| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 | /* dpbtf2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b8 = -1.;static integer c__1 = 1;/* Subroutine */ int _starpu_dpbtf2_(char *uplo, integer *n, integer *kd, doublereal *	ab, integer *ldab, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, i__1, i__2, i__3;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer j, kn;    doublereal ajj;    integer kld;    extern /* Subroutine */ int _starpu_dsyr_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *), _starpu_dscal_(	    integer *, doublereal *, doublereal *, integer *);    extern logical _starpu_lsame_(char *, char *);    logical upper;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPBTF2 computes the Cholesky factorization of a real symmetric *//*  positive definite band matrix A. *//*  The factorization has the form *//*     A = U' * U ,  if UPLO = 'U', or *//*     A = L  * L',  if UPLO = 'L', *//*  where U is an upper triangular matrix, U' is the transpose of U, and *//*  L is lower triangular. *//*  This is the unblocked version of the algorithm, calling Level 2 BLAS. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored: *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KD      (input) INTEGER *//*          The number of super-diagonals of the matrix A if UPLO = 'U', *//*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix A, stored in the first KD+1 rows of the array.  The *//*          j-th column of A is stored in the j-th column of the array AB *//*          as follows: *//*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). *//*          On exit, if INFO = 0, the triangular factor U or L from the *//*          Cholesky factorization A = U'*U or A = L*L' of the band *//*          matrix A, in the same storage format as A. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KD+1. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -k, the k-th argument had an illegal value *//*          > 0: if INFO = k, the leading minor of order k is not *//*               positive definite, and the factorization could not be *//*               completed. *//*  Further Details *//*  =============== *//*  The band storage scheme is illustrated by the following example, when *//*  N = 6, KD = 2, and UPLO = 'U': *//*  On entry:                       On exit: *//*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 *//*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 *//*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 *//*  Similarly, if UPLO = 'L' the format of A is as follows: *//*  On entry:                       On exit: *//*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 *//*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * *//*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * *//*  Array elements marked * are not used by the routine. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    /* Function Body */    *info = 0;    upper = _starpu_lsame_(uplo, "U");    if (! upper && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kd < 0) {	*info = -3;    } else if (*ldab < *kd + 1) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DPBTF2", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/* Computing MAX */    i__1 = 1, i__2 = *ldab - 1;    kld = max(i__1,i__2);    if (upper) {/*        Compute the Cholesky factorization A = U'*U. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/*           Compute U(J,J) and test for non-positive-definiteness. */	    ajj = ab[*kd + 1 + j * ab_dim1];	    if (ajj <= 0.) {		goto L30;	    }	    ajj = sqrt(ajj);	    ab[*kd + 1 + j * ab_dim1] = ajj;/*           Compute elements J+1:J+KN of row J and update the *//*           trailing submatrix within the band. *//* Computing MIN */	    i__2 = *kd, i__3 = *n - j;	    kn = min(i__2,i__3);	    if (kn > 0) {		d__1 = 1. / ajj;		_starpu_dscal_(&kn, &d__1, &ab[*kd + (j + 1) * ab_dim1], &kld);		_starpu_dsyr_("Upper", &kn, &c_b8, &ab[*kd + (j + 1) * ab_dim1], &kld, 			 &ab[*kd + 1 + (j + 1) * ab_dim1], &kld);	    }/* L10: */	}    } else {/*        Compute the Cholesky factorization A = L*L'. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/*           Compute L(J,J) and test for non-positive-definiteness. */	    ajj = ab[j * ab_dim1 + 1];	    if (ajj <= 0.) {		goto L30;	    }	    ajj = sqrt(ajj);	    ab[j * ab_dim1 + 1] = ajj;/*           Compute elements J+1:J+KN of column J and update the *//*           trailing submatrix within the band. *//* Computing MIN */	    i__2 = *kd, i__3 = *n - j;	    kn = min(i__2,i__3);	    if (kn > 0) {		d__1 = 1. / ajj;		_starpu_dscal_(&kn, &d__1, &ab[j * ab_dim1 + 2], &c__1);		_starpu_dsyr_("Lower", &kn, &c_b8, &ab[j * ab_dim1 + 2], &c__1, &ab[(			j + 1) * ab_dim1 + 1], &kld);	    }/* L20: */	}    }    return 0;L30:    *info = j;    return 0;/*     End of DPBTF2 */} /* _starpu_dpbtf2_ */
 |