parallel_redux_homogeneous_tasks_data.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2016 Bérangère Subervie
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include <stdbool.h>
  17. #include <starpu.h>
  18. #include "../helper.h"
  19. /* Run a series of tasks with homogeneous execution time and redux data */
  20. #define TIME 0.010
  21. #ifdef STARPU_QUICK_CHECK
  22. #define TASK_COEFFICIENT 20
  23. #define MARGIN 0.20
  24. #else
  25. #define TASK_COEFFICIENT 100
  26. #define MARGIN 0.10
  27. #endif
  28. #define SECONDS_SCALE_COEFFICIENT_TIMING_NOW 1000000
  29. #define NB_FLOAT 4000000
  30. void wait_homogeneous(void *descr[], void *_args)
  31. {
  32. (void)descr;
  33. (void)_args;
  34. starpu_sleep(TIME);
  35. }
  36. double cost_function(struct starpu_task *t, struct starpu_perfmodel_arch *a, unsigned i)
  37. {
  38. (void)t; (void)a; (void)i;
  39. return TIME * 1000000;
  40. }
  41. static struct starpu_perfmodel perf_model =
  42. {
  43. .type = STARPU_PER_ARCH,
  44. .arch_cost_function = cost_function,
  45. };
  46. static struct starpu_codelet cl =
  47. {
  48. .cpu_funcs = { wait_homogeneous },
  49. .cuda_funcs = { wait_homogeneous },
  50. .opencl_funcs = { wait_homogeneous },
  51. .cpu_funcs_name = { "wait_homogeneous" },
  52. .nbuffers = 1,
  53. .modes = {STARPU_REDUX},
  54. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  55. .model = &perf_model,
  56. .name = "cl",
  57. };
  58. static struct starpu_perfmodel perf_model_init =
  59. {
  60. .type = STARPU_PER_ARCH,
  61. .arch_cost_function = cost_function,
  62. };
  63. static struct starpu_codelet cl_init =
  64. {
  65. .cpu_funcs = { wait_homogeneous },
  66. .cuda_funcs = { wait_homogeneous },
  67. .opencl_funcs = { wait_homogeneous },
  68. .cpu_funcs_name = { "wait_homogeneous" },
  69. .nbuffers = 1,
  70. .modes = {STARPU_RW},
  71. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  72. .model = &perf_model_init,
  73. .name = "init",
  74. };
  75. static struct starpu_perfmodel perf_model_redux =
  76. {
  77. .type = STARPU_PER_ARCH,
  78. .arch_cost_function = cost_function,
  79. };
  80. static struct starpu_codelet cl_redux =
  81. {
  82. .cpu_funcs = { wait_homogeneous },
  83. .cuda_funcs = { wait_homogeneous },
  84. .opencl_funcs = { wait_homogeneous },
  85. .cpu_funcs_name = { "wait_homogeneous" },
  86. .nbuffers = 2,
  87. .modes = {STARPU_RW, STARPU_R},
  88. .flags = STARPU_CODELET_SIMGRID_EXECUTE,
  89. .model = &perf_model_redux,
  90. .name = "redux",
  91. };
  92. int main(int argc, char *argv[])
  93. {
  94. int ret;
  95. ret = starpu_initialize(NULL, &argc, &argv);
  96. if (ret == -ENODEV) return STARPU_TEST_SKIPPED;
  97. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  98. unsigned nb_tasks, nb_workers;
  99. double begin_time, end_time, time_m, time_s, speed_up, expected_speed_up, percentage_expected_speed_up;
  100. bool check, check_sup;
  101. nb_workers = starpu_worker_get_count_by_type(STARPU_CPU_WORKER) + starpu_worker_get_count_by_type(STARPU_CUDA_WORKER) + starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER);
  102. nb_tasks = nb_workers*TASK_COEFFICIENT;
  103. /* We consider a vector of float that is initialized just as any of C
  104. * data */
  105. float *vector;
  106. starpu_data_handle_t vector_handle;
  107. unsigned i;
  108. vector = calloc(NB_FLOAT, sizeof(float));
  109. #ifndef STARPU_SIMGRID
  110. for (i = 0; i < NB_FLOAT; i++)
  111. vector[i] = (i+1.0f);
  112. #endif
  113. /* Tell StaPU to associate the "vector" vector with the "vector_handle"
  114. * identifier. When a task needs to access a piece of data, it should
  115. * refer to the handle that is associated to it.
  116. * In the case of the "vector" data interface:
  117. * - the first argument of the registration method is a pointer to the
  118. * handle that should describe the data
  119. * - the second argument is the memory node where the data (ie. "vector")
  120. * resides initially: STARPU_MAIN_RAM stands for an address in main memory, as
  121. * opposed to an adress on a GPU for instance.
  122. * - the third argument is the adress of the vector in RAM
  123. * - the fourth argument is the number of elements in the vector
  124. * - the fifth argument is the size of each element.
  125. */
  126. starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NB_FLOAT, sizeof(vector[0]));
  127. starpu_data_set_reduction_methods(vector_handle, &cl_redux, &cl_init);
  128. begin_time = starpu_timing_now();
  129. /*execution des tasks*/
  130. for (i=0; i<nb_tasks; i++)
  131. starpu_task_insert(&cl, STARPU_REDUX, vector_handle, 0);
  132. starpu_data_wont_use(vector_handle);
  133. starpu_task_wait_for_all();
  134. end_time = starpu_timing_now();
  135. starpu_data_unregister(vector_handle);
  136. /*on determine si le temps mesure est satisfaisant ou pas*/
  137. time_m = (end_time - begin_time)/SECONDS_SCALE_COEFFICIENT_TIMING_NOW; //pour ramener en secondes
  138. time_s = nb_tasks * TIME;
  139. speed_up = time_s/time_m;
  140. expected_speed_up = nb_workers;
  141. percentage_expected_speed_up = 100 * (speed_up/expected_speed_up);
  142. check = speed_up >= ((1 - MARGIN) * expected_speed_up);
  143. check_sup = speed_up <= ((1 + MARGIN) * expected_speed_up);
  144. printf("measured time = %f seconds\nsequential time = %f seconds\nspeed up = %f\nnumber of workers = %u\nnumber of tasks = %u\nexpected speed up = %f\npercentage of expected speed up %.2f%%\n", time_m, time_s, speed_up, nb_workers, nb_tasks, expected_speed_up, percentage_expected_speed_up);
  145. starpu_shutdown();
  146. free(vector);
  147. //test reussi ou test echoue
  148. if (check && check_sup)
  149. {
  150. return EXIT_SUCCESS;
  151. }
  152. else
  153. {
  154. return EXIT_FAILURE;
  155. }
  156. }