| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 | /* dlasq3.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlasq3_(integer *i0, integer *n0, doublereal *z__, 	integer *pp, doublereal *dmin__, doublereal *sigma, doublereal *desig, 	 doublereal *qmax, integer *nfail, integer *iter, integer *ndiv, 	logical *ieee, integer *ttype, doublereal *dmin1, doublereal *dmin2, 	doublereal *dn, doublereal *dn1, doublereal *dn2, doublereal *g, 	doublereal *tau){    /* System generated locals */    integer i__1;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal s, t;    integer j4, nn;    doublereal eps, tol;    integer n0in, ipn4;    doublereal tol2, temp;    extern /* Subroutine */ int _starpu_dlasq4_(integer *, integer *, doublereal *, 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *), _starpu_dlasq5_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, doublereal *, doublereal *, logical *), _starpu_dlasq6_(	    integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *);    extern doublereal _starpu_dlamch_(char *);    extern logical _starpu_disnan_(doublereal *);/*  -- LAPACK routine (version 3.2)                                    -- *//*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- *//*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- *//*  -- Berkeley                                                        -- *//*  -- November 2008                                                   -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds. *//*  In case of failure it changes shifts, and tries again until output *//*  is positive. *//*  Arguments *//*  ========= *//*  I0     (input) INTEGER *//*         First index. *//*  N0     (input) INTEGER *//*         Last index. *//*  Z      (input) DOUBLE PRECISION array, dimension ( 4*N ) *//*         Z holds the qd array. *//*  PP     (input/output) INTEGER *//*         PP=0 for ping, PP=1 for pong. *//*         PP=2 indicates that flipping was applied to the Z array *//*         and that the initial tests for deflation should not be *//*         performed. *//*  DMIN   (output) DOUBLE PRECISION *//*         Minimum value of d. *//*  SIGMA  (output) DOUBLE PRECISION *//*         Sum of shifts used in current segment. *//*  DESIG  (input/output) DOUBLE PRECISION *//*         Lower order part of SIGMA *//*  QMAX   (input) DOUBLE PRECISION *//*         Maximum value of q. *//*  NFAIL  (output) INTEGER *//*         Number of times shift was too big. *//*  ITER   (output) INTEGER *//*         Number of iterations. *//*  NDIV   (output) INTEGER *//*         Number of divisions. *//*  IEEE   (input) LOGICAL *//*         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5). *//*  TTYPE  (input/output) INTEGER *//*         Shift type. *//*  DMIN1, DMIN2, DN, DN1, DN2, G, TAU (input/output) DOUBLE PRECISION *//*         These are passed as arguments in order to save their values *//*         between calls to DLASQ3. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Function .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --z__;    /* Function Body */    n0in = *n0;    eps = _starpu_dlamch_("Precision");    tol = eps * 100.;/* Computing 2nd power */    d__1 = tol;    tol2 = d__1 * d__1;/*     Check for deflation. */L10:    if (*n0 < *i0) {	return 0;    }    if (*n0 == *i0) {	goto L20;    }    nn = (*n0 << 2) + *pp;    if (*n0 == *i0 + 1) {	goto L40;    }/*     Check whether E(N0-1) is negligible, 1 eigenvalue. */    if (z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - (*pp << 1) - 	    4] > tol2 * z__[nn - 7]) {	goto L30;    }L20:    z__[(*n0 << 2) - 3] = z__[(*n0 << 2) + *pp - 3] + *sigma;    --(*n0);    goto L10;/*     Check  whether E(N0-2) is negligible, 2 eigenvalues. */L30:    if (z__[nn - 9] > tol2 * *sigma && z__[nn - (*pp << 1) - 8] > tol2 * z__[	    nn - 11]) {	goto L50;    }L40:    if (z__[nn - 3] > z__[nn - 7]) {	s = z__[nn - 3];	z__[nn - 3] = z__[nn - 7];	z__[nn - 7] = s;    }    if (z__[nn - 5] > z__[nn - 3] * tol2) {	t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5;	s = z__[nn - 3] * (z__[nn - 5] / t);	if (s <= t) {	    s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.) + 1.)));	} else {	    s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s)));	}	t = z__[nn - 7] + (s + z__[nn - 5]);	z__[nn - 3] *= z__[nn - 7] / t;	z__[nn - 7] = t;    }    z__[(*n0 << 2) - 7] = z__[nn - 7] + *sigma;    z__[(*n0 << 2) - 3] = z__[nn - 3] + *sigma;    *n0 += -2;    goto L10;L50:    if (*pp == 2) {	*pp = 0;    }/*     Reverse the qd-array, if warranted. */    if (*dmin__ <= 0. || *n0 < n0in) {	if (z__[(*i0 << 2) + *pp - 3] * 1.5 < z__[(*n0 << 2) + *pp - 3]) {	    ipn4 = *i0 + *n0 << 2;	    i__1 = *i0 + *n0 - 1 << 1;	    for (j4 = *i0 << 2; j4 <= i__1; j4 += 4) {		temp = z__[j4 - 3];		z__[j4 - 3] = z__[ipn4 - j4 - 3];		z__[ipn4 - j4 - 3] = temp;		temp = z__[j4 - 2];		z__[j4 - 2] = z__[ipn4 - j4 - 2];		z__[ipn4 - j4 - 2] = temp;		temp = z__[j4 - 1];		z__[j4 - 1] = z__[ipn4 - j4 - 5];		z__[ipn4 - j4 - 5] = temp;		temp = z__[j4];		z__[j4] = z__[ipn4 - j4 - 4];		z__[ipn4 - j4 - 4] = temp;/* L60: */	    }	    if (*n0 - *i0 <= 4) {		z__[(*n0 << 2) + *pp - 1] = z__[(*i0 << 2) + *pp - 1];		z__[(*n0 << 2) - *pp] = z__[(*i0 << 2) - *pp];	    }/* Computing MIN */	    d__1 = *dmin2, d__2 = z__[(*n0 << 2) + *pp - 1];	    *dmin2 = min(d__1,d__2);/* Computing MIN */	    d__1 = z__[(*n0 << 2) + *pp - 1], d__2 = z__[(*i0 << 2) + *pp - 1]		    , d__1 = min(d__1,d__2), d__2 = z__[(*i0 << 2) + *pp + 3];	    z__[(*n0 << 2) + *pp - 1] = min(d__1,d__2);/* Computing MIN */	    d__1 = z__[(*n0 << 2) - *pp], d__2 = z__[(*i0 << 2) - *pp], d__1 =		     min(d__1,d__2), d__2 = z__[(*i0 << 2) - *pp + 4];	    z__[(*n0 << 2) - *pp] = min(d__1,d__2);/* Computing MAX */	    d__1 = *qmax, d__2 = z__[(*i0 << 2) + *pp - 3], d__1 = max(d__1,		    d__2), d__2 = z__[(*i0 << 2) + *pp + 1];	    *qmax = max(d__1,d__2);	    *dmin__ = -0.;	}    }/*     Choose a shift. */    _starpu_dlasq4_(i0, n0, &z__[1], pp, &n0in, dmin__, dmin1, dmin2, dn, dn1, dn2, 	    tau, ttype, g);/*     Call dqds until DMIN > 0. */L70:    _starpu_dlasq5_(i0, n0, &z__[1], pp, tau, dmin__, dmin1, dmin2, dn, dn1, dn2, 	    ieee);    *ndiv += *n0 - *i0 + 2;    ++(*iter);/*     Check status. */    if (*dmin__ >= 0. && *dmin1 > 0.) {/*        Success. */	goto L90;    } else if (*dmin__ < 0. && *dmin1 > 0. && z__[(*n0 - 1 << 2) - *pp] < tol 	    * (*sigma + *dn1) && abs(*dn) < tol * *sigma) {/*        Convergence hidden by negative DN. */	z__[(*n0 - 1 << 2) - *pp + 2] = 0.;	*dmin__ = 0.;	goto L90;    } else if (*dmin__ < 0.) {/*        TAU too big. Select new TAU and try again. */	++(*nfail);	if (*ttype < -22) {/*           Failed twice. Play it safe. */	    *tau = 0.;	} else if (*dmin1 > 0.) {/*           Late failure. Gives excellent shift. */	    *tau = (*tau + *dmin__) * (1. - eps * 2.);	    *ttype += -11;	} else {/*           Early failure. Divide by 4. */	    *tau *= .25;	    *ttype += -12;	}	goto L70;    } else if (_starpu_disnan_(dmin__)) {/*        NaN. */	if (*tau == 0.) {	    goto L80;	} else {	    *tau = 0.;	    goto L70;	}    } else {/*        Possible underflow. Play it safe. */	goto L80;    }/*     Risk of underflow. */L80:    _starpu_dlasq6_(i0, n0, &z__[1], pp, dmin__, dmin1, dmin2, dn, dn1, dn2);    *ndiv += *n0 - *i0 + 2;    ++(*iter);    *tau = 0.;L90:    if (*tau < *sigma) {	*desig += *tau;	t = *sigma + *desig;	*desig -= t - *sigma;    } else {	t = *sigma + *tau;	*desig = *sigma - (t - *tau) + *desig;    }    *sigma = t;    return 0;/*     End of DLASQ3 */} /* _starpu_dlasq3_ */
 |