| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691 | /* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010-2020  Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. *//* * Standard BLAS kernels used by CG */#include "cg.h"#include <math.h>#include <limits.h>#ifdef STARPU_USE_CUDA#include <starpu_cublas_v2.h>static const TYPE gp1 = 1.0;static const TYPE gm1 = -1.0;#endif#if 0static void print_vector_from_descr(unsigned nx, TYPE *v){	unsigned i;	for (i = 0; i < nx; i++)	{		fprintf(stderr, "%2.2e ", v[i]);	}	fprintf(stderr, "\n");}static void print_matrix_from_descr(unsigned nx, unsigned ny, unsigned ld, TYPE *mat){	unsigned i, j;	for (j = 0; j < nx; j++)	{		for (i = 0; i < ny; i++)		{			fprintf(stderr, "%2.2e ", mat[j+i*ld]);		}		fprintf(stderr, "\n");	}}#endifstatic int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl){	(void)task;	(void)nimpl;	enum starpu_worker_archtype type = starpu_worker_get_type(workerid);	if (type == STARPU_CPU_WORKER || type == STARPU_OPENCL_WORKER || type == STARPU_MIC_WORKER)		return 1;#ifdef STARPU_USE_CUDA#ifdef STARPU_SIMGRID	/* We don't know, let's assume it can */	return 1;#else	/* Cuda device */	const struct cudaDeviceProp *props;	props = starpu_cuda_get_device_properties(workerid);	if (props->major >= 2 || props->minor >= 3)		/* At least compute capability 1.3, supports doubles */		return 1;#endif#endif	/* Old card, does not support doubles */	return 0;}/* *	Reduction accumulation methods */#ifdef STARPU_USE_CUDAstatic void accumulate_variable_cuda(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);	TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);	cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(), 1, &gp1, v_src, 1, v_dst, 1);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);}#endifvoid accumulate_variable_cpu(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);	TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);	*v_dst = *v_dst + *v_src;}static struct starpu_perfmodel accumulate_variable_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "accumulate_variable"};struct starpu_codelet accumulate_variable_cl ={	.can_execute = can_execute,	.cpu_funcs = {accumulate_variable_cpu},	.cpu_funcs_name = {"accumulate_variable_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {accumulate_variable_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.modes = {STARPU_RW, STARPU_R},	.nbuffers = 2,	.model = &accumulate_variable_model};#ifdef STARPU_USE_CUDAstatic void accumulate_vector_cuda(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(), n, &gp1, v_src, 1, v_dst, 1);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);}#endifvoid accumulate_vector_cpu(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	AXPY(n, (TYPE)1.0, v_src, 1, v_dst, 1);}static struct starpu_perfmodel accumulate_vector_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "accumulate_vector"};struct starpu_codelet accumulate_vector_cl ={	.can_execute = can_execute,	.cpu_funcs = {accumulate_vector_cpu},	.cpu_funcs_name = {"accumulate_vector_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {accumulate_vector_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.modes = {STARPU_RW, STARPU_R},	.nbuffers = 2,	.model = &accumulate_vector_model};/* *	Reduction initialization methods */#ifdef STARPU_USE_CUDAextern void zero_vector(TYPE *x, unsigned nelems);static void bzero_variable_cuda(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);	size_t size = STARPU_VARIABLE_GET_ELEMSIZE(descr[0]);	cudaMemsetAsync(v, 0, size, starpu_cuda_get_local_stream());}#endifvoid bzero_variable_cpu(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);	*v = (TYPE)0.0;}static struct starpu_perfmodel bzero_variable_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "bzero_variable"};struct starpu_codelet bzero_variable_cl ={	.can_execute = can_execute,	.cpu_funcs = {bzero_variable_cpu},	.cpu_funcs_name = {"bzero_variable_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {bzero_variable_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.modes = {STARPU_W},	.nbuffers = 1,	.model = &bzero_variable_model};#ifdef STARPU_USE_CUDAstatic void bzero_vector_cuda(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	size_t elemsize = STARPU_VECTOR_GET_ELEMSIZE(descr[0]);	cudaMemsetAsync(v, 0, n * elemsize, starpu_cuda_get_local_stream());}#endifvoid bzero_vector_cpu(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	memset(v, 0, n*sizeof(TYPE));}static struct starpu_perfmodel bzero_vector_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "bzero_vector"};struct starpu_codelet bzero_vector_cl ={	.can_execute = can_execute,	.cpu_funcs = {bzero_vector_cpu},	.cpu_funcs_name = {"bzero_vector_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {bzero_vector_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.modes = {STARPU_W},	.nbuffers = 1,	.model = &bzero_vector_model};/* *	DOT kernel : s = dot(v1, v2) */#ifdef STARPU_USE_CUDAstatic void dot_kernel_cuda(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);	unsigned n = STARPU_VECTOR_GET_NX(descr[1]);	cublasHandle_t handle = starpu_cublas_get_local_handle();	cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_DEVICE);	cublasStatus_t status = cublasdot(handle,		n, v1, 1, v2, 1, dot);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);	cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_HOST);}#endifvoid dot_kernel_cpu(void *descr[], void *cl_arg){	(void)cl_arg;	TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);	unsigned n = STARPU_VECTOR_GET_NX(descr[1]);	TYPE local_dot;	/* Note that we explicitely cast the result of the DOT kernel because	 * some BLAS library will return a double for sdot for instance. */	local_dot = (TYPE)DOT(n, v1, 1, v2, 1);	*dot = *dot + local_dot;}static struct starpu_perfmodel dot_kernel_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "dot_kernel"};static struct starpu_codelet dot_kernel_cl ={	.can_execute = can_execute,	.cpu_funcs = {dot_kernel_cpu},	.cpu_funcs_name = {"dot_kernel_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {dot_kernel_cuda},#endif	.cuda_flags = {STARPU_CUDA_ASYNC},	.nbuffers = 3,	.model = &dot_kernel_model};int dot_kernel(starpu_data_handle_t v1,	       starpu_data_handle_t v2,	       starpu_data_handle_t s,	       unsigned nblocks,	       int use_reduction){	int ret;	/* Blank the accumulation variable */	if (use_reduction)		starpu_data_invalidate_submit(s);	else	{		ret = starpu_task_insert(&bzero_variable_cl, STARPU_W, s, 0);		if (ret == -ENODEV) return ret;		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");	}	unsigned b;	for (b = 0; b < nblocks; b++)	{		ret = starpu_task_insert(&dot_kernel_cl,					 use_reduction?STARPU_REDUX:STARPU_RW, s,					 STARPU_R, starpu_data_get_sub_data(v1, 1, b),					 STARPU_R, starpu_data_get_sub_data(v2, 1, b),					 STARPU_TAG_ONLY, (starpu_tag_t) b,					 0);		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");	}	return 0;}/* *	SCAL kernel : v1 = p1 v1 */#ifdef STARPU_USE_CUDAstatic void scal_kernel_cuda(void *descr[], void *cl_arg){	TYPE p1;	starpu_codelet_unpack_args(cl_arg, &p1);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	/* v1 = p1 v1 */	TYPE alpha = p1;	cublasStatus_t status = cublasscal(starpu_cublas_get_local_handle(), n, &alpha, v1, 1);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);}#endifvoid scal_kernel_cpu(void *descr[], void *cl_arg){	TYPE alpha;	starpu_codelet_unpack_args(cl_arg, &alpha);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	/* v1 = alpha v1 */	SCAL(n, alpha, v1, 1);}static struct starpu_perfmodel scal_kernel_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "scal_kernel"};static struct starpu_codelet scal_kernel_cl ={	.can_execute = can_execute,	.cpu_funcs = {scal_kernel_cpu},	.cpu_funcs_name = {"scal_kernel_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {scal_kernel_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.nbuffers = 1,	.model = &scal_kernel_model};/* *	GEMV kernel : v1 = p1 * v1 + p2 * M v2 */#ifdef STARPU_USE_CUDAstatic void gemv_kernel_cuda(void *descr[], void *cl_arg){	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);	TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);	unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);	unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);	unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);	TYPE alpha, beta;	starpu_codelet_unpack_args(cl_arg, &beta, &alpha);	/* Compute v1 = alpha M v2 + beta v1 */	cublasStatus_t status = cublasgemv(starpu_cublas_get_local_handle(),			CUBLAS_OP_N, nx, ny, &alpha, M, ld, v2, 1, &beta, v1, 1);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);}#endifvoid gemv_kernel_cpu(void *descr[], void *cl_arg){	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);	TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);	unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);	unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);	unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);	TYPE alpha, beta;	starpu_codelet_unpack_args(cl_arg, &beta, &alpha);	int worker_size = starpu_combined_worker_get_size();	if (worker_size > 1)	{		/* Parallel CPU task */		unsigned rank = starpu_combined_worker_get_rank();		unsigned block_size = (ny + worker_size - 1)/worker_size;		unsigned new_nx = STARPU_MIN(nx, block_size*(rank+1)) - block_size*rank;		nx = new_nx;		v1 = &v1[block_size*rank];		M = &M[block_size*rank];	}	/* Compute v1 = alpha M v2 + beta v1 */	GEMV("N", nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);}static struct starpu_perfmodel gemv_kernel_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "gemv_kernel"};static struct starpu_codelet gemv_kernel_cl ={	.can_execute = can_execute,	.type = STARPU_SPMD,	.max_parallelism = INT_MAX,	.cpu_funcs = {gemv_kernel_cpu},	.cpu_funcs_name = {"gemv_kernel_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {gemv_kernel_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.nbuffers = 3,	.model = &gemv_kernel_model};int gemv_kernel(starpu_data_handle_t v1,		starpu_data_handle_t matrix,		starpu_data_handle_t v2,		TYPE p1, TYPE p2,		unsigned nblocks,		int use_reduction){	unsigned b1, b2;	int ret;	for (b2 = 0; b2 < nblocks; b2++)	{		ret = starpu_task_insert(&scal_kernel_cl,					 STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),					 STARPU_VALUE, &p1, sizeof(p1),					 STARPU_TAG_ONLY, (starpu_tag_t) b2,					 0);		if (ret == -ENODEV) return ret;		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");	}	for (b2 = 0; b2 < nblocks; b2++)	{		for (b1 = 0; b1 < nblocks; b1++)		{			TYPE one = 1.0;			ret = starpu_task_insert(&gemv_kernel_cl,						 use_reduction?STARPU_REDUX:STARPU_RW,	starpu_data_get_sub_data(v1, 1, b2),						 STARPU_R,	starpu_data_get_sub_data(matrix, 2, b2, b1),						 STARPU_R,	starpu_data_get_sub_data(v2, 1, b1),						 STARPU_VALUE,	&one,	sizeof(one),						 STARPU_VALUE,	&p2,	sizeof(p2),						 STARPU_TAG_ONLY, ((starpu_tag_t)b2) * nblocks + b1,						 0);			STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");		}	}	return 0;}/* *	AXPY + SCAL kernel : v1 = p1 * v1 + p2 * v2 */#ifdef STARPU_USE_CUDAstatic void scal_axpy_kernel_cuda(void *descr[], void *cl_arg){	TYPE p1, p2;	starpu_codelet_unpack_args(cl_arg, &p1, &p2);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	/* Compute v1 = p1 * v1 + p2 * v2.	 *	v1 = p1 v1	 *	v1 = v1 + p2 v2	 */	cublasStatus_t status;	status = cublasscal(starpu_cublas_get_local_handle(), n, &p1, v1, 1);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);	status = cublasaxpy(starpu_cublas_get_local_handle(), n, &p2, v2, 1, v1, 1);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);}#endifvoid scal_axpy_kernel_cpu(void *descr[], void *cl_arg){	TYPE p1, p2;	starpu_codelet_unpack_args(cl_arg, &p1, &p2);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);	/* Compute v1 = p1 * v1 + p2 * v2.	 *	v1 = p1 v1	 *	v1 = v1 + p2 v2	 */	SCAL(nx, p1, v1, 1);	AXPY(nx, p2, v2, 1, v1, 1);}static struct starpu_perfmodel scal_axpy_kernel_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "scal_axpy_kernel"};static struct starpu_codelet scal_axpy_kernel_cl ={	.can_execute = can_execute,	.cpu_funcs = {scal_axpy_kernel_cpu},	.cpu_funcs_name = {"scal_axpy_kernel_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {scal_axpy_kernel_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.nbuffers = 2,	.model = &scal_axpy_kernel_model};int scal_axpy_kernel(starpu_data_handle_t v1, TYPE p1,		     starpu_data_handle_t v2, TYPE p2,		     unsigned nblocks){	unsigned b;	for (b = 0; b < nblocks; b++)	{		int ret;		ret = starpu_task_insert(&scal_axpy_kernel_cl,					 STARPU_RW, starpu_data_get_sub_data(v1, 1, b),					 STARPU_R,  starpu_data_get_sub_data(v2, 1, b),					 STARPU_VALUE, &p1, sizeof(p1),					 STARPU_VALUE, &p2, sizeof(p2),					 STARPU_TAG_ONLY, (starpu_tag_t) b,					 0);		if (ret == -ENODEV) return ret;		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");	}	return 0;}/* *	AXPY kernel : v1 = v1 + p1 * v2 */#ifdef STARPU_USE_CUDAstatic void axpy_kernel_cuda(void *descr[], void *cl_arg){	TYPE p1;	starpu_codelet_unpack_args(cl_arg, &p1);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	unsigned n = STARPU_VECTOR_GET_NX(descr[0]);	/* Compute v1 = v1 + p1 * v2.	 */	cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(),			n, &p1, v2, 1, v1, 1);	if (status != CUBLAS_STATUS_SUCCESS)		STARPU_CUBLAS_REPORT_ERROR(status);}#endifvoid axpy_kernel_cpu(void *descr[], void *cl_arg){	TYPE p1;	starpu_codelet_unpack_args(cl_arg, &p1);	TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);	TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);	unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);	/* Compute v1 = p1 * v1 + p2 * v2.	 */	AXPY(nx, p1, v2, 1, v1, 1);}static struct starpu_perfmodel axpy_kernel_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "axpy_kernel"};static struct starpu_codelet axpy_kernel_cl ={	.can_execute = can_execute,	.cpu_funcs = {axpy_kernel_cpu},	.cpu_funcs_name = {"axpy_kernel_cpu"},#ifdef STARPU_USE_CUDA	.cuda_funcs = {axpy_kernel_cuda},	.cuda_flags = {STARPU_CUDA_ASYNC},#endif	.nbuffers = 2,	.model = &axpy_kernel_model};int axpy_kernel(starpu_data_handle_t v1,		starpu_data_handle_t v2, TYPE p1,		unsigned nblocks){	unsigned b;	for (b = 0; b < nblocks; b++)	{		int ret;		ret = starpu_task_insert(&axpy_kernel_cl,					 STARPU_RW, starpu_data_get_sub_data(v1, 1, b),					 STARPU_R,  starpu_data_get_sub_data(v2, 1, b),					 STARPU_VALUE, &p1, sizeof(p1),					 STARPU_TAG_ONLY, (starpu_tag_t) b,					 0);		if (ret == -ENODEV) return ret;		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");	}	return 0;}int copy_handle(starpu_data_handle_t dst, starpu_data_handle_t src, unsigned nblocks){	unsigned b;	for (b = 0; b < nblocks; b++)		starpu_data_cpy(starpu_data_get_sub_data(dst, 1, b), starpu_data_get_sub_data(src, 1, b), 1, NULL, NULL);	return 0;}
 |