| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419 | 
							- /* dtgevc.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static logical c_true = TRUE_;
 
- static integer c__2 = 2;
 
- static doublereal c_b34 = 1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b36 = 0.;
 
- static logical c_false = FALSE_;
 
- /* Subroutine */ int _starpu_dtgevc_(char *side, char *howmny, logical *select, 
 
- 	integer *n, doublereal *s, integer *lds, doublereal *p, integer *ldp, 
 
- 	doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer 
 
- 	*mm, integer *m, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1, 
 
- 	    vr_offset, i__1, i__2, i__3, i__4, i__5;
 
-     doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 
-     /* Local variables */
 
-     integer i__, j, ja, jc, je, na, im, jr, jw, nw;
 
-     doublereal big;
 
-     logical lsa, lsb;
 
-     doublereal ulp, sum[4]	/* was [2][2] */;
 
-     integer ibeg, ieig, iend;
 
-     doublereal dmin__, temp, xmax, sump[4]	/* was [2][2] */, sums[4]	
 
- 	    /* was [2][2] */;
 
-     extern /* Subroutine */ int _starpu_dlag2_(doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, doublereal *);
 
-     doublereal cim2a, cim2b, cre2a, cre2b, temp2, bdiag[2], acoef, scale;
 
-     logical ilall;
 
-     integer iside;
 
-     doublereal sbeta;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     logical il2by2;
 
-     integer iinfo;
 
-     doublereal small;
 
-     logical compl;
 
-     doublereal anorm, bnorm;
 
-     logical compr;
 
-     extern /* Subroutine */ int _starpu_dlaln2_(logical *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	     doublereal *, doublereal *, integer *, doublereal *, doublereal *
 
- , doublereal *, integer *, doublereal *, doublereal *, integer *);
 
-     doublereal temp2i;
 
-     extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *);
 
-     doublereal temp2r;
 
-     logical ilabad, ilbbad;
 
-     doublereal acoefa, bcoefa, cimaga, cimagb;
 
-     logical ilback;
 
-     doublereal bcoefi, ascale, bscale, creala, crealb;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal bcoefr, salfar, safmin;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     doublereal xscale, bignum;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     logical ilcomp, ilcplx;
 
-     integer ihwmny;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTGEVC computes some or all of the right and/or left eigenvectors of */
 
- /*  a pair of real matrices (S,P), where S is a quasi-triangular matrix */
 
- /*  and P is upper triangular.  Matrix pairs of this type are produced by */
 
- /*  the generalized Schur factorization of a matrix pair (A,B): */
 
- /*     A = Q*S*Z**T,  B = Q*P*Z**T */
 
- /*  as computed by DGGHRD + DHGEQZ. */
 
- /*  The right eigenvector x and the left eigenvector y of (S,P) */
 
- /*  corresponding to an eigenvalue w are defined by: */
 
- /*     S*x = w*P*x,  (y**H)*S = w*(y**H)*P, */
 
- /*  where y**H denotes the conjugate tranpose of y. */
 
- /*  The eigenvalues are not input to this routine, but are computed */
 
- /*  directly from the diagonal blocks of S and P. */
 
- /*  This routine returns the matrices X and/or Y of right and left */
 
- /*  eigenvectors of (S,P), or the products Z*X and/or Q*Y, */
 
- /*  where Z and Q are input matrices. */
 
- /*  If Q and Z are the orthogonal factors from the generalized Schur */
 
- /*  factorization of a matrix pair (A,B), then Z*X and Q*Y */
 
- /*  are the matrices of right and left eigenvectors of (A,B). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  SIDE    (input) CHARACTER*1 */
 
- /*          = 'R': compute right eigenvectors only; */
 
- /*          = 'L': compute left eigenvectors only; */
 
- /*          = 'B': compute both right and left eigenvectors. */
 
- /*  HOWMNY  (input) CHARACTER*1 */
 
- /*          = 'A': compute all right and/or left eigenvectors; */
 
- /*          = 'B': compute all right and/or left eigenvectors, */
 
- /*                 backtransformed by the matrices in VR and/or VL; */
 
- /*          = 'S': compute selected right and/or left eigenvectors, */
 
- /*                 specified by the logical array SELECT. */
 
- /*  SELECT  (input) LOGICAL array, dimension (N) */
 
- /*          If HOWMNY='S', SELECT specifies the eigenvectors to be */
 
- /*          computed.  If w(j) is a real eigenvalue, the corresponding */
 
- /*          real eigenvector is computed if SELECT(j) is .TRUE.. */
 
- /*          If w(j) and w(j+1) are the real and imaginary parts of a */
 
- /*          complex eigenvalue, the corresponding complex eigenvector */
 
- /*          is computed if either SELECT(j) or SELECT(j+1) is .TRUE., */
 
- /*          and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is */
 
- /*          set to .FALSE.. */
 
- /*          Not referenced if HOWMNY = 'A' or 'B'. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices S and P.  N >= 0. */
 
- /*  S       (input) DOUBLE PRECISION array, dimension (LDS,N) */
 
- /*          The upper quasi-triangular matrix S from a generalized Schur */
 
- /*          factorization, as computed by DHGEQZ. */
 
- /*  LDS     (input) INTEGER */
 
- /*          The leading dimension of array S.  LDS >= max(1,N). */
 
- /*  P       (input) DOUBLE PRECISION array, dimension (LDP,N) */
 
- /*          The upper triangular matrix P from a generalized Schur */
 
- /*          factorization, as computed by DHGEQZ. */
 
- /*          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks */
 
- /*          of S must be in positive diagonal form. */
 
- /*  LDP     (input) INTEGER */
 
- /*          The leading dimension of array P.  LDP >= max(1,N). */
 
- /*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) */
 
- /*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
 
- /*          contain an N-by-N matrix Q (usually the orthogonal matrix Q */
 
- /*          of left Schur vectors returned by DHGEQZ). */
 
- /*          On exit, if SIDE = 'L' or 'B', VL contains: */
 
- /*          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */
 
- /*          if HOWMNY = 'B', the matrix Q*Y; */
 
- /*          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */
 
- /*                      SELECT, stored consecutively in the columns of */
 
- /*                      VL, in the same order as their eigenvalues. */
 
- /*          A complex eigenvector corresponding to a complex eigenvalue */
 
- /*          is stored in two consecutive columns, the first holding the */
 
- /*          real part, and the second the imaginary part. */
 
- /*          Not referenced if SIDE = 'R'. */
 
- /*  LDVL    (input) INTEGER */
 
- /*          The leading dimension of array VL.  LDVL >= 1, and if */
 
- /*          SIDE = 'L' or 'B', LDVL >= N. */
 
- /*  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) */
 
- /*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
 
- /*          contain an N-by-N matrix Z (usually the orthogonal matrix Z */
 
- /*          of right Schur vectors returned by DHGEQZ). */
 
- /*          On exit, if SIDE = 'R' or 'B', VR contains: */
 
- /*          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */
 
- /*          if HOWMNY = 'B' or 'b', the matrix Z*X; */
 
- /*          if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) */
 
- /*                      specified by SELECT, stored consecutively in the */
 
- /*                      columns of VR, in the same order as their */
 
- /*                      eigenvalues. */
 
- /*          A complex eigenvector corresponding to a complex eigenvalue */
 
- /*          is stored in two consecutive columns, the first holding the */
 
- /*          real part and the second the imaginary part. */
 
- /*          Not referenced if SIDE = 'L'. */
 
- /*  LDVR    (input) INTEGER */
 
- /*          The leading dimension of the array VR.  LDVR >= 1, and if */
 
- /*          SIDE = 'R' or 'B', LDVR >= N. */
 
- /*  MM      (input) INTEGER */
 
- /*          The number of columns in the arrays VL and/or VR. MM >= M. */
 
- /*  M       (output) INTEGER */
 
- /*          The number of columns in the arrays VL and/or VR actually */
 
- /*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M */
 
- /*          is set to N.  Each selected real eigenvector occupies one */
 
- /*          column and each selected complex eigenvector occupies two */
 
- /*          columns. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (6*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  the 2-by-2 block (INFO:INFO+1) does not have a complex */
 
- /*                eigenvalue. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Allocation of workspace: */
 
- /*  ---------- -- --------- */
 
- /*     WORK( j ) = 1-norm of j-th column of A, above the diagonal */
 
- /*     WORK( N+j ) = 1-norm of j-th column of B, above the diagonal */
 
- /*     WORK( 2*N+1:3*N ) = real part of eigenvector */
 
- /*     WORK( 3*N+1:4*N ) = imaginary part of eigenvector */
 
- /*     WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector */
 
- /*     WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector */
 
- /*  Rowwise vs. columnwise solution methods: */
 
- /*  ------- --  ---------- -------- ------- */
 
- /*  Finding a generalized eigenvector consists basically of solving the */
 
- /*  singular triangular system */
 
- /*   (A - w B) x = 0     (for right) or:   (A - w B)**H y = 0  (for left) */
 
- /*  Consider finding the i-th right eigenvector (assume all eigenvalues */
 
- /*  are real). The equation to be solved is: */
 
- /*       n                   i */
 
- /*  0 = sum  C(j,k) v(k)  = sum  C(j,k) v(k)     for j = i,. . .,1 */
 
- /*      k=j                 k=j */
 
- /*  where  C = (A - w B)  (The components v(i+1:n) are 0.) */
 
- /*  The "rowwise" method is: */
 
- /*  (1)  v(i) := 1 */
 
- /*  for j = i-1,. . .,1: */
 
- /*                          i */
 
- /*      (2) compute  s = - sum C(j,k) v(k)   and */
 
- /*                        k=j+1 */
 
- /*      (3) v(j) := s / C(j,j) */
 
- /*  Step 2 is sometimes called the "dot product" step, since it is an */
 
- /*  inner product between the j-th row and the portion of the eigenvector */
 
- /*  that has been computed so far. */
 
- /*  The "columnwise" method consists basically in doing the sums */
 
- /*  for all the rows in parallel.  As each v(j) is computed, the */
 
- /*  contribution of v(j) times the j-th column of C is added to the */
 
- /*  partial sums.  Since FORTRAN arrays are stored columnwise, this has */
 
- /*  the advantage that at each step, the elements of C that are accessed */
 
- /*  are adjacent to one another, whereas with the rowwise method, the */
 
- /*  elements accessed at a step are spaced LDS (and LDP) words apart. */
 
- /*  When finding left eigenvectors, the matrix in question is the */
 
- /*  transpose of the one in storage, so the rowwise method then */
 
- /*  actually accesses columns of A and B at each step, and so is the */
 
- /*  preferred method. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and Test the input parameters */
 
-     /* Parameter adjustments */
 
-     --select;
 
-     s_dim1 = *lds;
 
-     s_offset = 1 + s_dim1;
 
-     s -= s_offset;
 
-     p_dim1 = *ldp;
 
-     p_offset = 1 + p_dim1;
 
-     p -= p_offset;
 
-     vl_dim1 = *ldvl;
 
-     vl_offset = 1 + vl_dim1;
 
-     vl -= vl_offset;
 
-     vr_dim1 = *ldvr;
 
-     vr_offset = 1 + vr_dim1;
 
-     vr -= vr_offset;
 
-     --work;
 
-     /* Function Body */
 
-     if (_starpu_lsame_(howmny, "A")) {
 
- 	ihwmny = 1;
 
- 	ilall = TRUE_;
 
- 	ilback = FALSE_;
 
-     } else if (_starpu_lsame_(howmny, "S")) {
 
- 	ihwmny = 2;
 
- 	ilall = FALSE_;
 
- 	ilback = FALSE_;
 
-     } else if (_starpu_lsame_(howmny, "B")) {
 
- 	ihwmny = 3;
 
- 	ilall = TRUE_;
 
- 	ilback = TRUE_;
 
-     } else {
 
- 	ihwmny = -1;
 
- 	ilall = TRUE_;
 
-     }
 
-     if (_starpu_lsame_(side, "R")) {
 
- 	iside = 1;
 
- 	compl = FALSE_;
 
- 	compr = TRUE_;
 
-     } else if (_starpu_lsame_(side, "L")) {
 
- 	iside = 2;
 
- 	compl = TRUE_;
 
- 	compr = FALSE_;
 
-     } else if (_starpu_lsame_(side, "B")) {
 
- 	iside = 3;
 
- 	compl = TRUE_;
 
- 	compr = TRUE_;
 
-     } else {
 
- 	iside = -1;
 
-     }
 
-     *info = 0;
 
-     if (iside < 0) {
 
- 	*info = -1;
 
-     } else if (ihwmny < 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*lds < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldp < max(1,*n)) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DTGEVC", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Count the number of eigenvectors to be computed */
 
-     if (! ilall) {
 
- 	im = 0;
 
- 	ilcplx = FALSE_;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    if (ilcplx) {
 
- 		ilcplx = FALSE_;
 
- 		goto L10;
 
- 	    }
 
- 	    if (j < *n) {
 
- 		if (s[j + 1 + j * s_dim1] != 0.) {
 
- 		    ilcplx = TRUE_;
 
- 		}
 
- 	    }
 
- 	    if (ilcplx) {
 
- 		if (select[j] || select[j + 1]) {
 
- 		    im += 2;
 
- 		}
 
- 	    } else {
 
- 		if (select[j]) {
 
- 		    ++im;
 
- 		}
 
- 	    }
 
- L10:
 
- 	    ;
 
- 	}
 
-     } else {
 
- 	im = *n;
 
-     }
 
- /*     Check 2-by-2 diagonal blocks of A, B */
 
-     ilabad = FALSE_;
 
-     ilbbad = FALSE_;
 
-     i__1 = *n - 1;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	if (s[j + 1 + j * s_dim1] != 0.) {
 
- 	    if (p[j + j * p_dim1] == 0. || p[j + 1 + (j + 1) * p_dim1] == 0. 
 
- 		    || p[j + (j + 1) * p_dim1] != 0.) {
 
- 		ilbbad = TRUE_;
 
- 	    }
 
- 	    if (j < *n - 1) {
 
- 		if (s[j + 2 + (j + 1) * s_dim1] != 0.) {
 
- 		    ilabad = TRUE_;
 
- 		}
 
- 	    }
 
- 	}
 
- /* L20: */
 
-     }
 
-     if (ilabad) {
 
- 	*info = -5;
 
-     } else if (ilbbad) {
 
- 	*info = -7;
 
-     } else if (compl && *ldvl < *n || *ldvl < 1) {
 
- 	*info = -10;
 
-     } else if (compr && *ldvr < *n || *ldvr < 1) {
 
- 	*info = -12;
 
-     } else if (*mm < im) {
 
- 	*info = -13;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DTGEVC", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     *m = im;
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Machine Constants */
 
-     safmin = _starpu_dlamch_("Safe minimum");
 
-     big = 1. / safmin;
 
-     _starpu_dlabad_(&safmin, &big);
 
-     ulp = _starpu_dlamch_("Epsilon") * _starpu_dlamch_("Base");
 
-     small = safmin * *n / ulp;
 
-     big = 1. / small;
 
-     bignum = 1. / (safmin * *n);
 
- /*     Compute the 1-norm of each column of the strictly upper triangular */
 
- /*     part (i.e., excluding all elements belonging to the diagonal */
 
- /*     blocks) of A and B to check for possible overflow in the */
 
- /*     triangular solver. */
 
-     anorm = (d__1 = s[s_dim1 + 1], abs(d__1));
 
-     if (*n > 1) {
 
- 	anorm += (d__1 = s[s_dim1 + 2], abs(d__1));
 
-     }
 
-     bnorm = (d__1 = p[p_dim1 + 1], abs(d__1));
 
-     work[1] = 0.;
 
-     work[*n + 1] = 0.;
 
-     i__1 = *n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	temp = 0.;
 
- 	temp2 = 0.;
 
- 	if (s[j + (j - 1) * s_dim1] == 0.) {
 
- 	    iend = j - 1;
 
- 	} else {
 
- 	    iend = j - 2;
 
- 	}
 
- 	i__2 = iend;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
 
- 	    temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
 
- /* L30: */
 
- 	}
 
- 	work[j] = temp;
 
- 	work[*n + j] = temp2;
 
- /* Computing MIN */
 
- 	i__3 = j + 1;
 
- 	i__2 = min(i__3,*n);
 
- 	for (i__ = iend + 1; i__ <= i__2; ++i__) {
 
- 	    temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
 
- 	    temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
 
- /* L40: */
 
- 	}
 
- 	anorm = max(anorm,temp);
 
- 	bnorm = max(bnorm,temp2);
 
- /* L50: */
 
-     }
 
-     ascale = 1. / max(anorm,safmin);
 
-     bscale = 1. / max(bnorm,safmin);
 
- /*     Left eigenvectors */
 
-     if (compl) {
 
- 	ieig = 0;
 
- /*        Main loop over eigenvalues */
 
- 	ilcplx = FALSE_;
 
- 	i__1 = *n;
 
- 	for (je = 1; je <= i__1; ++je) {
 
- /*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
 
- /*           (b) this would be the second of a complex pair. */
 
- /*           Check for complex eigenvalue, so as to be sure of which */
 
- /*           entry(-ies) of SELECT to look at. */
 
- 	    if (ilcplx) {
 
- 		ilcplx = FALSE_;
 
- 		goto L220;
 
- 	    }
 
- 	    nw = 1;
 
- 	    if (je < *n) {
 
- 		if (s[je + 1 + je * s_dim1] != 0.) {
 
- 		    ilcplx = TRUE_;
 
- 		    nw = 2;
 
- 		}
 
- 	    }
 
- 	    if (ilall) {
 
- 		ilcomp = TRUE_;
 
- 	    } else if (ilcplx) {
 
- 		ilcomp = select[je] || select[je + 1];
 
- 	    } else {
 
- 		ilcomp = select[je];
 
- 	    }
 
- 	    if (! ilcomp) {
 
- 		goto L220;
 
- 	    }
 
- /*           Decide if (a) singular pencil, (b) real eigenvalue, or */
 
- /*           (c) complex eigenvalue. */
 
- 	    if (! ilcplx) {
 
- 		if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
 
- 			d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
 
- /*                 Singular matrix pencil -- return unit eigenvector */
 
- 		    ++ieig;
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vl[jr + ieig * vl_dim1] = 0.;
 
- /* L60: */
 
- 		    }
 
- 		    vl[ieig + ieig * vl_dim1] = 1.;
 
- 		    goto L220;
 
- 		}
 
- 	    }
 
- /*           Clear vector */
 
- 	    i__2 = nw * *n;
 
- 	    for (jr = 1; jr <= i__2; ++jr) {
 
- 		work[(*n << 1) + jr] = 0.;
 
- /* L70: */
 
- 	    }
 
- /*                                                 T */
 
- /*           Compute coefficients in  ( a A - b B )  y = 0 */
 
- /*              a  is  ACOEF */
 
- /*              b  is  BCOEFR + i*BCOEFI */
 
- 	    if (! ilcplx) {
 
- /*              Real eigenvalue */
 
- /* Computing MAX */
 
- 		d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4 
 
- 			= (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale, 
 
- 			d__3 = max(d__3,d__4);
 
- 		temp = 1. / max(d__3,safmin);
 
- 		salfar = temp * s[je + je * s_dim1] * ascale;
 
- 		sbeta = temp * p[je + je * p_dim1] * bscale;
 
- 		acoef = sbeta * ascale;
 
- 		bcoefr = salfar * bscale;
 
- 		bcoefi = 0.;
 
- /*              Scale to avoid underflow */
 
- 		scale = 1.;
 
- 		lsa = abs(sbeta) >= safmin && abs(acoef) < small;
 
- 		lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
 
- 		if (lsa) {
 
- 		    scale = small / abs(sbeta) * min(anorm,big);
 
- 		}
 
- 		if (lsb) {
 
- /* Computing MAX */
 
- 		    d__1 = scale, d__2 = small / abs(salfar) * min(bnorm,big);
 
- 		    scale = max(d__1,d__2);
 
- 		}
 
- 		if (lsa || lsb) {
 
- /* Computing MIN */
 
- /* Computing MAX */
 
- 		    d__3 = 1., d__4 = abs(acoef), d__3 = max(d__3,d__4), d__4 
 
- 			    = abs(bcoefr);
 
- 		    d__1 = scale, d__2 = 1. / (safmin * max(d__3,d__4));
 
- 		    scale = min(d__1,d__2);
 
- 		    if (lsa) {
 
- 			acoef = ascale * (scale * sbeta);
 
- 		    } else {
 
- 			acoef = scale * acoef;
 
- 		    }
 
- 		    if (lsb) {
 
- 			bcoefr = bscale * (scale * salfar);
 
- 		    } else {
 
- 			bcoefr = scale * bcoefr;
 
- 		    }
 
- 		}
 
- 		acoefa = abs(acoef);
 
- 		bcoefa = abs(bcoefr);
 
- /*              First component is 1 */
 
- 		work[(*n << 1) + je] = 1.;
 
- 		xmax = 1.;
 
- 	    } else {
 
- /*              Complex eigenvalue */
 
- 		d__1 = safmin * 100.;
 
- 		_starpu_dlag2_(&s[je + je * s_dim1], lds, &p[je + je * p_dim1], ldp, &
 
- 			d__1, &acoef, &temp, &bcoefr, &temp2, &bcoefi);
 
- 		bcoefi = -bcoefi;
 
- 		if (bcoefi == 0.) {
 
- 		    *info = je;
 
- 		    return 0;
 
- 		}
 
- /*              Scale to avoid over/underflow */
 
- 		acoefa = abs(acoef);
 
- 		bcoefa = abs(bcoefr) + abs(bcoefi);
 
- 		scale = 1.;
 
- 		if (acoefa * ulp < safmin && acoefa >= safmin) {
 
- 		    scale = safmin / ulp / acoefa;
 
- 		}
 
- 		if (bcoefa * ulp < safmin && bcoefa >= safmin) {
 
- /* Computing MAX */
 
- 		    d__1 = scale, d__2 = safmin / ulp / bcoefa;
 
- 		    scale = max(d__1,d__2);
 
- 		}
 
- 		if (safmin * acoefa > ascale) {
 
- 		    scale = ascale / (safmin * acoefa);
 
- 		}
 
- 		if (safmin * bcoefa > bscale) {
 
- /* Computing MIN */
 
- 		    d__1 = scale, d__2 = bscale / (safmin * bcoefa);
 
- 		    scale = min(d__1,d__2);
 
- 		}
 
- 		if (scale != 1.) {
 
- 		    acoef = scale * acoef;
 
- 		    acoefa = abs(acoef);
 
- 		    bcoefr = scale * bcoefr;
 
- 		    bcoefi = scale * bcoefi;
 
- 		    bcoefa = abs(bcoefr) + abs(bcoefi);
 
- 		}
 
- /*              Compute first two components of eigenvector */
 
- 		temp = acoef * s[je + 1 + je * s_dim1];
 
- 		temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je * 
 
- 			p_dim1];
 
- 		temp2i = -bcoefi * p[je + je * p_dim1];
 
- 		if (abs(temp) > abs(temp2r) + abs(temp2i)) {
 
- 		    work[(*n << 1) + je] = 1.;
 
- 		    work[*n * 3 + je] = 0.;
 
- 		    work[(*n << 1) + je + 1] = -temp2r / temp;
 
- 		    work[*n * 3 + je + 1] = -temp2i / temp;
 
- 		} else {
 
- 		    work[(*n << 1) + je + 1] = 1.;
 
- 		    work[*n * 3 + je + 1] = 0.;
 
- 		    temp = acoef * s[je + (je + 1) * s_dim1];
 
- 		    work[(*n << 1) + je] = (bcoefr * p[je + 1 + (je + 1) * 
 
- 			    p_dim1] - acoef * s[je + 1 + (je + 1) * s_dim1]) /
 
- 			     temp;
 
- 		    work[*n * 3 + je] = bcoefi * p[je + 1 + (je + 1) * p_dim1]
 
- 			     / temp;
 
- 		}
 
- /* Computing MAX */
 
- 		d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 = 
 
- 			work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
 
- 			n << 1) + je + 1], abs(d__3)) + (d__4 = work[*n * 3 + 
 
- 			je + 1], abs(d__4));
 
- 		xmax = max(d__5,d__6);
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 = 
 
- 		    max(d__1,d__2);
 
- 	    dmin__ = max(d__1,safmin);
 
- /*                                           T */
 
- /*           Triangular solve of  (a A - b B)  y = 0 */
 
- /*                                   T */
 
- /*           (rowwise in  (a A - b B) , or columnwise in (a A - b B) ) */
 
- 	    il2by2 = FALSE_;
 
- 	    i__2 = *n;
 
- 	    for (j = je + nw; j <= i__2; ++j) {
 
- 		if (il2by2) {
 
- 		    il2by2 = FALSE_;
 
- 		    goto L160;
 
- 		}
 
- 		na = 1;
 
- 		bdiag[0] = p[j + j * p_dim1];
 
- 		if (j < *n) {
 
- 		    if (s[j + 1 + j * s_dim1] != 0.) {
 
- 			il2by2 = TRUE_;
 
- 			bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
 
- 			na = 2;
 
- 		    }
 
- 		}
 
- /*              Check whether scaling is necessary for dot products */
 
- 		xscale = 1. / max(1.,xmax);
 
- /* Computing MAX */
 
- 		d__1 = work[j], d__2 = work[*n + j], d__1 = max(d__1,d__2), 
 
- 			d__2 = acoefa * work[j] + bcoefa * work[*n + j];
 
- 		temp = max(d__1,d__2);
 
- 		if (il2by2) {
 
- /* Computing MAX */
 
- 		    d__1 = temp, d__2 = work[j + 1], d__1 = max(d__1,d__2), 
 
- 			    d__2 = work[*n + j + 1], d__1 = max(d__1,d__2), 
 
- 			    d__2 = acoefa * work[j + 1] + bcoefa * work[*n + 
 
- 			    j + 1];
 
- 		    temp = max(d__1,d__2);
 
- 		}
 
- 		if (temp > bignum * xscale) {
 
- 		    i__3 = nw - 1;
 
- 		    for (jw = 0; jw <= i__3; ++jw) {
 
- 			i__4 = j - 1;
 
- 			for (jr = je; jr <= i__4; ++jr) {
 
- 			    work[(jw + 2) * *n + jr] = xscale * work[(jw + 2) 
 
- 				    * *n + jr];
 
- /* L80: */
 
- 			}
 
- /* L90: */
 
- 		    }
 
- 		    xmax *= xscale;
 
- 		}
 
- /*              Compute dot products */
 
- /*                    j-1 */
 
- /*              SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k) */
 
- /*                    k=je */
 
- /*              To reduce the op count, this is done as */
 
- /*              _        j-1                  _        j-1 */
 
- /*              a*conjg( sum  S(k,j)*x(k) ) - b*conjg( sum  P(k,j)*x(k) ) */
 
- /*                       k=je                          k=je */
 
- /*              which may cause underflow problems if A or B are close */
 
- /*              to underflow.  (E.g., less than SMALL.) */
 
- /*              A series of compiler directives to defeat vectorization */
 
- /*              for the next loop */
 
- /* $PL$ CMCHAR=' ' */
 
- /* DIR$          NEXTSCALAR */
 
- /* $DIR          SCALAR */
 
- /* DIR$          NEXT SCALAR */
 
- /* VD$L          NOVECTOR */
 
- /* DEC$          NOVECTOR */
 
- /* VD$           NOVECTOR */
 
- /* VDIR          NOVECTOR */
 
- /* VOCL          LOOP,SCALAR */
 
- /* IBM           PREFER SCALAR */
 
- /* $PL$ CMCHAR='*' */
 
- 		i__3 = nw;
 
- 		for (jw = 1; jw <= i__3; ++jw) {
 
- /* $PL$ CMCHAR=' ' */
 
- /* DIR$             NEXTSCALAR */
 
- /* $DIR             SCALAR */
 
- /* DIR$             NEXT SCALAR */
 
- /* VD$L             NOVECTOR */
 
- /* DEC$             NOVECTOR */
 
- /* VD$              NOVECTOR */
 
- /* VDIR             NOVECTOR */
 
- /* VOCL             LOOP,SCALAR */
 
- /* IBM              PREFER SCALAR */
 
- /* $PL$ CMCHAR='*' */
 
- 		    i__4 = na;
 
- 		    for (ja = 1; ja <= i__4; ++ja) {
 
- 			sums[ja + (jw << 1) - 3] = 0.;
 
- 			sump[ja + (jw << 1) - 3] = 0.;
 
- 			i__5 = j - 1;
 
- 			for (jr = je; jr <= i__5; ++jr) {
 
- 			    sums[ja + (jw << 1) - 3] += s[jr + (j + ja - 1) * 
 
- 				    s_dim1] * work[(jw + 1) * *n + jr];
 
- 			    sump[ja + (jw << 1) - 3] += p[jr + (j + ja - 1) * 
 
- 				    p_dim1] * work[(jw + 1) * *n + jr];
 
- /* L100: */
 
- 			}
 
- /* L110: */
 
- 		    }
 
- /* L120: */
 
- 		}
 
- /* $PL$ CMCHAR=' ' */
 
- /* DIR$          NEXTSCALAR */
 
- /* $DIR          SCALAR */
 
- /* DIR$          NEXT SCALAR */
 
- /* VD$L          NOVECTOR */
 
- /* DEC$          NOVECTOR */
 
- /* VD$           NOVECTOR */
 
- /* VDIR          NOVECTOR */
 
- /* VOCL          LOOP,SCALAR */
 
- /* IBM           PREFER SCALAR */
 
- /* $PL$ CMCHAR='*' */
 
- 		i__3 = na;
 
- 		for (ja = 1; ja <= i__3; ++ja) {
 
- 		    if (ilcplx) {
 
- 			sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
 
- 				ja - 1] - bcoefi * sump[ja + 1];
 
- 			sum[ja + 1] = -acoef * sums[ja + 1] + bcoefr * sump[
 
- 				ja + 1] + bcoefi * sump[ja - 1];
 
- 		    } else {
 
- 			sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
 
- 				ja - 1];
 
- 		    }
 
- /* L130: */
 
- 		}
 
- /*                                  T */
 
- /*              Solve  ( a A - b B )  y = SUM(,) */
 
- /*              with scaling and perturbation of the denominator */
 
- 		_starpu_dlaln2_(&c_true, &na, &nw, &dmin__, &acoef, &s[j + j * s_dim1]
 
- , lds, bdiag, &bdiag[1], sum, &c__2, &bcoefr, &bcoefi, 
 
- 			 &work[(*n << 1) + j], n, &scale, &temp, &iinfo);
 
- 		if (scale < 1.) {
 
- 		    i__3 = nw - 1;
 
- 		    for (jw = 0; jw <= i__3; ++jw) {
 
- 			i__4 = j - 1;
 
- 			for (jr = je; jr <= i__4; ++jr) {
 
- 			    work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
 
- 				     *n + jr];
 
- /* L140: */
 
- 			}
 
- /* L150: */
 
- 		    }
 
- 		    xmax = scale * xmax;
 
- 		}
 
- 		xmax = max(xmax,temp);
 
- L160:
 
- 		;
 
- 	    }
 
- /*           Copy eigenvector to VL, back transforming if */
 
- /*           HOWMNY='B'. */
 
- 	    ++ieig;
 
- 	    if (ilback) {
 
- 		i__2 = nw - 1;
 
- 		for (jw = 0; jw <= i__2; ++jw) {
 
- 		    i__3 = *n + 1 - je;
 
- 		    _starpu_dgemv_("N", n, &i__3, &c_b34, &vl[je * vl_dim1 + 1], ldvl, 
 
- 			     &work[(jw + 2) * *n + je], &c__1, &c_b36, &work[(
 
- 			    jw + 4) * *n + 1], &c__1);
 
- /* L170: */
 
- 		}
 
- 		_starpu_dlacpy_(" ", n, &nw, &work[(*n << 2) + 1], n, &vl[je * 
 
- 			vl_dim1 + 1], ldvl);
 
- 		ibeg = 1;
 
- 	    } else {
 
- 		_starpu_dlacpy_(" ", n, &nw, &work[(*n << 1) + 1], n, &vl[ieig * 
 
- 			vl_dim1 + 1], ldvl);
 
- 		ibeg = je;
 
- 	    }
 
- /*           Scale eigenvector */
 
- 	    xmax = 0.;
 
- 	    if (ilcplx) {
 
- 		i__2 = *n;
 
- 		for (j = ibeg; j <= i__2; ++j) {
 
- /* Computing MAX */
 
- 		    d__3 = xmax, d__4 = (d__1 = vl[j + ieig * vl_dim1], abs(
 
- 			    d__1)) + (d__2 = vl[j + (ieig + 1) * vl_dim1], 
 
- 			    abs(d__2));
 
- 		    xmax = max(d__3,d__4);
 
- /* L180: */
 
- 		}
 
- 	    } else {
 
- 		i__2 = *n;
 
- 		for (j = ibeg; j <= i__2; ++j) {
 
- /* Computing MAX */
 
- 		    d__2 = xmax, d__3 = (d__1 = vl[j + ieig * vl_dim1], abs(
 
- 			    d__1));
 
- 		    xmax = max(d__2,d__3);
 
- /* L190: */
 
- 		}
 
- 	    }
 
- 	    if (xmax > safmin) {
 
- 		xscale = 1. / xmax;
 
- 		i__2 = nw - 1;
 
- 		for (jw = 0; jw <= i__2; ++jw) {
 
- 		    i__3 = *n;
 
- 		    for (jr = ibeg; jr <= i__3; ++jr) {
 
- 			vl[jr + (ieig + jw) * vl_dim1] = xscale * vl[jr + (
 
- 				ieig + jw) * vl_dim1];
 
- /* L200: */
 
- 		    }
 
- /* L210: */
 
- 		}
 
- 	    }
 
- 	    ieig = ieig + nw - 1;
 
- L220:
 
- 	    ;
 
- 	}
 
-     }
 
- /*     Right eigenvectors */
 
-     if (compr) {
 
- 	ieig = im + 1;
 
- /*        Main loop over eigenvalues */
 
- 	ilcplx = FALSE_;
 
- 	for (je = *n; je >= 1; --je) {
 
- /*           Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
 
- /*           (b) this would be the second of a complex pair. */
 
- /*           Check for complex eigenvalue, so as to be sure of which */
 
- /*           entry(-ies) of SELECT to look at -- if complex, SELECT(JE) */
 
- /*           or SELECT(JE-1). */
 
- /*           If this is a complex pair, the 2-by-2 diagonal block */
 
- /*           corresponding to the eigenvalue is in rows/columns JE-1:JE */
 
- 	    if (ilcplx) {
 
- 		ilcplx = FALSE_;
 
- 		goto L500;
 
- 	    }
 
- 	    nw = 1;
 
- 	    if (je > 1) {
 
- 		if (s[je + (je - 1) * s_dim1] != 0.) {
 
- 		    ilcplx = TRUE_;
 
- 		    nw = 2;
 
- 		}
 
- 	    }
 
- 	    if (ilall) {
 
- 		ilcomp = TRUE_;
 
- 	    } else if (ilcplx) {
 
- 		ilcomp = select[je] || select[je - 1];
 
- 	    } else {
 
- 		ilcomp = select[je];
 
- 	    }
 
- 	    if (! ilcomp) {
 
- 		goto L500;
 
- 	    }
 
- /*           Decide if (a) singular pencil, (b) real eigenvalue, or */
 
- /*           (c) complex eigenvalue. */
 
- 	    if (! ilcplx) {
 
- 		if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
 
- 			d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
 
- /*                 Singular matrix pencil -- unit eigenvector */
 
- 		    --ieig;
 
- 		    i__1 = *n;
 
- 		    for (jr = 1; jr <= i__1; ++jr) {
 
- 			vr[jr + ieig * vr_dim1] = 0.;
 
- /* L230: */
 
- 		    }
 
- 		    vr[ieig + ieig * vr_dim1] = 1.;
 
- 		    goto L500;
 
- 		}
 
- 	    }
 
- /*           Clear vector */
 
- 	    i__1 = nw - 1;
 
- 	    for (jw = 0; jw <= i__1; ++jw) {
 
- 		i__2 = *n;
 
- 		for (jr = 1; jr <= i__2; ++jr) {
 
- 		    work[(jw + 2) * *n + jr] = 0.;
 
- /* L240: */
 
- 		}
 
- /* L250: */
 
- 	    }
 
- /*           Compute coefficients in  ( a A - b B ) x = 0 */
 
- /*              a  is  ACOEF */
 
- /*              b  is  BCOEFR + i*BCOEFI */
 
- 	    if (! ilcplx) {
 
- /*              Real eigenvalue */
 
- /* Computing MAX */
 
- 		d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4 
 
- 			= (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale, 
 
- 			d__3 = max(d__3,d__4);
 
- 		temp = 1. / max(d__3,safmin);
 
- 		salfar = temp * s[je + je * s_dim1] * ascale;
 
- 		sbeta = temp * p[je + je * p_dim1] * bscale;
 
- 		acoef = sbeta * ascale;
 
- 		bcoefr = salfar * bscale;
 
- 		bcoefi = 0.;
 
- /*              Scale to avoid underflow */
 
- 		scale = 1.;
 
- 		lsa = abs(sbeta) >= safmin && abs(acoef) < small;
 
- 		lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
 
- 		if (lsa) {
 
- 		    scale = small / abs(sbeta) * min(anorm,big);
 
- 		}
 
- 		if (lsb) {
 
- /* Computing MAX */
 
- 		    d__1 = scale, d__2 = small / abs(salfar) * min(bnorm,big);
 
- 		    scale = max(d__1,d__2);
 
- 		}
 
- 		if (lsa || lsb) {
 
- /* Computing MIN */
 
- /* Computing MAX */
 
- 		    d__3 = 1., d__4 = abs(acoef), d__3 = max(d__3,d__4), d__4 
 
- 			    = abs(bcoefr);
 
- 		    d__1 = scale, d__2 = 1. / (safmin * max(d__3,d__4));
 
- 		    scale = min(d__1,d__2);
 
- 		    if (lsa) {
 
- 			acoef = ascale * (scale * sbeta);
 
- 		    } else {
 
- 			acoef = scale * acoef;
 
- 		    }
 
- 		    if (lsb) {
 
- 			bcoefr = bscale * (scale * salfar);
 
- 		    } else {
 
- 			bcoefr = scale * bcoefr;
 
- 		    }
 
- 		}
 
- 		acoefa = abs(acoef);
 
- 		bcoefa = abs(bcoefr);
 
- /*              First component is 1 */
 
- 		work[(*n << 1) + je] = 1.;
 
- 		xmax = 1.;
 
- /*              Compute contribution from column JE of A and B to sum */
 
- /*              (See "Further Details", above.) */
 
- 		i__1 = je - 1;
 
- 		for (jr = 1; jr <= i__1; ++jr) {
 
- 		    work[(*n << 1) + jr] = bcoefr * p[jr + je * p_dim1] - 
 
- 			    acoef * s[jr + je * s_dim1];
 
- /* L260: */
 
- 		}
 
- 	    } else {
 
- /*              Complex eigenvalue */
 
- 		d__1 = safmin * 100.;
 
- 		_starpu_dlag2_(&s[je - 1 + (je - 1) * s_dim1], lds, &p[je - 1 + (je - 
 
- 			1) * p_dim1], ldp, &d__1, &acoef, &temp, &bcoefr, &
 
- 			temp2, &bcoefi);
 
- 		if (bcoefi == 0.) {
 
- 		    *info = je - 1;
 
- 		    return 0;
 
- 		}
 
- /*              Scale to avoid over/underflow */
 
- 		acoefa = abs(acoef);
 
- 		bcoefa = abs(bcoefr) + abs(bcoefi);
 
- 		scale = 1.;
 
- 		if (acoefa * ulp < safmin && acoefa >= safmin) {
 
- 		    scale = safmin / ulp / acoefa;
 
- 		}
 
- 		if (bcoefa * ulp < safmin && bcoefa >= safmin) {
 
- /* Computing MAX */
 
- 		    d__1 = scale, d__2 = safmin / ulp / bcoefa;
 
- 		    scale = max(d__1,d__2);
 
- 		}
 
- 		if (safmin * acoefa > ascale) {
 
- 		    scale = ascale / (safmin * acoefa);
 
- 		}
 
- 		if (safmin * bcoefa > bscale) {
 
- /* Computing MIN */
 
- 		    d__1 = scale, d__2 = bscale / (safmin * bcoefa);
 
- 		    scale = min(d__1,d__2);
 
- 		}
 
- 		if (scale != 1.) {
 
- 		    acoef = scale * acoef;
 
- 		    acoefa = abs(acoef);
 
- 		    bcoefr = scale * bcoefr;
 
- 		    bcoefi = scale * bcoefi;
 
- 		    bcoefa = abs(bcoefr) + abs(bcoefi);
 
- 		}
 
- /*              Compute first two components of eigenvector */
 
- /*              and contribution to sums */
 
- 		temp = acoef * s[je + (je - 1) * s_dim1];
 
- 		temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je * 
 
- 			p_dim1];
 
- 		temp2i = -bcoefi * p[je + je * p_dim1];
 
- 		if (abs(temp) >= abs(temp2r) + abs(temp2i)) {
 
- 		    work[(*n << 1) + je] = 1.;
 
- 		    work[*n * 3 + je] = 0.;
 
- 		    work[(*n << 1) + je - 1] = -temp2r / temp;
 
- 		    work[*n * 3 + je - 1] = -temp2i / temp;
 
- 		} else {
 
- 		    work[(*n << 1) + je - 1] = 1.;
 
- 		    work[*n * 3 + je - 1] = 0.;
 
- 		    temp = acoef * s[je - 1 + je * s_dim1];
 
- 		    work[(*n << 1) + je] = (bcoefr * p[je - 1 + (je - 1) * 
 
- 			    p_dim1] - acoef * s[je - 1 + (je - 1) * s_dim1]) /
 
- 			     temp;
 
- 		    work[*n * 3 + je] = bcoefi * p[je - 1 + (je - 1) * p_dim1]
 
- 			     / temp;
 
- 		}
 
- /* Computing MAX */
 
- 		d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 = 
 
- 			work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
 
- 			n << 1) + je - 1], abs(d__3)) + (d__4 = work[*n * 3 + 
 
- 			je - 1], abs(d__4));
 
- 		xmax = max(d__5,d__6);
 
- /*              Compute contribution from columns JE and JE-1 */
 
- /*              of A and B to the sums. */
 
- 		creala = acoef * work[(*n << 1) + je - 1];
 
- 		cimaga = acoef * work[*n * 3 + je - 1];
 
- 		crealb = bcoefr * work[(*n << 1) + je - 1] - bcoefi * work[*n 
 
- 			* 3 + je - 1];
 
- 		cimagb = bcoefi * work[(*n << 1) + je - 1] + bcoefr * work[*n 
 
- 			* 3 + je - 1];
 
- 		cre2a = acoef * work[(*n << 1) + je];
 
- 		cim2a = acoef * work[*n * 3 + je];
 
- 		cre2b = bcoefr * work[(*n << 1) + je] - bcoefi * work[*n * 3 
 
- 			+ je];
 
- 		cim2b = bcoefi * work[(*n << 1) + je] + bcoefr * work[*n * 3 
 
- 			+ je];
 
- 		i__1 = je - 2;
 
- 		for (jr = 1; jr <= i__1; ++jr) {
 
- 		    work[(*n << 1) + jr] = -creala * s[jr + (je - 1) * s_dim1]
 
- 			     + crealb * p[jr + (je - 1) * p_dim1] - cre2a * s[
 
- 			    jr + je * s_dim1] + cre2b * p[jr + je * p_dim1];
 
- 		    work[*n * 3 + jr] = -cimaga * s[jr + (je - 1) * s_dim1] + 
 
- 			    cimagb * p[jr + (je - 1) * p_dim1] - cim2a * s[jr 
 
- 			    + je * s_dim1] + cim2b * p[jr + je * p_dim1];
 
- /* L270: */
 
- 		}
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 = 
 
- 		    max(d__1,d__2);
 
- 	    dmin__ = max(d__1,safmin);
 
- /*           Columnwise triangular solve of  (a A - b B)  x = 0 */
 
- 	    il2by2 = FALSE_;
 
- 	    for (j = je - nw; j >= 1; --j) {
 
- /*              If a 2-by-2 block, is in position j-1:j, wait until */
 
- /*              next iteration to process it (when it will be j:j+1) */
 
- 		if (! il2by2 && j > 1) {
 
- 		    if (s[j + (j - 1) * s_dim1] != 0.) {
 
- 			il2by2 = TRUE_;
 
- 			goto L370;
 
- 		    }
 
- 		}
 
- 		bdiag[0] = p[j + j * p_dim1];
 
- 		if (il2by2) {
 
- 		    na = 2;
 
- 		    bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
 
- 		} else {
 
- 		    na = 1;
 
- 		}
 
- /*              Compute x(j) (and x(j+1), if 2-by-2 block) */
 
- 		_starpu_dlaln2_(&c_false, &na, &nw, &dmin__, &acoef, &s[j + j * 
 
- 			s_dim1], lds, bdiag, &bdiag[1], &work[(*n << 1) + j], 
 
- 			n, &bcoefr, &bcoefi, sum, &c__2, &scale, &temp, &
 
- 			iinfo);
 
- 		if (scale < 1.) {
 
- 		    i__1 = nw - 1;
 
- 		    for (jw = 0; jw <= i__1; ++jw) {
 
- 			i__2 = je;
 
- 			for (jr = 1; jr <= i__2; ++jr) {
 
- 			    work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
 
- 				     *n + jr];
 
- /* L280: */
 
- 			}
 
- /* L290: */
 
- 		    }
 
- 		}
 
- /* Computing MAX */
 
- 		d__1 = scale * xmax;
 
- 		xmax = max(d__1,temp);
 
- 		i__1 = nw;
 
- 		for (jw = 1; jw <= i__1; ++jw) {
 
- 		    i__2 = na;
 
- 		    for (ja = 1; ja <= i__2; ++ja) {
 
- 			work[(jw + 1) * *n + j + ja - 1] = sum[ja + (jw << 1) 
 
- 				- 3];
 
- /* L300: */
 
- 		    }
 
- /* L310: */
 
- 		}
 
- /*              w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */
 
- 		if (j > 1) {
 
- /*                 Check whether scaling is necessary for sum. */
 
- 		    xscale = 1. / max(1.,xmax);
 
- 		    temp = acoefa * work[j] + bcoefa * work[*n + j];
 
- 		    if (il2by2) {
 
- /* Computing MAX */
 
- 			d__1 = temp, d__2 = acoefa * work[j + 1] + bcoefa * 
 
- 				work[*n + j + 1];
 
- 			temp = max(d__1,d__2);
 
- 		    }
 
- /* Computing MAX */
 
- 		    d__1 = max(temp,acoefa);
 
- 		    temp = max(d__1,bcoefa);
 
- 		    if (temp > bignum * xscale) {
 
- 			i__1 = nw - 1;
 
- 			for (jw = 0; jw <= i__1; ++jw) {
 
- 			    i__2 = je;
 
- 			    for (jr = 1; jr <= i__2; ++jr) {
 
- 				work[(jw + 2) * *n + jr] = xscale * work[(jw 
 
- 					+ 2) * *n + jr];
 
- /* L320: */
 
- 			    }
 
- /* L330: */
 
- 			}
 
- 			xmax *= xscale;
 
- 		    }
 
- /*                 Compute the contributions of the off-diagonals of */
 
- /*                 column j (and j+1, if 2-by-2 block) of A and B to the */
 
- /*                 sums. */
 
- 		    i__1 = na;
 
- 		    for (ja = 1; ja <= i__1; ++ja) {
 
- 			if (ilcplx) {
 
- 			    creala = acoef * work[(*n << 1) + j + ja - 1];
 
- 			    cimaga = acoef * work[*n * 3 + j + ja - 1];
 
- 			    crealb = bcoefr * work[(*n << 1) + j + ja - 1] - 
 
- 				    bcoefi * work[*n * 3 + j + ja - 1];
 
- 			    cimagb = bcoefi * work[(*n << 1) + j + ja - 1] + 
 
- 				    bcoefr * work[*n * 3 + j + ja - 1];
 
- 			    i__2 = j - 1;
 
- 			    for (jr = 1; jr <= i__2; ++jr) {
 
- 				work[(*n << 1) + jr] = work[(*n << 1) + jr] - 
 
- 					creala * s[jr + (j + ja - 1) * s_dim1]
 
- 					 + crealb * p[jr + (j + ja - 1) * 
 
- 					p_dim1];
 
- 				work[*n * 3 + jr] = work[*n * 3 + jr] - 
 
- 					cimaga * s[jr + (j + ja - 1) * s_dim1]
 
- 					 + cimagb * p[jr + (j + ja - 1) * 
 
- 					p_dim1];
 
- /* L340: */
 
- 			    }
 
- 			} else {
 
- 			    creala = acoef * work[(*n << 1) + j + ja - 1];
 
- 			    crealb = bcoefr * work[(*n << 1) + j + ja - 1];
 
- 			    i__2 = j - 1;
 
- 			    for (jr = 1; jr <= i__2; ++jr) {
 
- 				work[(*n << 1) + jr] = work[(*n << 1) + jr] - 
 
- 					creala * s[jr + (j + ja - 1) * s_dim1]
 
- 					 + crealb * p[jr + (j + ja - 1) * 
 
- 					p_dim1];
 
- /* L350: */
 
- 			    }
 
- 			}
 
- /* L360: */
 
- 		    }
 
- 		}
 
- 		il2by2 = FALSE_;
 
- L370:
 
- 		;
 
- 	    }
 
- /*           Copy eigenvector to VR, back transforming if */
 
- /*           HOWMNY='B'. */
 
- 	    ieig -= nw;
 
- 	    if (ilback) {
 
- 		i__1 = nw - 1;
 
- 		for (jw = 0; jw <= i__1; ++jw) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			work[(jw + 4) * *n + jr] = work[(jw + 2) * *n + 1] * 
 
- 				vr[jr + vr_dim1];
 
- /* L380: */
 
- 		    }
 
- /*                 A series of compiler directives to defeat */
 
- /*                 vectorization for the next loop */
 
- 		    i__2 = je;
 
- 		    for (jc = 2; jc <= i__2; ++jc) {
 
- 			i__3 = *n;
 
- 			for (jr = 1; jr <= i__3; ++jr) {
 
- 			    work[(jw + 4) * *n + jr] += work[(jw + 2) * *n + 
 
- 				    jc] * vr[jr + jc * vr_dim1];
 
- /* L390: */
 
- 			}
 
- /* L400: */
 
- 		    }
 
- /* L410: */
 
- 		}
 
- 		i__1 = nw - 1;
 
- 		for (jw = 0; jw <= i__1; ++jw) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 4) * *n + 
 
- 				jr];
 
- /* L420: */
 
- 		    }
 
- /* L430: */
 
- 		}
 
- 		iend = *n;
 
- 	    } else {
 
- 		i__1 = nw - 1;
 
- 		for (jw = 0; jw <= i__1; ++jw) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 2) * *n + 
 
- 				jr];
 
- /* L440: */
 
- 		    }
 
- /* L450: */
 
- 		}
 
- 		iend = je;
 
- 	    }
 
- /*           Scale eigenvector */
 
- 	    xmax = 0.;
 
- 	    if (ilcplx) {
 
- 		i__1 = iend;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 		    d__3 = xmax, d__4 = (d__1 = vr[j + ieig * vr_dim1], abs(
 
- 			    d__1)) + (d__2 = vr[j + (ieig + 1) * vr_dim1], 
 
- 			    abs(d__2));
 
- 		    xmax = max(d__3,d__4);
 
- /* L460: */
 
- 		}
 
- 	    } else {
 
- 		i__1 = iend;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 		    d__2 = xmax, d__3 = (d__1 = vr[j + ieig * vr_dim1], abs(
 
- 			    d__1));
 
- 		    xmax = max(d__2,d__3);
 
- /* L470: */
 
- 		}
 
- 	    }
 
- 	    if (xmax > safmin) {
 
- 		xscale = 1. / xmax;
 
- 		i__1 = nw - 1;
 
- 		for (jw = 0; jw <= i__1; ++jw) {
 
- 		    i__2 = iend;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vr[jr + (ieig + jw) * vr_dim1] = xscale * vr[jr + (
 
- 				ieig + jw) * vr_dim1];
 
- /* L480: */
 
- 		    }
 
- /* L490: */
 
- 		}
 
- 	    }
 
- L500:
 
- 	    ;
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DTGEVC */
 
- } /* _starpu_dtgevc_ */
 
 
  |