| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 | /* dsterf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__0 = 0;static integer c__1 = 1;static doublereal c_b32 = 1.;/* Subroutine */ int _starpu_dsterf_(integer *n, doublereal *d__, doublereal *e, 	integer *info){    /* System generated locals */    integer i__1;    doublereal d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    doublereal c__;    integer i__, l, m;    doublereal p, r__, s;    integer l1;    doublereal bb, rt1, rt2, eps, rte;    integer lsv;    doublereal eps2, oldc;    integer lend, jtot;    extern /* Subroutine */ int _starpu_dlae2_(doublereal *, doublereal *, doublereal 	    *, doublereal *, doublereal *);    doublereal gamma, alpha, sigma, anorm;    extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);    integer iscale;    extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *);    doublereal oldgam, safmin;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal safmax;    extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);    extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *, 	    integer *);    integer lendsv;    doublereal ssfmin;    integer nmaxit;    doublereal ssfmax;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTERF computes all eigenvalues of a symmetric tridiagonal matrix *//*  using the Pal-Walker-Kahan variant of the QL or QR algorithm. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the n diagonal elements of the tridiagonal matrix. *//*          On exit, if INFO = 0, the eigenvalues in ascending order. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, the (n-1) subdiagonal elements of the tridiagonal *//*          matrix. *//*          On exit, E has been destroyed. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  the algorithm failed to find all of the eigenvalues in *//*                a total of 30*N iterations; if INFO = i, then i *//*                elements of E have not converged to zero. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --e;    --d__;    /* Function Body */    *info = 0;/*     Quick return if possible */    if (*n < 0) {	*info = -1;	i__1 = -(*info);	_starpu_xerbla_("DSTERF", &i__1);	return 0;    }    if (*n <= 1) {	return 0;    }/*     Determine the unit roundoff for this environment. */    eps = _starpu_dlamch_("E");/* Computing 2nd power */    d__1 = eps;    eps2 = d__1 * d__1;    safmin = _starpu_dlamch_("S");    safmax = 1. / safmin;    ssfmax = sqrt(safmax) / 3.;    ssfmin = sqrt(safmin) / eps2;/*     Compute the eigenvalues of the tridiagonal matrix. */    nmaxit = *n * 30;    sigma = 0.;    jtot = 0;/*     Determine where the matrix splits and choose QL or QR iteration *//*     for each block, according to whether top or bottom diagonal *//*     element is smaller. */    l1 = 1;L10:    if (l1 > *n) {	goto L170;    }    if (l1 > 1) {	e[l1 - 1] = 0.;    }    i__1 = *n - 1;    for (m = l1; m <= i__1; ++m) {	if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) * 		sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {	    e[m] = 0.;	    goto L30;	}/* L20: */    }    m = *n;L30:    l = l1;    lsv = l;    lend = m;    lendsv = lend;    l1 = m + 1;    if (lend == l) {	goto L10;    }/*     Scale submatrix in rows and columns L to LEND */    i__1 = lend - l + 1;    anorm = _starpu_dlanst_("I", &i__1, &d__[l], &e[l]);    iscale = 0;    if (anorm > ssfmax) {	iscale = 1;	i__1 = lend - l + 1;	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 		info);	i__1 = lend - l;	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 		info);    } else if (anorm < ssfmin) {	iscale = 2;	i__1 = lend - l + 1;	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 		info);	i__1 = lend - l;	_starpu_dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 		info);    }    i__1 = lend - 1;    for (i__ = l; i__ <= i__1; ++i__) {/* Computing 2nd power */	d__1 = e[i__];	e[i__] = d__1 * d__1;/* L40: */    }/*     Choose between QL and QR iteration */    if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {	lend = lsv;	l = lendsv;    }    if (lend >= l) {/*        QL Iteration *//*        Look for small subdiagonal element. */L50:	if (l != lend) {	    i__1 = lend - 1;	    for (m = l; m <= i__1; ++m) {		if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 			+ 1], abs(d__1))) {		    goto L70;		}/* L60: */	    }	}	m = lend;L70:	if (m < lend) {	    e[m] = 0.;	}	p = d__[l];	if (m == l) {	    goto L90;	}/*        If remaining matrix is 2 by 2, use DLAE2 to compute its *//*        eigenvalues. */	if (m == l + 1) {	    rte = sqrt(e[l]);	    _starpu_dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);	    d__[l] = rt1;	    d__[l + 1] = rt2;	    e[l] = 0.;	    l += 2;	    if (l <= lend) {		goto L50;	    }	    goto L150;	}	if (jtot == nmaxit) {	    goto L150;	}	++jtot;/*        Form shift. */	rte = sqrt(e[l]);	sigma = (d__[l + 1] - p) / (rte * 2.);	r__ = _starpu_dlapy2_(&sigma, &c_b32);	sigma = p - rte / (sigma + d_sign(&r__, &sigma));	c__ = 1.;	s = 0.;	gamma = d__[m] - sigma;	p = gamma * gamma;/*        Inner loop */	i__1 = l;	for (i__ = m - 1; i__ >= i__1; --i__) {	    bb = e[i__];	    r__ = p + bb;	    if (i__ != m - 1) {		e[i__ + 1] = s * r__;	    }	    oldc = c__;	    c__ = p / r__;	    s = bb / r__;	    oldgam = gamma;	    alpha = d__[i__];	    gamma = c__ * (alpha - sigma) - s * oldgam;	    d__[i__ + 1] = oldgam + (alpha - gamma);	    if (c__ != 0.) {		p = gamma * gamma / c__;	    } else {		p = oldc * bb;	    }/* L80: */	}	e[l] = s * p;	d__[l] = sigma + gamma;	goto L50;/*        Eigenvalue found. */L90:	d__[l] = p;	++l;	if (l <= lend) {	    goto L50;	}	goto L150;    } else {/*        QR Iteration *//*        Look for small superdiagonal element. */L100:	i__1 = lend + 1;	for (m = l; m >= i__1; --m) {	    if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 		    - 1], abs(d__1))) {		goto L120;	    }/* L110: */	}	m = lend;L120:	if (m > lend) {	    e[m - 1] = 0.;	}	p = d__[l];	if (m == l) {	    goto L140;	}/*        If remaining matrix is 2 by 2, use DLAE2 to compute its *//*        eigenvalues. */	if (m == l - 1) {	    rte = sqrt(e[l - 1]);	    _starpu_dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);	    d__[l] = rt1;	    d__[l - 1] = rt2;	    e[l - 1] = 0.;	    l += -2;	    if (l >= lend) {		goto L100;	    }	    goto L150;	}	if (jtot == nmaxit) {	    goto L150;	}	++jtot;/*        Form shift. */	rte = sqrt(e[l - 1]);	sigma = (d__[l - 1] - p) / (rte * 2.);	r__ = _starpu_dlapy2_(&sigma, &c_b32);	sigma = p - rte / (sigma + d_sign(&r__, &sigma));	c__ = 1.;	s = 0.;	gamma = d__[m] - sigma;	p = gamma * gamma;/*        Inner loop */	i__1 = l - 1;	for (i__ = m; i__ <= i__1; ++i__) {	    bb = e[i__];	    r__ = p + bb;	    if (i__ != m) {		e[i__ - 1] = s * r__;	    }	    oldc = c__;	    c__ = p / r__;	    s = bb / r__;	    oldgam = gamma;	    alpha = d__[i__ + 1];	    gamma = c__ * (alpha - sigma) - s * oldgam;	    d__[i__] = oldgam + (alpha - gamma);	    if (c__ != 0.) {		p = gamma * gamma / c__;	    } else {		p = oldc * bb;	    }/* L130: */	}	e[l - 1] = s * p;	d__[l] = sigma + gamma;	goto L100;/*        Eigenvalue found. */L140:	d__[l] = p;	--l;	if (l >= lend) {	    goto L100;	}	goto L150;    }/*     Undo scaling if necessary */L150:    if (iscale == 1) {	i__1 = lendsv - lsv + 1;	_starpu_dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 		n, info);    }    if (iscale == 2) {	i__1 = lendsv - lsv + 1;	_starpu_dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 		n, info);    }/*     Check for no convergence to an eigenvalue after a total *//*     of N*MAXIT iterations. */    if (jtot < nmaxit) {	goto L10;    }    i__1 = *n - 1;    for (i__ = 1; i__ <= i__1; ++i__) {	if (e[i__] != 0.) {	    ++(*info);	}/* L160: */    }    goto L180;/*     Sort eigenvalues in increasing order. */L170:    _starpu_dlasrt_("I", n, &d__[1], info);L180:    return 0;/*     End of DSTERF */} /* _starpu_dsterf_ */
 |