cholesky_tag.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2013 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include "cholesky.h"
  19. /*
  20. * Some useful functions
  21. */
  22. static struct starpu_task *create_task(starpu_tag_t id)
  23. {
  24. struct starpu_task *task = starpu_task_create();
  25. task->cl_arg = NULL;
  26. task->use_tag = 1;
  27. task->tag_id = id;
  28. return task;
  29. }
  30. /*
  31. * Create the codelets
  32. */
  33. static struct starpu_codelet cl11 =
  34. {
  35. .modes = { STARPU_RW },
  36. .cpu_funcs = {chol_cpu_codelet_update_u11, NULL},
  37. #ifdef STARPU_USE_CUDA
  38. .cuda_funcs = {chol_cublas_codelet_update_u11, NULL},
  39. #endif
  40. .nbuffers = 1,
  41. .model = &chol_model_11
  42. };
  43. static struct starpu_task * create_task_11(starpu_data_handle_t dataA, unsigned k)
  44. {
  45. /* FPRINTF(stdout, "task 11 k = %d TAG = %llx\n", k, (TAG11(k))); */
  46. struct starpu_task *task = create_task(TAG11(k));
  47. task->cl = &cl11;
  48. /* which sub-data is manipulated ? */
  49. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  50. /* this is an important task */
  51. if (!noprio)
  52. task->priority = STARPU_MAX_PRIO;
  53. /* enforce dependencies ... */
  54. if (k > 0)
  55. {
  56. starpu_tag_declare_deps(TAG11(k), 1, TAG22(k-1, k, k));
  57. }
  58. int n = starpu_matrix_get_nx(task->handles[0]);
  59. task->flops = FLOPS_SPOTRF(n);
  60. return task;
  61. }
  62. static struct starpu_codelet cl21 =
  63. {
  64. .modes = { STARPU_R, STARPU_RW },
  65. .cpu_funcs = {chol_cpu_codelet_update_u21, NULL},
  66. #ifdef STARPU_USE_CUDA
  67. .cuda_funcs = {chol_cublas_codelet_update_u21, NULL},
  68. #endif
  69. .nbuffers = 2,
  70. .model = &chol_model_21
  71. };
  72. static void create_task_21(starpu_data_handle_t dataA, unsigned k, unsigned j)
  73. {
  74. struct starpu_task *task = create_task(TAG21(k, j));
  75. task->cl = &cl21;
  76. /* which sub-data is manipulated ? */
  77. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  78. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  79. if (!noprio && (j == k+1))
  80. {
  81. task->priority = STARPU_MAX_PRIO;
  82. }
  83. /* enforce dependencies ... */
  84. if (k > 0)
  85. {
  86. starpu_tag_declare_deps(TAG21(k, j), 2, TAG11(k), TAG22(k-1, k, j));
  87. }
  88. else
  89. {
  90. starpu_tag_declare_deps(TAG21(k, j), 1, TAG11(k));
  91. }
  92. int n = starpu_matrix_get_nx(task->handles[0]);
  93. task->flops = FLOPS_STRSM(n, n);
  94. int ret = starpu_task_submit(task);
  95. if (STARPU_UNLIKELY(ret == -ENODEV))
  96. {
  97. FPRINTF(stderr, "No worker may execute this task\n");
  98. exit(0);
  99. }
  100. }
  101. static struct starpu_codelet cl22 =
  102. {
  103. .modes = { STARPU_R, STARPU_R, STARPU_RW },
  104. .cpu_funcs = {chol_cpu_codelet_update_u22, NULL},
  105. #ifdef STARPU_USE_CUDA
  106. .cuda_funcs = {chol_cublas_codelet_update_u22, NULL},
  107. #endif
  108. .nbuffers = 3,
  109. .model = &chol_model_22
  110. };
  111. static void create_task_22(starpu_data_handle_t dataA, unsigned k, unsigned i, unsigned j)
  112. {
  113. /* FPRINTF(stdout, "task 22 k,i,j = %d,%d,%d TAG = %llx\n", k,i,j, TAG22(k,i,j)); */
  114. struct starpu_task *task = create_task(TAG22(k, i, j));
  115. task->cl = &cl22;
  116. /* which sub-data is manipulated ? */
  117. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, i);
  118. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  119. task->handles[2] = starpu_data_get_sub_data(dataA, 2, i, j);
  120. if (!noprio && (i == k + 1) && (j == k +1) )
  121. {
  122. task->priority = STARPU_MAX_PRIO;
  123. }
  124. /* enforce dependencies ... */
  125. if (k > 0)
  126. {
  127. starpu_tag_declare_deps(TAG22(k, i, j), 3, TAG22(k-1, i, j), TAG21(k, i), TAG21(k, j));
  128. }
  129. else
  130. {
  131. starpu_tag_declare_deps(TAG22(k, i, j), 2, TAG21(k, i), TAG21(k, j));
  132. }
  133. int n = starpu_matrix_get_nx(task->handles[0]);
  134. task->flops = FLOPS_SGEMM(n, n, n);
  135. int ret = starpu_task_submit(task);
  136. if (STARPU_UNLIKELY(ret == -ENODEV))
  137. {
  138. FPRINTF(stderr, "No worker may execute this task\n");
  139. exit(0);
  140. }
  141. }
  142. /*
  143. * code to bootstrap the factorization
  144. * and construct the DAG
  145. */
  146. static void _cholesky(starpu_data_handle_t dataA, unsigned nblocks)
  147. {
  148. double start;
  149. double end;
  150. struct starpu_task *entry_task = NULL;
  151. /* create all the DAG nodes */
  152. unsigned i,j,k;
  153. start = starpu_timing_now();
  154. for (k = 0; k < nblocks; k++)
  155. {
  156. struct starpu_task *task = create_task_11(dataA, k);
  157. /* we defer the launch of the first task */
  158. if (k == 0)
  159. {
  160. entry_task = task;
  161. }
  162. else
  163. {
  164. int ret = starpu_task_submit(task);
  165. if (STARPU_UNLIKELY(ret == -ENODEV))
  166. {
  167. FPRINTF(stderr, "No worker may execute this task\n");
  168. exit(0);
  169. }
  170. }
  171. for (j = k+1; j<nblocks; j++)
  172. {
  173. create_task_21(dataA, k, j);
  174. for (i = k+1; i<nblocks; i++)
  175. {
  176. if (i <= j)
  177. create_task_22(dataA, k, i, j);
  178. }
  179. }
  180. }
  181. /* schedule the codelet */
  182. int ret = starpu_task_submit(entry_task);
  183. if (STARPU_UNLIKELY(ret == -ENODEV))
  184. {
  185. FPRINTF(stderr, "No worker may execute this task\n");
  186. exit(0);
  187. }
  188. /* stall the application until the end of computations */
  189. starpu_tag_wait(TAG11(nblocks-1));
  190. starpu_data_unpartition(dataA, STARPU_MAIN_RAM);
  191. end = starpu_timing_now();
  192. double timing = end - start;
  193. FPRINTF(stderr, "Computation took (in ms)\n");
  194. FPRINTF(stdout, "%2.2f\n", timing/1000);
  195. unsigned n = starpu_matrix_get_nx(dataA);
  196. double flop = (1.0f*n*n*n)/3.0f;
  197. FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  198. }
  199. static int initialize_system(float **A, unsigned dim, unsigned pinned)
  200. {
  201. int ret;
  202. ret = starpu_init(NULL);
  203. if (ret == -ENODEV)
  204. return 77;
  205. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  206. initialize_chol_model(&chol_model_11,11);
  207. initialize_chol_model(&chol_model_21,21);
  208. initialize_chol_model(&chol_model_22,22);
  209. starpu_cublas_init();
  210. #ifndef STARPU_SIMGRID
  211. if (pinned)
  212. {
  213. starpu_malloc((void **)A, (size_t)dim*dim*sizeof(float));
  214. }
  215. else
  216. {
  217. *A = malloc(dim*dim*sizeof(float));
  218. }
  219. #endif
  220. return 0;
  221. }
  222. static void cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  223. {
  224. starpu_data_handle_t dataA;
  225. /* monitor and partition the A matrix into blocks :
  226. * one block is now determined by 2 unsigned (i,j) */
  227. starpu_matrix_data_register(&dataA, STARPU_MAIN_RAM, (uintptr_t)matA, ld, size, size, sizeof(float));
  228. starpu_data_set_sequential_consistency_flag(dataA, 0);
  229. struct starpu_data_filter f =
  230. {
  231. .filter_func = starpu_matrix_filter_vertical_block,
  232. .nchildren = nblocks
  233. };
  234. struct starpu_data_filter f2 =
  235. {
  236. .filter_func = starpu_matrix_filter_block,
  237. .nchildren = nblocks
  238. };
  239. starpu_data_map_filters(dataA, 2, &f, &f2);
  240. _cholesky(dataA, nblocks);
  241. starpu_data_unregister(dataA);
  242. }
  243. static void shutdown_system(float **matA, unsigned pinned)
  244. {
  245. if (pinned)
  246. {
  247. starpu_free(*matA);
  248. }
  249. else
  250. {
  251. free(*matA);
  252. }
  253. starpu_cublas_shutdown();
  254. starpu_shutdown();
  255. }
  256. int main(int argc, char **argv)
  257. {
  258. /* create a simple definite positive symetric matrix example
  259. *
  260. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  261. * */
  262. parse_args(argc, argv);
  263. float *mat = NULL;
  264. int ret = initialize_system(&mat, size, pinned);
  265. if (ret) return ret;
  266. #ifndef STARPU_SIMGRID
  267. unsigned i,j;
  268. for (i = 0; i < size; i++)
  269. {
  270. for (j = 0; j < size; j++)
  271. {
  272. mat[j +i*size] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  273. /* mat[j +i*size] = ((i == j)?1.0f*size:0.0f); */
  274. }
  275. }
  276. #endif
  277. #ifdef CHECK_OUTPUT
  278. FPRINTF(stdout, "Input :\n");
  279. for (j = 0; j < size; j++)
  280. {
  281. for (i = 0; i < size; i++)
  282. {
  283. if (i <= j)
  284. {
  285. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  286. }
  287. else
  288. {
  289. FPRINTF(stdout, ".\t");
  290. }
  291. }
  292. FPRINTF(stdout, "\n");
  293. }
  294. #endif
  295. cholesky(mat, size, size, nblocks);
  296. #ifdef CHECK_OUTPUT
  297. FPRINTF(stdout, "Results :\n");
  298. for (j = 0; j < size; j++)
  299. {
  300. for (i = 0; i < size; i++)
  301. {
  302. if (i <= j)
  303. {
  304. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  305. }
  306. else
  307. {
  308. FPRINTF(stdout, ".\t");
  309. mat[j+i*size] = 0.0f; /* debug */
  310. }
  311. }
  312. FPRINTF(stdout, "\n");
  313. }
  314. FPRINTF(stderr, "compute explicit LLt ...\n");
  315. float *test_mat = malloc(size*size*sizeof(float));
  316. STARPU_ASSERT(test_mat);
  317. SSYRK("L", "N", size, size, 1.0f,
  318. mat, size, 0.0f, test_mat, size);
  319. FPRINTF(stderr, "comparing results ...\n");
  320. for (j = 0; j < size; j++)
  321. {
  322. for (i = 0; i < size; i++)
  323. {
  324. if (i <= j)
  325. {
  326. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size]);
  327. }
  328. else
  329. {
  330. FPRINTF(stdout, ".\t");
  331. }
  332. }
  333. FPRINTF(stdout, "\n");
  334. }
  335. free(test_mat);
  336. #endif
  337. shutdown_system(&mat, pinned);
  338. return 0;
  339. }