_set_sequential_consistency_flag() to disable
  144. implicit dependencies on that data.
  145. In the same vein, accumulation of results in the same data can become a
  146. bottleneck. The use of the mode ::STARPU_REDUX permits to optimize such
  147. accumulation (see \ref DataReduction). To a lesser extent, the use of
  148. the flag ::STARPU_COMMUTE keeps the bottleneck (see \ref DataCommute), but at least permits
  149. the accumulation to happen in any order.
  150. Applications often need a data just for temporary results. In such a case,
  151. registration can be made without an initial value, for instance this produces a vector data:
  152. \code{.c}
  153. starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));
  154. \endcode
  155. StarPU will then allocate the actual buffer only when it is actually needed,
  156. e.g. directly on the GPU without allocating in main memory.
  157. In the same vein, once the temporary results are not useful any more, the
  158. data should be thrown away. If the handle is not to be reused, it can be
  159. unregistered:
  160. \code{.c}
  161. starpu_data_unregister_submit(handle);
  162. \endcode
  163. actual unregistration will be done after all tasks working on the handle
  164. terminate.
  165. If the handle is to be reused, instead of unregistering it, it can simply be invalidated:
  166. \code{.c}
  167. starpu_data_invalidate_submit(handle);
  168. \endcode
  169. the buffers containing the current value will then be freed, and reallocated
  170. only when another task writes some value to the handle.
  171. \section DataPrefetch Data Prefetch
  172. The scheduling policies <c>heft</c>, <c>dmda</c> and <c>pheft</c>
  173. perform data prefetch (see \ref STARPU_PREFETCH):
  174. as soon as a scheduling decision is taken for a task, requests are issued to
  175. transfer its required data to the target processing unit, if needed, so that
  176. when the processing unit actually starts the task, its data will hopefully be
  177. already available and it will not have to wait for the transfer to finish.
  178. The application may want to perform some manual prefetching, for several reasons
  179. such as excluding initial data transfers from performance measurements, or
  180. setting up an initial statically-computed data distribution on the machine
  181. before submitting tasks, which will thus guide StarPU toward an initial task
  182. distribution (since StarPU will try to avoid further transfers).
  183. This can be achieved by giving the function starpu_data_prefetch_on_node() the
  184. handle and the desired target memory node. The
  185. starpu_data_idle_prefetch_on_node() variant can be used to issue the transfer
  186. only when the bus is idle.
  187. Conversely, one can advise StarPU that some data will not be useful in the
  188. close future by calling starpu_data_wont_use(). StarPU will then write its value
  189. back to its home node, and evict it from GPUs when room is needed.
  190. \section PartitioningData Partitioning Data
  191. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  192. \code{.c}
  193. int vector[NX];
  194. starpu_data_handle_t handle;
  195. /* Declare data to StarPU */
  196. starpu_vector_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)vector,
  197. NX, sizeof(vector[0]));
  198. /* Partition the vector in PARTS sub-vectors */
  199. struct starpu_data_filter f =
  200. {
  201. .filter_func = starpu_vector_filter_block,
  202. .nchildren = PARTS
  203. };
  204. starpu_data_partition(handle, &f);
  205. \endcode
  206. The task submission then uses the function starpu_data_get_sub_data()
  207. to retrieve the sub-handles to be passed as tasks parameters.
  208. \code{.c}
  209. /* Submit a task on each sub-vector */
  210. for (i=0; i<starpu_data_get_nb_children(handle); i++)
  211. {
  212. /* Get subdata number i (there is only 1 dimension) */
  213. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 1, i);
  214. struct starpu_task *task = starpu_task_create();
  215. task->handles[0] = sub_handle;
  216. task->cl = &cl;
  217. task->synchronous = 1;
  218. task->cl_arg = &factor;
  219. task->cl_arg_size = sizeof(factor);
  220. starpu_task_submit(task);
  221. }
  222. \endcode
  223. Partitioning can be applied several times, see
  224. <c>examples/basic_examples/mult.c</c> and <c>examples/filters/</c>.
  225. Wherever the whole piece of data is already available, the partitioning will
  226. be done in-place, i.e. without allocating new buffers but just using pointers
  227. inside the existing copy. This is particularly important to be aware of when
  228. using OpenCL, where the kernel parameters are not pointers, but handles. The
  229. kernel thus needs to be also passed the offset within the OpenCL buffer:
  230. \code{.c}
  231. void opencl_func(void *buffers[], void *cl_arg)
  232. {
  233. cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
  234. unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);
  235. ...
  236. clSetKernelArg(kernel, 0, sizeof(vector), &vector);
  237. clSetKernelArg(kernel, 1, sizeof(offset), &offset);
  238. ...
  239. }
  240. \endcode
  241. And the kernel has to shift from the pointer passed by the OpenCL driver:
  242. \code{.c}
  243. __kernel void opencl_kernel(__global int *vector, unsigned offset)
  244. {
  245. block = (__global void *)block + offset;
  246. ...
  247. }
  248. \endcode
  249. StarPU provides various interfaces and filters for matrices, vectors, etc.,
  250. but applications can also write their own data interfaces and filters, see
  251. <c>examples/interface</c> and <c>examples/filters/custom_mf</c> for an example.
  252. \section AsynchronousPartitioning Asynchronous Partitioning
  253. The partitioning functions described in the previous section are synchronous:
  254. starpu_data_partition() and starpu_data_unpartition() both wait for all the tasks
  255. currently working on the data. This can be a bottleneck for the application.
  256. An asynchronous API also exists, it works only on handles with sequential
  257. consistency. The principle is to first plan the partitioning, which returns
  258. data handles of the partition, which are not functional yet. Along other task
  259. submission, one can submit the actual partitioning, and then use the handles
  260. of the partition. Before using the handle of the whole data, one has to submit
  261. the unpartitioning. <c>fmultiple_submit</c> is a complete example using this
  262. technique.
  263. In short, we first register a matrix and plan the partitioning:
  264. \code{.c}
  265. starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
  266. struct starpu_data_filter f_vert =
  267. {
  268. .filter_func = starpu_matrix_filter_block,
  269. .nchildren = PARTS
  270. };
  271. starpu_data_partition_plan(handle, &f_vert, vert_handle);
  272. \endcode
  273. starpu_data_partition_plan() returns the handles for the partition in <c>vert_handle</c>.
  274. One can submit tasks working on the main handle, but not yet on the <c>vert_handle</c>
  275. handles. Now we submit the partitioning:
  276. \code{.c}
  277. starpu_data_partition_submit(handle, PARTS, vert_handle);
  278. \endcode
  279. And now we can submit tasks working on <c>vert_handle</c> handles (and not on the main
  280. handle any more). Eventually we want to work on the main handle again, so we
  281. submit the unpartitioning:
  282. \code{.c}
  283. starpu_data_unpartition_submit(handle, PARTS, vert_handle, -1);
  284. \endcode
  285. And now we can submit tasks working on the main handle again.
  286. All this code is asynchronous, just submitting which tasks, partitioning and
  287. unpartitioning should be done at runtime.
  288. Planning several partitioning of the same data is also possible, one just has
  289. to submit unpartitioning (to get back to the initial handle) before submitting
  290. another partitioning.
  291. It is also possible to activate several partitioning at the same time, in
  292. read-only mode, by using starpu_data_partition_readonly_submit(). A complete
  293. example is available in <c>examples/filters/fmultiple_submit_readonly.c</c>.
  294. \section ManualPartitioning Manual Partitioning
  295. One can also handle partitioning by hand, by registering several views on the
  296. same piece of data. The idea is then to manage the coherency of the various
  297. views through the common buffer in the main memory.
  298. <c>fmultiple_manual</c> is a complete example using this technique.
  299. In short, we first register the same matrix several times:
  300. \code{.c}
  301. starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
  302. for (i = 0; i < PARTS; i++)
  303. starpu_matrix_data_register(&vert_handle[i], STARPU_MAIN_RAM, (uintptr_t)&matrix[0][i*(NX/PARTS)], NX, NX/PARTS, NY, sizeof(matrix[0][0]));
  304. \endcode
  305. Since StarPU is not aware that the two handles are actually pointing to the same
  306. data, we have a danger of inadvertently submitting tasks to both views, which
  307. will bring a mess since StarPU will not guarantee any coherency between the two
  308. views. To make sure we don't do this, we invalidate the view that we will not
  309. use:
  310. \code{.c}
  311. for (i = 0; i < PARTS; i++)
  312. starpu_data_invalidate(vert_handle[i]);
  313. \endcode
  314. Then we can safely work on <c>handle</c>.
  315. When we want to switch to the vertical slice view, all we need to do is bring
  316. coherency between them by running an empty task on the home node of the data:
  317. \code{.c}
  318. void empty(void *buffers[] STARPU_ATTRIBUTE_UNUSED, void *cl_arg STARPU_ATTRIBUTE_UNUSED)
  319. { }
  320. struct starpu_codelet cl_switch =
  321. {
  322. .cpu_funcs = {empty},
  323. .nbuffers = STARPU_VARIABLE_NBUFFERS,
  324. };
  325. ret = starpu_task_insert(&cl_switch, STARPU_RW, handle,
  326. STARPU_W, vert_handle[0],
  327. STARPU_W, vert_handle[1],
  328. 0);
  329. \endcode
  330. The execution of the <c>switch</c> task will get back the matrix data into the
  331. main memory, and thus the vertical slices will get the updated value there.
  332. Again, we prefer to make sure that we don't accidentally access the matrix through the whole-matrix handle:
  333. \code{.c}
  334. starpu_data_invalidate_submit(handle);
  335. \endcode
  336. And now we can start using vertical slices, etc.
  337. \section DataReduction Data Reduction
  338. In various cases, some piece of data is used to accumulate intermediate
  339. results. For instances, the dot product of a vector, maximum/minimum finding,
  340. the histogram of a photograph, etc. When these results are produced along the
  341. whole machine, it would not be efficient to accumulate them in only one place,
  342. incurring data transmission each and access concurrency.
  343. StarPU provides a mode ::STARPU_REDUX, which permits to optimize
  344. that case: it will allocate a buffer on each memory node, and accumulate
  345. intermediate results there. When the data is eventually accessed in the normal
  346. mode ::STARPU_R, StarPU will collect the intermediate results in just one
  347. buffer.
  348. For this to work, the user has to use the function
  349. starpu_data_set_reduction_methods() to declare how to initialize these
  350. buffers, and how to assemble partial results.
  351. For instance, <c>cg</c> uses that to optimize its dot product: it first defines
  352. the codelets for initialization and reduction:
  353. \code{.c}
  354. struct starpu_codelet bzero_variable_cl =
  355. {
  356. .cpu_funcs = { bzero_variable_cpu },
  357. .cpu_funcs_name = { "bzero_variable_cpu" },
  358. .cuda_funcs = { bzero_variable_cuda },
  359. .nbuffers = 1,
  360. }
  361. static void accumulate_variable_cpu(void *descr[], void *cl_arg)
  362. {
  363. double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
  364. double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
  365. *v_dst = *v_dst + *v_src;
  366. }
  367. static void accumulate_variable_cuda(void *descr[], void *cl_arg)
  368. {
  369. double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
  370. double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
  371. cublasaxpy(1, (double)1.0, v_src, 1, v_dst, 1);
  372. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  373. }
  374. struct starpu_codelet accumulate_variable_cl =
  375. {
  376. .cpu_funcs = { accumulate_variable_cpu },
  377. .cpu_funcs_name = { "accumulate_variable_cpu" },
  378. .cuda_funcs = { accumulate_variable_cuda },
  379. .nbuffers = 1,
  380. }
  381. \endcode
  382. and attaches them as reduction methods for its handle <c>dtq</c>:
  383. \code{.c}
  384. starpu_variable_data_register(&dtq_handle, -1, NULL, sizeof(type));
  385. starpu_data_set_reduction_methods(dtq_handle,
  386. &accumulate_variable_cl, &bzero_variable_cl);
  387. \endcode
  388. and <c>dtq_handle</c> can now be used in mode ::STARPU_REDUX for the
  389. dot products with partitioned vectors:
  390. \code{.c}
  391. for (b = 0; b < nblocks; b++)
  392. starpu_task_insert(&dot_kernel_cl,
  393. STARPU_REDUX, dtq_handle,
  394. STARPU_R, starpu_data_get_sub_data(v1, 1, b),
  395. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  396. 0);
  397. \endcode
  398. During registration, we have here provided <c>NULL</c>, i.e. there is
  399. no initial value to be taken into account during reduction. StarPU
  400. will thus only take into account the contributions from the tasks
  401. <c>dot_kernel_cl</c>. Also, it will not allocate any memory for
  402. <c>dtq_handle</c> before tasks <c>dot_kernel_cl</c> are ready to run.
  403. If another dot product has to be performed, one could unregister
  404. <c>dtq_handle</c>, and re-register it. But one can also call
  405. starpu_data_invalidate_submit() with the parameter <c>dtq_handle</c>,
  406. which will clear all data from the handle, thus resetting it back to
  407. the initial status <c>register(NULL)</c>.
  408. The example <c>cg</c> also uses reduction for the blocked gemv kernel,
  409. leading to yet more relaxed dependencies and more parallelism.
  410. ::STARPU_REDUX can also be passed to starpu_mpi_task_insert() in the MPI
  411. case. That will however not produce any MPI communication, but just pass
  412. ::STARPU_REDUX to the underlying starpu_task_insert(). It is up to the
  413. application to call starpu_mpi_redux_data(), which posts tasks that will
  414. reduce the partial results among MPI nodes into the MPI node which owns the
  415. data. For instance, some hypothetical application which collects partial results
  416. into data <c>res</c>, then uses it for other computation, before looping again
  417. with a new reduction:
  418. \code{.c}
  419. for (i = 0; i < 100; i++)
  420. {
  421. starpu_mpi_task_insert(MPI_COMM_WORLD, &init_res, STARPU_W, res, 0);
  422. starpu_mpi_task_insert(MPI_COMM_WORLD, &work, STARPU_RW, A,
  423. STARPU_R, B, STARPU_REDUX, res, 0);
  424. starpu_mpi_redux_data(MPI_COMM_WORLD, res);
  425. starpu_mpi_task_insert(MPI_COMM_WORLD, &work2, STARPU_RW, B, STARPU_R, res, 0);
  426. }
  427. \endcode
  428. \section DataCommute Commute Data Access
  429. By default, the implicit dependencies computed from data access use the
  430. sequential semantic. Notably, write accesses are always serialized in the order
  431. of submission. In some applicative cases, the write contributions can actually
  432. be performed in any order without affecting the eventual result. In that case
  433. it is useful to drop the strictly sequential semantic, to improve parallelism
  434. by allowing StarPU to reorder the write accesses. This can be done by using
  435. the ::STARPU_COMMUTE data access flag. Accesses without this flag will however
  436. properly be serialized against accesses with this flag. For instance:
  437. \code{.c}
  438. starpu_task_insert(&cl1,
  439. STARPU_R, h,
  440. STARPU_RW, handle,
  441. 0);
  442. starpu_task_insert(&cl2,
  443. STARPU_R, handle1,
  444. STARPU_RW|STARPU_COMMUTE, handle,
  445. 0);
  446. starpu_task_insert(&cl2,
  447. STARPU_R, handle2,
  448. STARPU_RW|STARPU_COMMUTE, handle,
  449. 0);
  450. starpu_task_insert(&cl3,
  451. STARPU_R, g,
  452. STARPU_RW, handle,
  453. 0);
  454. \endcode
  455. The two tasks running <c>cl2</c> will be able to commute: depending on whether the
  456. value of <c>handle1</c> or <c>handle2</c> becomes available first, the corresponding task
  457. running <c>cl2</c> will start first. The task running <c>cl1</c> will however always be run
  458. before them, and the task running <c>cl3</c> will always be run after them.
  459. If a lot of tasks use the commute access on the same set of data and a lot of
  460. them are ready at the same time, it may become interesting to use an arbiter,
  461. see \ref ConcurrentDataAccess.
  462. \section ConcurrentDataAccess Concurrent Data Accesses
  463. When several tasks are ready and will work on several data, StarPU is faced with
  464. the classical Dining Philosophers problem, and has to determine the order in
  465. which it will run the tasks.
  466. Data accesses usually use sequential ordering, so data accesses are usually
  467. already serialized, and thus by default StarPU uses the Dijkstra solution which
  468. scales very well in terms of overhead: tasks will just acquire data one by one
  469. by data handle pointer value order.
  470. When sequential ordering is disabled or the ::STARPU_COMMUTE flag is used, there
  471. may be a lot of concurrent accesses to the same data, and the Dijkstra solution
  472. gets only poor parallelism, typically in some pathological cases which do happen
  473. in various applications. In that case, one can use a data access arbiter, which
  474. implements the classical centralized solution for the Dining Philosophers
  475. problem. This is more expensive in terms of overhead since it is centralized,
  476. but it opportunistically gets a lot of parallelism. The centralization can also
  477. be avoided by using several arbiters, thus separating sets of data for which
  478. arbitration will be done. If a task accesses data from different arbiters, it
  479. will acquire them arbiter by arbiter, in arbiter pointer value order.
  480. See the <c>tests/datawizard/test_arbiter.cpp</c> example.
  481. Arbiters however do not support the ::STARPU_REDUX flag yet.
  482. \section TemporaryBuffers Temporary Buffers
  483. There are two kinds of temporary buffers: temporary data which just pass results
  484. from a task to another, and scratch data which are needed only internally by
  485. tasks.
  486. \subsection TemporaryData Temporary Data
  487. Data can sometimes be entirely produced by a task, and entirely consumed by
  488. another task, without the need for other parts of the application to access
  489. it. In such case, registration can be done without prior allocation, by using
  490. the special memory node number <c>-1</c>, and passing a zero pointer. StarPU will
  491. actually allocate memory only when the task creating the content gets scheduled,
  492. and destroy it on unregistration.
  493. In addition to that, it can be tedious for the application to have to unregister
  494. the data, since it will not use its content anyway. The unregistration can be
  495. done lazily by using the function starpu_data_unregister_submit(),
  496. which will record that no more tasks accessing the handle will be submitted, so
  497. that it can be freed as soon as the last task accessing it is over.
  498. The following code examplifies both points: it registers the temporary
  499. data, submits three tasks accessing it, and records the data for automatic
  500. unregistration.
  501. \code{.c}
  502. starpu_vector_data_register(&handle, -1, 0, n, sizeof(float));
  503. starpu_task_insert(&produce_data, STARPU_W, handle, 0);
  504. starpu_task_insert(&compute_data, STARPU_RW, handle, 0);
  505. starpu_task_insert(&summarize_data, STARPU_R, handle, STARPU_W, result_handle, 0);
  506. starpu_data_unregister_submit(handle);
  507. \endcode
  508. The application may also want to see the temporary data initialized
  509. on the fly before being used by the task. This can be done by using
  510. starpu_data_set_reduction_methods() to set an initialization codelet (no redux
  511. codelet is needed).
  512. \subsection ScratchData Scratch Data
  513. Some kernels sometimes need temporary data to achieve the computations, i.e. a
  514. workspace. The application could allocate it at the start of the codelet
  515. function, and free it at the end, but that would be costly. It could also
  516. allocate one buffer per worker (similarly to \ref HowToInitializeAComputationLibraryOnceForEachWorker),
  517. but that would
  518. make them systematic and permanent. A more optimized way is to use
  519. the data access mode ::STARPU_SCRATCH, as examplified below, which
  520. provides per-worker buffers without content consistency. The buffer is
  521. registered only once, using memory node <c>-1</c>, i.e. the application didn't allocate
  522. memory for it, and StarPU will allocate it on demand at task execution.
  523. \code{.c}
  524. starpu_vector_data_register(&workspace, -1, 0, sizeof(float));
  525. for (i = 0; i < N; i++)
  526. starpu_task_insert(&compute, STARPU_R, input[i],
  527. STARPU_SCRATCH, workspace, STARPU_W, output[i], 0);
  528. \endcode
  529. StarPU will make sure that the buffer is allocated before executing the task,
  530. and make this allocation per-worker: for CPU workers, notably, each worker has
  531. its own buffer. This means that each task submitted above will actually have its
  532. own workspace, which will actually be the same for all tasks running one after
  533. the other on the same worker. Also, if for instance memory becomes scarce,
  534. StarPU will notice that it can free such buffers easily, since the content does
  535. not matter.
  536. The example <c>examples/pi</c> uses scratches for some temporary buffer.
  537. \section TheMultiformatInterface The Multiformat Interface
  538. It may be interesting to represent the same piece of data using two different
  539. data structures: one that would only be used on CPUs, and one that would only
  540. be used on GPUs. This can be done by using the multiformat interface. StarPU
  541. will be able to convert data from one data structure to the other when needed.
  542. Note that the scheduler <c>dmda</c> is the only one optimized for this
  543. interface. The user must provide StarPU with conversion codelets:
  544. \snippet multiformat.c To be included. You should update doxygen if you see this text.
  545. Kernels can be written almost as for any other interface. Note that
  546. ::STARPU_MULTIFORMAT_GET_CPU_PTR shall only be used for CPU kernels. CUDA kernels
  547. must use ::STARPU_MULTIFORMAT_GET_CUDA_PTR, and OpenCL kernels must use
  548. ::STARPU_MULTIFORMAT_GET_OPENCL_PTR. ::STARPU_MULTIFORMAT_GET_NX may
  549. be used in any kind of kernel.
  550. \code{.c}
  551. static void
  552. multiformat_scal_cpu_func(void *buffers[], void *args)
  553. {
  554. struct point *aos;
  555. unsigned int n;
  556. aos = STARPU_MULTIFORMAT_GET_CPU_PTR(buffers[0]);
  557. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  558. ...
  559. }
  560. extern "C" void multiformat_scal_cuda_func(void *buffers[], void *_args)
  561. {
  562. unsigned int n;
  563. struct struct_of_arrays *soa;
  564. soa = (struct struct_of_arrays *) STARPU_MULTIFORMAT_GET_CUDA_PTR(buffers[0]);
  565. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  566. ...
  567. }
  568. \endcode
  569. A full example may be found in <c>examples/basic_examples/multiformat.c</c>.
  570. \section DefiningANewDataInterface Defining A New Data Interface
  571. Let's define a new data interface to manage complex numbers.
  572. \code{.c}
  573. /* interface for complex numbers */
  574. struct starpu_complex_interface
  575. {
  576. double *real;
  577. double *imaginary;
  578. int nx;
  579. };
  580. \endcode
  581. Registering such a data to StarPU is easily done using the function
  582. starpu_data_register(). The last
  583. parameter of the function, <c>interface_complex_ops</c>, will be
  584. described below.
  585. \code{.c}
  586. void starpu_complex_data_register(starpu_data_handle_t *handle,
  587. unsigned home_node, double *real, double *imaginary, int nx)
  588. {
  589. struct starpu_complex_interface complex =
  590. {
  591. .real = real,
  592. .imaginary = imaginary,
  593. .nx = nx
  594. };
  595. if (interface_complex_ops.interfaceid == STARPU_UNKNOWN_INTERFACE_ID)
  596. {
  597. interface_complex_ops.interfaceid = starpu_data_interface_get_next_id();
  598. }
  599. starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);
  600. }
  601. \endcode
  602. Different operations need to be defined for a data interface through
  603. the type starpu_data_interface_ops. We only define here the basic
  604. operations needed to run simple applications. The source code for the
  605. different functions can be found in the file
  606. <c>examples/interface/complex_interface.c</c>.
  607. \code{.c}
  608. static struct starpu_data_interface_ops interface_complex_ops =
  609. {
  610. .register_data_handle = complex_register_data_handle,
  611. .allocate_data_on_node = complex_allocate_data_on_node,
  612. .copy_methods = &complex_copy_methods,
  613. .get_size = complex_get_size,
  614. .footprint = complex_footprint,
  615. .interfaceid = STARPU_UNKNOWN_INTERFACE_ID,
  616. .interface_size = sizeof(struct starpu_complex_interface),
  617. };
  618. \endcode
  619. Functions need to be defined to access the different fields of the
  620. complex interface from a StarPU data handle.
  621. \code{.c}
  622. double *starpu_complex_get_real(starpu_data_handle_t handle)
  623. {
  624. struct starpu_complex_interface *complex_interface =
  625. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, STARPU_MAIN_RAM);
  626. return complex_interface->real;
  627. }
  628. double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
  629. int starpu_complex_get_nx(starpu_data_handle_t handle);
  630. \endcode
  631. Similar functions need to be defined to access the different fields of the
  632. complex interface from a <c>void *</c> pointer to be used within codelet
  633. implemetations.
  634. \snippet complex.c To be included. You should update doxygen if you see this text.
  635. Complex data interfaces can then be registered to StarPU.
  636. \code{.c}
  637. double real = 45.0;
  638. double imaginary = 12.0;
  639. starpu_complex_data_register(&handle1, STARPU_MAIN_RAM, &real, &imaginary, 1);
  640. starpu_task_insert(&cl_display, STARPU_R, handle1, 0);
  641. \endcode
  642. and used by codelets.
  643. \code{.c}
  644. void display_complex_codelet(void *descr[], __attribute__ ((unused)) void *_args)
  645. {
  646. int nx = STARPU_COMPLEX_GET_NX(descr[0]);
  647. double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
  648. double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
  649. int i;
  650. for(i=0 ; i<nx ; i++)
  651. {
  652. fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
  653. }
  654. }
  655. \endcode
  656. The whole code for this complex data interface is available in the
  657. directory <c>examples/interface/</c>.
  658. \section SpecifyingATargetNode Specifying A Target Node For Task Data
  659. When executing a task on a GPU for instance, StarPU would normally copy all the
  660. needed data for the tasks on the embedded memory of the GPU. It may however
  661. happen that the task kernel would rather have some of the datas kept in the
  662. main memory instead of copied in the GPU, a pivoting vector for instance.
  663. This can be achieved by setting the starpu_codelet::specific_nodes flag to
  664. <c>1</c>, and then fill the starpu_codelet::nodes array (or starpu_codelet::dyn_nodes when
  665. starpu_codelet::nbuffers is greater than \ref STARPU_NMAXBUFS) with the node numbers
  666. where data should be copied to, or <c>-1</c> to let StarPU copy it to the memory node
  667. where the task will be executed. For instance, with the following codelet:
  668. \code{.c}
  669. struct starpu_codelet cl =
  670. {
  671. .cuda_funcs = { kernel },
  672. .nbuffers = 2,
  673. .modes = {STARPU_RW, STARPU_RW},
  674. .specific_nodes = 1,
  675. .nodes = {STARPU_MAIN_RAM, -1},
  676. };
  677. \endcode
  678. the first data of the task will be kept in the main memory, while the second
  679. data will be copied to the CUDA GPU as usual.
  680. */