| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 | 
							- /* dsysvx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- /* Subroutine */ int _starpu_dsysvx_(char *fact, char *uplo, integer *n, integer *
 
- 	nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 
 
- 	integer *ipiv, doublereal *b, integer *ldb, doublereal *x, integer *
 
- 	ldx, doublereal *rcond, doublereal *ferr, doublereal *berr, 
 
- 	doublereal *work, integer *lwork, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
 
- 	    x_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer nb;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal anorm;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     logical nofact;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern doublereal _starpu_dlansy_(char *, char *, integer *, doublereal *, 
 
- 	    integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dsycon_(char *, integer *, doublereal *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *, integer *), _starpu_dsyrfs_(char *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dsytrf_(char *, integer *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
-     extern /* Subroutine */ int _starpu_dsytrs_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSYSVX uses the diagonal pivoting factorization to compute the */
 
- /*  solution to a real system of linear equations A * X = B, */
 
- /*  where A is an N-by-N symmetric matrix and X and B are N-by-NRHS */
 
- /*  matrices. */
 
- /*  Error bounds on the solution and a condition estimate are also */
 
- /*  provided. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  The following steps are performed: */
 
- /*  1. If FACT = 'N', the diagonal pivoting method is used to factor A. */
 
- /*     The form of the factorization is */
 
- /*        A = U * D * U**T,  if UPLO = 'U', or */
 
- /*        A = L * D * L**T,  if UPLO = 'L', */
 
- /*     where U (or L) is a product of permutation and unit upper (lower) */
 
- /*     triangular matrices, and D is symmetric and block diagonal with */
 
- /*     1-by-1 and 2-by-2 diagonal blocks. */
 
- /*  2. If some D(i,i)=0, so that D is exactly singular, then the routine */
 
- /*     returns with INFO = i. Otherwise, the factored form of A is used */
 
- /*     to estimate the condition number of the matrix A.  If the */
 
- /*     reciprocal of the condition number is less than machine precision, */
 
- /*     INFO = N+1 is returned as a warning, but the routine still goes on */
 
- /*     to solve for X and compute error bounds as described below. */
 
- /*  3. The system of equations is solved for X using the factored form */
 
- /*     of A. */
 
- /*  4. Iterative refinement is applied to improve the computed solution */
 
- /*     matrix and calculate error bounds and backward error estimates */
 
- /*     for it. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  FACT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the factored form of A has been */
 
- /*          supplied on entry. */
 
- /*          = 'F':  On entry, AF and IPIV contain the factored form of */
 
- /*                  A.  AF and IPIV will not be modified. */
 
- /*          = 'N':  The matrix A will be copied to AF and factored. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X.  NRHS >= 0. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N */
 
- /*          upper triangular part of A contains the upper triangular part */
 
- /*          of the matrix A, and the strictly lower triangular part of A */
 
- /*          is not referenced.  If UPLO = 'L', the leading N-by-N lower */
 
- /*          triangular part of A contains the lower triangular part of */
 
- /*          the matrix A, and the strictly upper triangular part of A is */
 
- /*          not referenced. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */
 
- /*          If FACT = 'F', then AF is an input argument and on entry */
 
- /*          contains the block diagonal matrix D and the multipliers used */
 
- /*          to obtain the factor U or L from the factorization */
 
- /*          A = U*D*U**T or A = L*D*L**T as computed by DSYTRF. */
 
- /*          If FACT = 'N', then AF is an output argument and on exit */
 
- /*          returns the block diagonal matrix D and the multipliers used */
 
- /*          to obtain the factor U or L from the factorization */
 
- /*          A = U*D*U**T or A = L*D*L**T. */
 
- /*  LDAF    (input) INTEGER */
 
- /*          The leading dimension of the array AF.  LDAF >= max(1,N). */
 
- /*  IPIV    (input or output) INTEGER array, dimension (N) */
 
- /*          If FACT = 'F', then IPIV is an input argument and on entry */
 
- /*          contains details of the interchanges and the block structure */
 
- /*          of D, as determined by DSYTRF. */
 
- /*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
 
- /*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
 
- /*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
 
- /*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
 
- /*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
 
- /*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
 
- /*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 
- /*          If FACT = 'N', then IPIV is an output argument and on exit */
 
- /*          contains details of the interchanges and the block structure */
 
- /*          of D, as determined by DSYTRF. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          The N-by-NRHS right hand side matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The estimate of the reciprocal condition number of the matrix */
 
- /*          A.  If RCOND is less than the machine precision (in */
 
- /*          particular, if RCOND = 0), the matrix is singular to working */
 
- /*          precision.  This condition is indicated by a return code of */
 
- /*          INFO > 0. */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The estimated forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j).  The estimate is as reliable as */
 
- /*          the estimate for RCOND, and is almost always a slight */
 
- /*          overestimate of the true error. */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in */
 
- /*          any element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The length of WORK.  LWORK >= max(1,3*N), and for best */
 
- /*          performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where */
 
- /*          NB is the optimal blocksize for DSYTRF. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0: if INFO = i, and i is */
 
- /*                <= N:  D(i,i) is exactly zero.  The factorization */
 
- /*                       has been completed but the factor D is exactly */
 
- /*                       singular, so the solution and error bounds could */
 
- /*                       not be computed. RCOND = 0 is returned. */
 
- /*                = N+1: D is nonsingular, but RCOND is less than machine */
 
- /*                       precision, meaning that the matrix is singular */
 
- /*                       to working precision.  Nevertheless, the */
 
- /*                       solution and error bounds are computed because */
 
- /*                       there are a number of situations where the */
 
- /*                       computed solution can be more accurate than the */
 
- /*                       value of RCOND would suggest. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     af_dim1 = *ldaf;
 
-     af_offset = 1 + af_dim1;
 
-     af -= af_offset;
 
-     --ipiv;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nofact = _starpu_lsame_(fact, "N");
 
-     lquery = *lwork == -1;
 
-     if (! nofact && ! _starpu_lsame_(fact, "F")) {
 
- 	*info = -1;
 
-     } else if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, 
 
- 	    "L")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldaf < max(1,*n)) {
 
- 	*info = -8;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -11;
 
-     } else if (*ldx < max(1,*n)) {
 
- 	*info = -13;
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = *n * 3;
 
- 	if (*lwork < max(i__1,i__2) && ! lquery) {
 
- 	    *info = -18;
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = *n * 3;
 
- 	lwkopt = max(i__1,i__2);
 
- 	if (nofact) {
 
- 	    nb = _starpu_ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1);
 
- /* Computing MAX */
 
- 	    i__1 = lwkopt, i__2 = *n * nb;
 
- 	    lwkopt = max(i__1,i__2);
 
- 	}
 
- 	work[1] = (doublereal) lwkopt;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSYSVX", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
-     if (nofact) {
 
- /*        Compute the factorization A = U*D*U' or A = L*D*L'. */
 
- 	_starpu_dlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
 
- 	_starpu_dsytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork, 
 
- 		info);
 
- /*        Return if INFO is non-zero. */
 
- 	if (*info > 0) {
 
- 	    *rcond = 0.;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Compute the norm of the matrix A. */
 
-     anorm = _starpu_dlansy_("I", uplo, n, &a[a_offset], lda, &work[1]);
 
- /*     Compute the reciprocal of the condition number of A. */
 
-     _starpu_dsycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1], 
 
- 	    &iwork[1], info);
 
- /*     Compute the solution vectors X. */
 
-     _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 
-     _starpu_dsytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, 
 
- 	    info);
 
- /*     Use iterative refinement to improve the computed solutions and */
 
- /*     compute error bounds and backward error estimates for them. */
 
-     _starpu_dsyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], 
 
- 	    &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
 
- , &iwork[1], info);
 
- /*     Set INFO = N+1 if the matrix is singular to working precision. */
 
-     if (*rcond < _starpu_dlamch_("Epsilon")) {
 
- 	*info = *n + 1;
 
-     }
 
-     work[1] = (doublereal) lwkopt;
 
-     return 0;
 
- /*     End of DSYSVX */
 
- } /* _starpu_dsysvx_ */
 
 
  |