| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722 | /* dlasyf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b8 = -1.;static doublereal c_b9 = 1.;/* Subroutine */ int _starpu_dlasyf_(char *uplo, integer *n, integer *nb, integer *kb, 	 doublereal *a, integer *lda, integer *ipiv, doublereal *w, integer *	ldw, integer *info){    /* System generated locals */    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;    doublereal d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer j, k;    doublereal t, r1, d11, d21, d22;    integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax;    doublereal alpha;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *), _starpu_dswap_(integer 	    *, doublereal *, integer *, doublereal *, integer *);    integer kstep;    doublereal absakk;    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    doublereal colmax, rowmax;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASYF computes a partial factorization of a real symmetric matrix A *//*  using the Bunch-Kaufman diagonal pivoting method. The partial *//*  factorization has the form: *//*  A  =  ( I  U12 ) ( A11  0  ) (  I    0   )  if UPLO = 'U', or: *//*        ( 0  U22 ) (  0   D  ) ( U12' U22' ) *//*  A  =  ( L11  0 ) (  D   0  ) ( L11' L21' )  if UPLO = 'L' *//*        ( L21  I ) (  0  A22 ) (  0    I   ) *//*  where the order of D is at most NB. The actual order is returned in *//*  the argument KB, and is either NB or NB-1, or N if N <= NB. *//*  DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code *//*  (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or *//*  A22 (if UPLO = 'L'). *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored: *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NB      (input) INTEGER *//*          The maximum number of columns of the matrix A that should be *//*          factored.  NB should be at least 2 to allow for 2-by-2 pivot *//*          blocks. *//*  KB      (output) INTEGER *//*          The number of columns of A that were actually factored. *//*          KB is either NB-1 or NB, or N if N <= NB. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          n-by-n upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n-by-n lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, A contains details of the partial factorization. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (output) INTEGER array, dimension (N) *//*          Details of the interchanges and the block structure of D. *//*          If UPLO = 'U', only the last KB elements of IPIV are set; *//*          if UPLO = 'L', only the first KB elements are set. *//*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were *//*          interchanged and D(k,k) is a 1-by-1 diagonal block. *//*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and *//*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) *//*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = *//*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were *//*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. *//*  W       (workspace) DOUBLE PRECISION array, dimension (LDW,NB) *//*  LDW     (input) INTEGER *//*          The leading dimension of the array W.  LDW >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization *//*               has been completed, but the block diagonal matrix D is *//*               exactly singular. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    w_dim1 = *ldw;    w_offset = 1 + w_dim1;    w -= w_offset;    /* Function Body */    *info = 0;/*     Initialize ALPHA for use in choosing pivot block size. */    alpha = (sqrt(17.) + 1.) / 8.;    if (_starpu_lsame_(uplo, "U")) {/*        Factorize the trailing columns of A using the upper triangle *//*        of A and working backwards, and compute the matrix W = U12*D *//*        for use in updating A11 *//*        K is the main loop index, decreasing from N in steps of 1 or 2 *//*        KW is the column of W which corresponds to column K of A */	k = *n;L10:	kw = *nb + k - *n;/*        Exit from loop */	if (k <= *n - *nb + 1 && *nb < *n || k < 1) {	    goto L30;	}/*        Copy column K of A to column KW of W and update it */	_starpu_dcopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);	if (k < *n) {	    i__1 = *n - k;	    _starpu_dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * a_dim1 + 1], 		     lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b9, &w[kw * 		    w_dim1 + 1], &c__1);	}	kstep = 1;/*        Determine rows and columns to be interchanged and whether *//*        a 1-by-1 or 2-by-2 pivot block will be used */	absakk = (d__1 = w[k + kw * w_dim1], abs(d__1));/*        IMAX is the row-index of the largest off-diagonal element in *//*        column K, and COLMAX is its absolute value */	if (k > 1) {	    i__1 = k - 1;	    imax = _starpu_idamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);	    colmax = (d__1 = w[imax + kw * w_dim1], abs(d__1));	} else {	    colmax = 0.;	}	if (max(absakk,colmax) == 0.) {/*           Column K is zero: set INFO and continue */	    if (*info == 0) {		*info = k;	    }	    kp = k;	} else {	    if (absakk >= alpha * colmax) {/*              no interchange, use 1-by-1 pivot block */		kp = k;	    } else {/*              Copy column IMAX to column KW-1 of W and update it */		_starpu_dcopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) * 			w_dim1 + 1], &c__1);		i__1 = k - imax;		_starpu_dcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax + 			1 + (kw - 1) * w_dim1], &c__1);		if (k < *n) {		    i__1 = *n - k;		    _starpu_dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * 			    a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1], 			    ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);		}/*              JMAX is the column-index of the largest off-diagonal *//*              element in row IMAX, and ROWMAX is its absolute value */		i__1 = k - imax;		jmax = imax + _starpu_idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], 			 &c__1);		rowmax = (d__1 = w[jmax + (kw - 1) * w_dim1], abs(d__1));		if (imax > 1) {		    i__1 = imax - 1;		    jmax = _starpu_idamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);/* Computing MAX */		    d__2 = rowmax, d__3 = (d__1 = w[jmax + (kw - 1) * w_dim1],			     abs(d__1));		    rowmax = max(d__2,d__3);		}		if (absakk >= alpha * colmax * (colmax / rowmax)) {/*                 no interchange, use 1-by-1 pivot block */		    kp = k;		} else if ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) >= 			alpha * rowmax) {/*                 interchange rows and columns K and IMAX, use 1-by-1 *//*                 pivot block */		    kp = imax;/*                 copy column KW-1 of W to column KW */		    _starpu_dcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * 			    w_dim1 + 1], &c__1);		} else {/*                 interchange rows and columns K-1 and IMAX, use 2-by-2 *//*                 pivot block */		    kp = imax;		    kstep = 2;		}	    }	    kk = k - kstep + 1;	    kkw = *nb + kk - *n;/*           Updated column KP is already stored in column KKW of W */	    if (kp != kk) {/*              Copy non-updated column KK to column KP */		a[kp + k * a_dim1] = a[kk + k * a_dim1];		i__1 = k - 1 - kp;		_starpu_dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 			1) * a_dim1], lda);		_starpu_dcopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &			c__1);/*              Interchange rows KK and KP in last KK columns of A and W */		i__1 = *n - kk + 1;		_starpu_dswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1], 			 lda);		i__1 = *n - kk + 1;		_starpu_dswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw * 			w_dim1], ldw);	    }	    if (kstep == 1) {/*              1-by-1 pivot block D(k): column KW of W now holds *//*              W(k) = U(k)*D(k) *//*              where U(k) is the k-th column of U *//*              Store U(k) in column k of A */		_starpu_dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &			c__1);		r1 = 1. / a[k + k * a_dim1];		i__1 = k - 1;		_starpu_dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);	    } else {/*              2-by-2 pivot block D(k): columns KW and KW-1 of W now *//*              hold *//*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) *//*              where U(k) and U(k-1) are the k-th and (k-1)-th columns *//*              of U */		if (k > 2) {/*                 Store U(k) and U(k-1) in columns k and k-1 of A */		    d21 = w[k - 1 + kw * w_dim1];		    d11 = w[k + kw * w_dim1] / d21;		    d22 = w[k - 1 + (kw - 1) * w_dim1] / d21;		    t = 1. / (d11 * d22 - 1.);		    d21 = t / d21;		    i__1 = k - 2;		    for (j = 1; j <= i__1; ++j) {			a[j + (k - 1) * a_dim1] = d21 * (d11 * w[j + (kw - 1) 				* w_dim1] - w[j + kw * w_dim1]);			a[j + k * a_dim1] = d21 * (d22 * w[j + kw * w_dim1] - 				w[j + (kw - 1) * w_dim1]);/* L20: */		    }		}/*              Copy D(k) to A */		a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];		a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];		a[k + k * a_dim1] = w[k + kw * w_dim1];	    }	}/*        Store details of the interchanges in IPIV */	if (kstep == 1) {	    ipiv[k] = kp;	} else {	    ipiv[k] = -kp;	    ipiv[k - 1] = -kp;	}/*        Decrease K and return to the start of the main loop */	k -= kstep;	goto L10;L30:/*        Update the upper triangle of A11 (= A(1:k,1:k)) as *//*        A11 := A11 - U12*D*U12' = A11 - U12*W' *//*        computing blocks of NB columns at a time */	i__1 = -(*nb);	for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j += 		i__1) {/* Computing MIN */	    i__2 = *nb, i__3 = k - j + 1;	    jb = min(i__2,i__3);/*           Update the upper triangle of the diagonal block */	    i__2 = j + jb - 1;	    for (jj = j; jj <= i__2; ++jj) {		i__3 = jj - j + 1;		i__4 = *n - k;		_starpu_dgemv_("No transpose", &i__3, &i__4, &c_b8, &a[j + (k + 1) * 			a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b9, 			&a[j + jj * a_dim1], &c__1);/* L40: */	    }/*           Update the rectangular superdiagonal block */	    i__2 = j - 1;	    i__3 = *n - k;	    _starpu_dgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b8, &a[(		    k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw, 		     &c_b9, &a[j * a_dim1 + 1], lda);/* L50: */	}/*        Put U12 in standard form by partially undoing the interchanges *//*        in columns k+1:n */	j = k + 1;L60:	jj = j;	jp = ipiv[j];	if (jp < 0) {	    jp = -jp;	    ++j;	}	++j;	if (jp != jj && j <= *n) {	    i__1 = *n - j + 1;	    _starpu_dswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);	}	if (j <= *n) {	    goto L60;	}/*        Set KB to the number of columns factorized */	*kb = *n - k;    } else {/*        Factorize the leading columns of A using the lower triangle *//*        of A and working forwards, and compute the matrix W = L21*D *//*        for use in updating A22 *//*        K is the main loop index, increasing from 1 in steps of 1 or 2 */	k = 1;L70:/*        Exit from loop */	if (k >= *nb && *nb < *n || k > *n) {	    goto L90;	}/*        Copy column K of A to column K of W and update it */	i__1 = *n - k + 1;	_starpu_dcopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);	i__1 = *n - k + 1;	i__2 = k - 1;	_starpu_dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], lda, &w[k 		+ w_dim1], ldw, &c_b9, &w[k + k * w_dim1], &c__1);	kstep = 1;/*        Determine rows and columns to be interchanged and whether *//*        a 1-by-1 or 2-by-2 pivot block will be used */	absakk = (d__1 = w[k + k * w_dim1], abs(d__1));/*        IMAX is the row-index of the largest off-diagonal element in *//*        column K, and COLMAX is its absolute value */	if (k < *n) {	    i__1 = *n - k;	    imax = k + _starpu_idamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);	    colmax = (d__1 = w[imax + k * w_dim1], abs(d__1));	} else {	    colmax = 0.;	}	if (max(absakk,colmax) == 0.) {/*           Column K is zero: set INFO and continue */	    if (*info == 0) {		*info = k;	    }	    kp = k;	} else {	    if (absakk >= alpha * colmax) {/*              no interchange, use 1-by-1 pivot block */		kp = k;	    } else {/*              Copy column IMAX to column K+1 of W and update it */		i__1 = imax - k;		_starpu_dcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) * 			w_dim1], &c__1);		i__1 = *n - imax + 1;		_starpu_dcopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k + 			1) * w_dim1], &c__1);		i__1 = *n - k + 1;		i__2 = k - 1;		_starpu_dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], 			lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) * 			w_dim1], &c__1);/*              JMAX is the column-index of the largest off-diagonal *//*              element in row IMAX, and ROWMAX is its absolute value */		i__1 = imax - k;		jmax = k - 1 + _starpu_idamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)			;		rowmax = (d__1 = w[jmax + (k + 1) * w_dim1], abs(d__1));		if (imax < *n) {		    i__1 = *n - imax;		    jmax = imax + _starpu_idamax_(&i__1, &w[imax + 1 + (k + 1) * 			    w_dim1], &c__1);/* Computing MAX */		    d__2 = rowmax, d__3 = (d__1 = w[jmax + (k + 1) * w_dim1], 			    abs(d__1));		    rowmax = max(d__2,d__3);		}		if (absakk >= alpha * colmax * (colmax / rowmax)) {/*                 no interchange, use 1-by-1 pivot block */		    kp = k;		} else if ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) >= 			alpha * rowmax) {/*                 interchange rows and columns K and IMAX, use 1-by-1 *//*                 pivot block */		    kp = imax;/*                 copy column K+1 of W to column K */		    i__1 = *n - k + 1;		    _starpu_dcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k * 			    w_dim1], &c__1);		} else {/*                 interchange rows and columns K+1 and IMAX, use 2-by-2 *//*                 pivot block */		    kp = imax;		    kstep = 2;		}	    }	    kk = k + kstep - 1;/*           Updated column KP is already stored in column KK of W */	    if (kp != kk) {/*              Copy non-updated column KK to column KP */		a[kp + k * a_dim1] = a[kk + k * a_dim1];		i__1 = kp - k - 1;		_starpu_dcopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1) 			* a_dim1], lda);		i__1 = *n - kp + 1;		_starpu_dcopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp * 			a_dim1], &c__1);/*              Interchange rows KK and KP in first KK columns of A and W */		_starpu_dswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);		_starpu_dswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);	    }	    if (kstep == 1) {/*              1-by-1 pivot block D(k): column k of W now holds *//*              W(k) = L(k)*D(k) *//*              where L(k) is the k-th column of L *//*              Store L(k) in column k of A */		i__1 = *n - k + 1;		_starpu_dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &			c__1);		if (k < *n) {		    r1 = 1. / a[k + k * a_dim1];		    i__1 = *n - k;		    _starpu_dscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);		}	    } else {/*              2-by-2 pivot block D(k): columns k and k+1 of W now hold *//*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) *//*              where L(k) and L(k+1) are the k-th and (k+1)-th columns *//*              of L */		if (k < *n - 1) {/*                 Store L(k) and L(k+1) in columns k and k+1 of A */		    d21 = w[k + 1 + k * w_dim1];		    d11 = w[k + 1 + (k + 1) * w_dim1] / d21;		    d22 = w[k + k * w_dim1] / d21;		    t = 1. / (d11 * d22 - 1.);		    d21 = t / d21;		    i__1 = *n;		    for (j = k + 2; j <= i__1; ++j) {			a[j + k * a_dim1] = d21 * (d11 * w[j + k * w_dim1] - 				w[j + (k + 1) * w_dim1]);			a[j + (k + 1) * a_dim1] = d21 * (d22 * w[j + (k + 1) *				 w_dim1] - w[j + k * w_dim1]);/* L80: */		    }		}/*              Copy D(k) to A */		a[k + k * a_dim1] = w[k + k * w_dim1];		a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];		a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];	    }	}/*        Store details of the interchanges in IPIV */	if (kstep == 1) {	    ipiv[k] = kp;	} else {	    ipiv[k] = -kp;	    ipiv[k + 1] = -kp;	}/*        Increase K and return to the start of the main loop */	k += kstep;	goto L70;L90:/*        Update the lower triangle of A22 (= A(k:n,k:n)) as *//*        A22 := A22 - L21*D*L21' = A22 - L21*W' *//*        computing blocks of NB columns at a time */	i__1 = *n;	i__2 = *nb;	for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {/* Computing MIN */	    i__3 = *nb, i__4 = *n - j + 1;	    jb = min(i__3,i__4);/*           Update the lower triangle of the diagonal block */	    i__3 = j + jb - 1;	    for (jj = j; jj <= i__3; ++jj) {		i__4 = j + jb - jj;		i__5 = k - 1;		_starpu_dgemv_("No transpose", &i__4, &i__5, &c_b8, &a[jj + a_dim1], 			lda, &w[jj + w_dim1], ldw, &c_b9, &a[jj + jj * a_dim1], &c__1);/* L100: */	    }/*           Update the rectangular subdiagonal block */	    if (j + jb <= *n) {		i__3 = *n - j - jb + 1;		i__4 = k - 1;		_starpu_dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b8, 			&a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b9, 			&a[j + jb + j * a_dim1], lda);	    }/* L110: */	}/*        Put L21 in standard form by partially undoing the interchanges *//*        in columns 1:k-1 */	j = k - 1;L120:	jj = j;	jp = ipiv[j];	if (jp < 0) {	    jp = -jp;	    --j;	}	--j;	if (jp != jj && j >= 1) {	    _starpu_dswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);	}	if (j >= 1) {	    goto L120;	}/*        Set KB to the number of columns factorized */	*kb = k - 1;    }    return 0;/*     End of DLASYF */} /* _starpu_dlasyf_ */
 |