| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 | ################### Performance Model Version45##################### COMBs# number of combinations9##################### COMB_0# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)0##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cpu0_impl0 (Comb0)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	2.069576e+04   	7.440388e+01   	4.346110e+05   	8.994720e+09   	21cea37d6d	409600         	1.097392e+07   	1.068290e+03   	2.074934e+01   	3.098041e+04   	3.310855e+07   	29afdd228b	1638400        	8.758624e+07   	6.632886e+03   	6.634864e+01   	1.392906e+05   	9.239911e+08   	21##################### COMB_6# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 7##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda7_impl0 (Comb6)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	5.998499e+04   	6.600211e+03   	5.998499e+05   	3.641761e+10   	10cea37d6d	409600         	1.097392e+07   	1.500406e+04   	5.740284e+02   	1.500406e+05   	2.254514e+09   	10afdd228b	1638400        	8.758624e+07   	3.368249e+04   	5.947857e+03   	3.368249e+05   	1.169887e+10   	10##################### COMB_8# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 5##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda5_impl0 (Comb8)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	5.745646e+04   	7.363450e+03   	5.745646e+05   	3.355466e+10   	10cea37d6d	409600         	1.097392e+07   	1.559370e+04   	1.137871e+03   	1.559370e+05   	2.444583e+09   	10afdd228b	1638400        	8.758624e+07   	3.216379e+04   	4.954206e+03   	3.216379e+05   	1.059054e+10   	10##################### COMB_5# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 6##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda6_impl0 (Comb5)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	5.761859e+04   	8.603827e+03   	5.761859e+05   	3.393928e+10   	10cea37d6d	409600         	1.097392e+07   	1.498399e+04   	7.885417e+02   	1.498399e+05   	2.251416e+09   	10afdd228b	1638400        	8.758624e+07   	3.033086e+04   	2.968298e+03   	3.033086e+05   	9.287718e+09   	10##################### COMB_7# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 4##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda4_impl0 (Comb7)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	5.207197e+04   	2.780602e+03   	5.207197e+05   	2.719222e+10   	10cea37d6d	409600         	1.097392e+07   	1.609271e+04   	2.681035e+03   	1.609271e+05   	2.661633e+09   	10afdd228b	1638400        	8.758624e+07   	3.107603e+04   	1.620445e+03   	3.107603e+05   	9.683455e+09   	10##################### COMB_1# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 0##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda0_impl0 (Comb1)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	5.062446e+04   	2.429137e+03   	5.062446e+05   	2.568736e+10   	10cea37d6d	409600         	1.097392e+07   	1.506158e+04   	8.561331e+02   	1.506158e+05   	2.275840e+09   	10afdd228b	1638400        	8.758624e+07   	3.034398e+04   	4.027845e+03   	3.034398e+05   	9.369809e+09   	10##################### COMB_4# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 1##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda1_impl0 (Comb4)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	5.174953e+04   	6.183695e+03   	5.174953e+05   	2.716252e+10   	10cea37d6d	409600         	1.097392e+07   	1.518996e+04   	9.403764e+02   	1.518996e+05   	2.316193e+09   	10afdd228b	1638400        	8.758624e+07   	3.100983e+04   	5.124047e+03   	3.100983e+05   	9.878653e+09   	10##################### COMB_2# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 3##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda3_impl0 (Comb2)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		n617e5fe6	3686400        	2.953730e+08   	5.475211e+04   	6.512121e+03   	5.475211e+05   	3.040202e+10   	10cea37d6d	409600         	1.097392e+07   	1.504708e+04   	5.064339e+02   	1.504708e+05   	2.266711e+09   	10afdd228b	1638400        	8.758624e+07   	2.918927e+04   	4.035680e+03   	2.918927e+05   	8.683004e+09   	10##################### COMB_3# number of types devices1##################### DEV_0# device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)1##################### DEV_0# device id 2##################### DEV_0# number of cores 1########### number of implementations1###### Model for cuda2_impl0 (Comb3)# number of entries3# sumlnx	sumlnx2		sumlny		sumlnxlny	alpha		beta		n	minx		maxx0.000000e+00   	0.000000e+00   	0.000000e+00   	0.000000e+00   	nan            	nan            	0	0              	0              # a		b		cnan            	nan            	nan            # not multiple-regression-base0# hash		size		flops		mean (us)	dev (us)	sum		sum2		ncea37d6d	409600         	1.097392e+07   	1.467875e+04   	2.659893e+02   	1.467875e+05   	2.155366e+09   	10afdd228b	1638400        	8.758624e+07   	3.186232e+04   	5.396938e+03   	3.186232e+05   	1.044334e+10   	10617e5fe6	3686400        	2.953730e+08   	5.896762e+04   	1.233845e+04   	5.896762e+05   	3.629418e+10   	10
 |