| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011 | 
							- /* dlasd4.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlasd4_(integer *n, integer *i__, doublereal *d__, 
 
- 	doublereal *z__, doublereal *delta, doublereal *rho, doublereal *
 
- 	sigma, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal a, b, c__;
 
-     integer j;
 
-     doublereal w, dd[3];
 
-     integer ii;
 
-     doublereal dw, zz[3];
 
-     integer ip1;
 
-     doublereal eta, phi, eps, tau, psi;
 
-     integer iim1, iip1;
 
-     doublereal dphi, dpsi;
 
-     integer iter;
 
-     doublereal temp, prew, sg2lb, sg2ub, temp1, temp2, dtiim, delsq, dtiip;
 
-     integer niter;
 
-     doublereal dtisq;
 
-     logical swtch;
 
-     doublereal dtnsq;
 
-     extern /* Subroutine */ int _starpu_dlaed6_(integer *, logical *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *)
 
- 	    , _starpu_dlasd5_(integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *);
 
-     doublereal delsq2, dtnsq1;
 
-     logical swtch3;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     logical orgati;
 
-     doublereal erretm, dtipsq, rhoinv;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  This subroutine computes the square root of the I-th updated */
 
- /*  eigenvalue of a positive symmetric rank-one modification to */
 
- /*  a positive diagonal matrix whose entries are given as the squares */
 
- /*  of the corresponding entries in the array d, and that */
 
- /*         0 <= D(i) < D(j)  for  i < j */
 
- /*  and that RHO > 0. This is arranged by the calling routine, and is */
 
- /*  no loss in generality.  The rank-one modified system is thus */
 
- /*         diag( D ) * diag( D ) +  RHO *  Z * Z_transpose. */
 
- /*  where we assume the Euclidean norm of Z is 1. */
 
- /*  The method consists of approximating the rational functions in the */
 
- /*  secular equation by simpler interpolating rational functions. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N      (input) INTEGER */
 
- /*         The length of all arrays. */
 
- /*  I      (input) INTEGER */
 
- /*         The index of the eigenvalue to be computed.  1 <= I <= N. */
 
- /*  D      (input) DOUBLE PRECISION array, dimension ( N ) */
 
- /*         The original eigenvalues.  It is assumed that they are in */
 
- /*         order, 0 <= D(I) < D(J)  for I < J. */
 
- /*  Z      (input) DOUBLE PRECISION array, dimension ( N ) */
 
- /*         The components of the updating vector. */
 
- /*  DELTA  (output) DOUBLE PRECISION array, dimension ( N ) */
 
- /*         If N .ne. 1, DELTA contains (D(j) - sigma_I) in its  j-th */
 
- /*         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA */
 
- /*         contains the information necessary to construct the */
 
- /*         (singular) eigenvectors. */
 
- /*  RHO    (input) DOUBLE PRECISION */
 
- /*         The scalar in the symmetric updating formula. */
 
- /*  SIGMA  (output) DOUBLE PRECISION */
 
- /*         The computed sigma_I, the I-th updated eigenvalue. */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, dimension ( N ) */
 
- /*         If N .ne. 1, WORK contains (D(j) + sigma_I) in its  j-th */
 
- /*         component.  If N = 1, then WORK( 1 ) = 1. */
 
- /*  INFO   (output) INTEGER */
 
- /*         = 0:  successful exit */
 
- /*         > 0:  if INFO = 1, the updating process failed. */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  Logical variable ORGATI (origin-at-i?) is used for distinguishing */
 
- /*  whether D(i) or D(i+1) is treated as the origin. */
 
- /*            ORGATI = .true.    origin at i */
 
- /*            ORGATI = .false.   origin at i+1 */
 
- /*  Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
 
- /*  if we are working with THREE poles! */
 
- /*  MAXIT is the maximum number of iterations allowed for each */
 
- /*  eigenvalue. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ren-Cang Li, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Since this routine is called in an inner loop, we do no argument */
 
- /*     checking. */
 
- /*     Quick return for N=1 and 2. */
 
-     /* Parameter adjustments */
 
-     --work;
 
-     --delta;
 
-     --z__;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n == 1) {
 
- /*        Presumably, I=1 upon entry */
 
- 	*sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
 
- 	delta[1] = 1.;
 
- 	work[1] = 1.;
 
- 	return 0;
 
-     }
 
-     if (*n == 2) {
 
- 	_starpu_dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
 
- 	return 0;
 
-     }
 
- /*     Compute machine epsilon */
 
-     eps = _starpu_dlamch_("Epsilon");
 
-     rhoinv = 1. / *rho;
 
- /*     The case I = N */
 
-     if (*i__ == *n) {
 
- /*        Initialize some basic variables */
 
- 	ii = *n - 1;
 
- 	niter = 1;
 
- /*        Calculate initial guess */
 
- 	temp = *rho / 2.;
 
- /*        If ||Z||_2 is not one, then TEMP should be set to */
 
- /*        RHO * ||Z||_2^2 / TWO */
 
- 	temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    work[j] = d__[j] + d__[*n] + temp1;
 
- 	    delta[j] = d__[j] - d__[*n] - temp1;
 
- /* L10: */
 
- 	}
 
- 	psi = 0.;
 
- 	i__1 = *n - 2;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    psi += z__[j] * z__[j] / (delta[j] * work[j]);
 
- /* L20: */
 
- 	}
 
- 	c__ = rhoinv + psi;
 
- 	w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
 
- 		n] / (delta[*n] * work[*n]);
 
- 	if (w <= 0.) {
 
- 	    temp1 = sqrt(d__[*n] * d__[*n] + *rho);
 
- 	    temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
 
- 		    n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] * 
 
- 		    z__[*n] / *rho;
 
- /*           The following TAU is to approximate */
 
- /*           SIGMA_n^2 - D( N )*D( N ) */
 
- 	    if (c__ <= temp) {
 
- 		tau = *rho;
 
- 	    } else {
 
- 		delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
 
- 		a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
 
- 			n];
 
- 		b = z__[*n] * z__[*n] * delsq;
 
- 		if (a < 0.) {
 
- 		    tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 
- 		} else {
 
- 		    tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 
- 		}
 
- 	    }
 
- /*           It can be proved that */
 
- /*               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO */
 
- 	} else {
 
- 	    delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
 
- 	    a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
 
- 	    b = z__[*n] * z__[*n] * delsq;
 
- /*           The following TAU is to approximate */
 
- /*           SIGMA_n^2 - D( N )*D( N ) */
 
- 	    if (a < 0.) {
 
- 		tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 
- 	    } else {
 
- 		tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 
- 	    }
 
- /*           It can be proved that */
 
- /*           D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2 */
 
- 	}
 
- /*        The following ETA is to approximate SIGMA_n - D( N ) */
 
- 	eta = tau / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau));
 
- 	*sigma = d__[*n] + eta;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    delta[j] = d__[j] - d__[*i__] - eta;
 
- 	    work[j] = d__[j] + d__[*i__] + eta;
 
- /* L30: */
 
- 	}
 
- /*        Evaluate PSI and the derivative DPSI */
 
- 	dpsi = 0.;
 
- 	psi = 0.;
 
- 	erretm = 0.;
 
- 	i__1 = ii;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    temp = z__[j] / (delta[j] * work[j]);
 
- 	    psi += z__[j] * temp;
 
- 	    dpsi += temp * temp;
 
- 	    erretm += psi;
 
- /* L40: */
 
- 	}
 
- 	erretm = abs(erretm);
 
- /*        Evaluate PHI and the derivative DPHI */
 
- 	temp = z__[*n] / (delta[*n] * work[*n]);
 
- 	phi = z__[*n] * temp;
 
- 	dphi = temp * temp;
 
- 	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 
- 		+ dphi);
 
- 	w = rhoinv + phi + psi;
 
- /*        Test for convergence */
 
- 	if (abs(w) <= eps * erretm) {
 
- 	    goto L240;
 
- 	}
 
- /*        Calculate the new step */
 
- 	++niter;
 
- 	dtnsq1 = work[*n - 1] * delta[*n - 1];
 
- 	dtnsq = work[*n] * delta[*n];
 
- 	c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
 
- 	a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
 
- 	b = dtnsq * dtnsq1 * w;
 
- 	if (c__ < 0.) {
 
- 	    c__ = abs(c__);
 
- 	}
 
- 	if (c__ == 0.) {
 
- 	    eta = *rho - *sigma * *sigma;
 
- 	} else if (a >= 0.) {
 
- 	    eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ 
 
- 		    * 2.);
 
- 	} else {
 
- 	    eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
 
- 		    );
 
- 	}
 
- /*        Note, eta should be positive if w is negative, and */
 
- /*        eta should be negative otherwise. However, */
 
- /*        if for some reason caused by roundoff, eta*w > 0, */
 
- /*        we simply use one Newton step instead. This way */
 
- /*        will guarantee eta*w < 0. */
 
- 	if (w * eta > 0.) {
 
- 	    eta = -w / (dpsi + dphi);
 
- 	}
 
- 	temp = eta - dtnsq;
 
- 	if (temp > *rho) {
 
- 	    eta = *rho + dtnsq;
 
- 	}
 
- 	tau += eta;
 
- 	eta /= *sigma + sqrt(eta + *sigma * *sigma);
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    delta[j] -= eta;
 
- 	    work[j] += eta;
 
- /* L50: */
 
- 	}
 
- 	*sigma += eta;
 
- /*        Evaluate PSI and the derivative DPSI */
 
- 	dpsi = 0.;
 
- 	psi = 0.;
 
- 	erretm = 0.;
 
- 	i__1 = ii;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    temp = z__[j] / (work[j] * delta[j]);
 
- 	    psi += z__[j] * temp;
 
- 	    dpsi += temp * temp;
 
- 	    erretm += psi;
 
- /* L60: */
 
- 	}
 
- 	erretm = abs(erretm);
 
- /*        Evaluate PHI and the derivative DPHI */
 
- 	temp = z__[*n] / (work[*n] * delta[*n]);
 
- 	phi = z__[*n] * temp;
 
- 	dphi = temp * temp;
 
- 	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 
- 		+ dphi);
 
- 	w = rhoinv + phi + psi;
 
- /*        Main loop to update the values of the array   DELTA */
 
- 	iter = niter + 1;
 
- 	for (niter = iter; niter <= 20; ++niter) {
 
- /*           Test for convergence */
 
- 	    if (abs(w) <= eps * erretm) {
 
- 		goto L240;
 
- 	    }
 
- /*           Calculate the new step */
 
- 	    dtnsq1 = work[*n - 1] * delta[*n - 1];
 
- 	    dtnsq = work[*n] * delta[*n];
 
- 	    c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
 
- 	    a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
 
- 	    b = dtnsq1 * dtnsq * w;
 
- 	    if (a >= 0.) {
 
- 		eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 
- 			c__ * 2.);
 
- 	    } else {
 
- 		eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
 
- 			d__1))));
 
- 	    }
 
- /*           Note, eta should be positive if w is negative, and */
 
- /*           eta should be negative otherwise. However, */
 
- /*           if for some reason caused by roundoff, eta*w > 0, */
 
- /*           we simply use one Newton step instead. This way */
 
- /*           will guarantee eta*w < 0. */
 
- 	    if (w * eta > 0.) {
 
- 		eta = -w / (dpsi + dphi);
 
- 	    }
 
- 	    temp = eta - dtnsq;
 
- 	    if (temp <= 0.) {
 
- 		eta /= 2.;
 
- 	    }
 
- 	    tau += eta;
 
- 	    eta /= *sigma + sqrt(eta + *sigma * *sigma);
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		delta[j] -= eta;
 
- 		work[j] += eta;
 
- /* L70: */
 
- 	    }
 
- 	    *sigma += eta;
 
- /*           Evaluate PSI and the derivative DPSI */
 
- 	    dpsi = 0.;
 
- 	    psi = 0.;
 
- 	    erretm = 0.;
 
- 	    i__1 = ii;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		temp = z__[j] / (work[j] * delta[j]);
 
- 		psi += z__[j] * temp;
 
- 		dpsi += temp * temp;
 
- 		erretm += psi;
 
- /* L80: */
 
- 	    }
 
- 	    erretm = abs(erretm);
 
- /*           Evaluate PHI and the derivative DPHI */
 
- 	    temp = z__[*n] / (work[*n] * delta[*n]);
 
- 	    phi = z__[*n] * temp;
 
- 	    dphi = temp * temp;
 
- 	    erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
 
- 		    dpsi + dphi);
 
- 	    w = rhoinv + phi + psi;
 
- /* L90: */
 
- 	}
 
- /*        Return with INFO = 1, NITER = MAXIT and not converged */
 
- 	*info = 1;
 
- 	goto L240;
 
- /*        End for the case I = N */
 
-     } else {
 
- /*        The case for I < N */
 
- 	niter = 1;
 
- 	ip1 = *i__ + 1;
 
- /*        Calculate initial guess */
 
- 	delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
 
- 	delsq2 = delsq / 2.;
 
- 	temp = delsq2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + delsq2));
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    work[j] = d__[j] + d__[*i__] + temp;
 
- 	    delta[j] = d__[j] - d__[*i__] - temp;
 
- /* L100: */
 
- 	}
 
- 	psi = 0.;
 
- 	i__1 = *i__ - 1;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    psi += z__[j] * z__[j] / (work[j] * delta[j]);
 
- /* L110: */
 
- 	}
 
- 	phi = 0.;
 
- 	i__1 = *i__ + 2;
 
- 	for (j = *n; j >= i__1; --j) {
 
- 	    phi += z__[j] * z__[j] / (work[j] * delta[j]);
 
- /* L120: */
 
- 	}
 
- 	c__ = rhoinv + psi + phi;
 
- 	w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
 
- 		ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
 
- 	if (w > 0.) {
 
- /*           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */
 
- /*           We choose d(i) as origin. */
 
- 	    orgati = TRUE_;
 
- 	    sg2lb = 0.;
 
- 	    sg2ub = delsq2;
 
- 	    a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
 
- 	    b = z__[*i__] * z__[*i__] * delsq;
 
- 	    if (a > 0.) {
 
- 		tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 
- 			d__1))));
 
- 	    } else {
 
- 		tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 
- 			c__ * 2.);
 
- 	    }
 
- /*           TAU now is an estimation of SIGMA^2 - D( I )^2. The */
 
- /*           following, however, is the corresponding estimation of */
 
- /*           SIGMA - D( I ). */
 
- 	    eta = tau / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau));
 
- 	} else {
 
- /*           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */
 
- /*           We choose d(i+1) as origin. */
 
- 	    orgati = FALSE_;
 
- 	    sg2lb = -delsq2;
 
- 	    sg2ub = 0.;
 
- 	    a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
 
- 	    b = z__[ip1] * z__[ip1] * delsq;
 
- 	    if (a < 0.) {
 
- 		tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
 
- 			d__1))));
 
- 	    } else {
 
- 		tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) / 
 
- 			(c__ * 2.);
 
- 	    }
 
- /*           TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The */
 
- /*           following, however, is the corresponding estimation of */
 
- /*           SIGMA - D( IP1 ). */
 
- 	    eta = tau / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau, 
 
- 		    abs(d__1))));
 
- 	}
 
- 	if (orgati) {
 
- 	    ii = *i__;
 
- 	    *sigma = d__[*i__] + eta;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		work[j] = d__[j] + d__[*i__] + eta;
 
- 		delta[j] = d__[j] - d__[*i__] - eta;
 
- /* L130: */
 
- 	    }
 
- 	} else {
 
- 	    ii = *i__ + 1;
 
- 	    *sigma = d__[ip1] + eta;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		work[j] = d__[j] + d__[ip1] + eta;
 
- 		delta[j] = d__[j] - d__[ip1] - eta;
 
- /* L140: */
 
- 	    }
 
- 	}
 
- 	iim1 = ii - 1;
 
- 	iip1 = ii + 1;
 
- /*        Evaluate PSI and the derivative DPSI */
 
- 	dpsi = 0.;
 
- 	psi = 0.;
 
- 	erretm = 0.;
 
- 	i__1 = iim1;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    temp = z__[j] / (work[j] * delta[j]);
 
- 	    psi += z__[j] * temp;
 
- 	    dpsi += temp * temp;
 
- 	    erretm += psi;
 
- /* L150: */
 
- 	}
 
- 	erretm = abs(erretm);
 
- /*        Evaluate PHI and the derivative DPHI */
 
- 	dphi = 0.;
 
- 	phi = 0.;
 
- 	i__1 = iip1;
 
- 	for (j = *n; j >= i__1; --j) {
 
- 	    temp = z__[j] / (work[j] * delta[j]);
 
- 	    phi += z__[j] * temp;
 
- 	    dphi += temp * temp;
 
- 	    erretm += phi;
 
- /* L160: */
 
- 	}
 
- 	w = rhoinv + phi + psi;
 
- /*        W is the value of the secular function with */
 
- /*        its ii-th element removed. */
 
- 	swtch3 = FALSE_;
 
- 	if (orgati) {
 
- 	    if (w < 0.) {
 
- 		swtch3 = TRUE_;
 
- 	    }
 
- 	} else {
 
- 	    if (w > 0.) {
 
- 		swtch3 = TRUE_;
 
- 	    }
 
- 	}
 
- 	if (ii == 1 || ii == *n) {
 
- 	    swtch3 = FALSE_;
 
- 	}
 
- 	temp = z__[ii] / (work[ii] * delta[ii]);
 
- 	dw = dpsi + dphi + temp * temp;
 
- 	temp = z__[ii] * temp;
 
- 	w += temp;
 
- 	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 
 
- 		abs(tau) * dw;
 
- /*        Test for convergence */
 
- 	if (abs(w) <= eps * erretm) {
 
- 	    goto L240;
 
- 	}
 
- 	if (w <= 0.) {
 
- 	    sg2lb = max(sg2lb,tau);
 
- 	} else {
 
- 	    sg2ub = min(sg2ub,tau);
 
- 	}
 
- /*        Calculate the new step */
 
- 	++niter;
 
- 	if (! swtch3) {
 
- 	    dtipsq = work[ip1] * delta[ip1];
 
- 	    dtisq = work[*i__] * delta[*i__];
 
- 	    if (orgati) {
 
- /* Computing 2nd power */
 
- 		d__1 = z__[*i__] / dtisq;
 
- 		c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
 
- 	    } else {
 
- /* Computing 2nd power */
 
- 		d__1 = z__[ip1] / dtipsq;
 
- 		c__ = w - dtisq * dw - delsq * (d__1 * d__1);
 
- 	    }
 
- 	    a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
 
- 	    b = dtipsq * dtisq * w;
 
- 	    if (c__ == 0.) {
 
- 		if (a == 0.) {
 
- 		    if (orgati) {
 
- 			a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + 
 
- 				dphi);
 
- 		    } else {
 
- 			a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + 
 
- 				dphi);
 
- 		    }
 
- 		}
 
- 		eta = b / a;
 
- 	    } else if (a <= 0.) {
 
- 		eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 
- 			c__ * 2.);
 
- 	    } else {
 
- 		eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 
- 			d__1))));
 
- 	    }
 
- 	} else {
 
- /*           Interpolation using THREE most relevant poles */
 
- 	    dtiim = work[iim1] * delta[iim1];
 
- 	    dtiip = work[iip1] * delta[iip1];
 
- 	    temp = rhoinv + psi + phi;
 
- 	    if (orgati) {
 
- 		temp1 = z__[iim1] / dtiim;
 
- 		temp1 *= temp1;
 
- 		c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
 
- 			 (d__[iim1] + d__[iip1]) * temp1;
 
- 		zz[0] = z__[iim1] * z__[iim1];
 
- 		if (dpsi < temp1) {
 
- 		    zz[2] = dtiip * dtiip * dphi;
 
- 		} else {
 
- 		    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
 
- 		}
 
- 	    } else {
 
- 		temp1 = z__[iip1] / dtiip;
 
- 		temp1 *= temp1;
 
- 		c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
 
- 			 (d__[iim1] + d__[iip1]) * temp1;
 
- 		if (dphi < temp1) {
 
- 		    zz[0] = dtiim * dtiim * dpsi;
 
- 		} else {
 
- 		    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
 
- 		}
 
- 		zz[2] = z__[iip1] * z__[iip1];
 
- 	    }
 
- 	    zz[1] = z__[ii] * z__[ii];
 
- 	    dd[0] = dtiim;
 
- 	    dd[1] = delta[ii] * work[ii];
 
- 	    dd[2] = dtiip;
 
- 	    _starpu_dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
 
- 	    if (*info != 0) {
 
- 		goto L240;
 
- 	    }
 
- 	}
 
- /*        Note, eta should be positive if w is negative, and */
 
- /*        eta should be negative otherwise. However, */
 
- /*        if for some reason caused by roundoff, eta*w > 0, */
 
- /*        we simply use one Newton step instead. This way */
 
- /*        will guarantee eta*w < 0. */
 
- 	if (w * eta >= 0.) {
 
- 	    eta = -w / dw;
 
- 	}
 
- 	if (orgati) {
 
- 	    temp1 = work[*i__] * delta[*i__];
 
- 	    temp = eta - temp1;
 
- 	} else {
 
- 	    temp1 = work[ip1] * delta[ip1];
 
- 	    temp = eta - temp1;
 
- 	}
 
- 	if (temp > sg2ub || temp < sg2lb) {
 
- 	    if (w < 0.) {
 
- 		eta = (sg2ub - tau) / 2.;
 
- 	    } else {
 
- 		eta = (sg2lb - tau) / 2.;
 
- 	    }
 
- 	}
 
- 	tau += eta;
 
- 	eta /= *sigma + sqrt(*sigma * *sigma + eta);
 
- 	prew = w;
 
- 	*sigma += eta;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    work[j] += eta;
 
- 	    delta[j] -= eta;
 
- /* L170: */
 
- 	}
 
- /*        Evaluate PSI and the derivative DPSI */
 
- 	dpsi = 0.;
 
- 	psi = 0.;
 
- 	erretm = 0.;
 
- 	i__1 = iim1;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    temp = z__[j] / (work[j] * delta[j]);
 
- 	    psi += z__[j] * temp;
 
- 	    dpsi += temp * temp;
 
- 	    erretm += psi;
 
- /* L180: */
 
- 	}
 
- 	erretm = abs(erretm);
 
- /*        Evaluate PHI and the derivative DPHI */
 
- 	dphi = 0.;
 
- 	phi = 0.;
 
- 	i__1 = iip1;
 
- 	for (j = *n; j >= i__1; --j) {
 
- 	    temp = z__[j] / (work[j] * delta[j]);
 
- 	    phi += z__[j] * temp;
 
- 	    dphi += temp * temp;
 
- 	    erretm += phi;
 
- /* L190: */
 
- 	}
 
- 	temp = z__[ii] / (work[ii] * delta[ii]);
 
- 	dw = dpsi + dphi + temp * temp;
 
- 	temp = z__[ii] * temp;
 
- 	w = rhoinv + phi + psi + temp;
 
- 	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 
 
- 		abs(tau) * dw;
 
- 	if (w <= 0.) {
 
- 	    sg2lb = max(sg2lb,tau);
 
- 	} else {
 
- 	    sg2ub = min(sg2ub,tau);
 
- 	}
 
- 	swtch = FALSE_;
 
- 	if (orgati) {
 
- 	    if (-w > abs(prew) / 10.) {
 
- 		swtch = TRUE_;
 
- 	    }
 
- 	} else {
 
- 	    if (w > abs(prew) / 10.) {
 
- 		swtch = TRUE_;
 
- 	    }
 
- 	}
 
- /*        Main loop to update the values of the array   DELTA and WORK */
 
- 	iter = niter + 1;
 
- 	for (niter = iter; niter <= 20; ++niter) {
 
- /*           Test for convergence */
 
- 	    if (abs(w) <= eps * erretm) {
 
- 		goto L240;
 
- 	    }
 
- /*           Calculate the new step */
 
- 	    if (! swtch3) {
 
- 		dtipsq = work[ip1] * delta[ip1];
 
- 		dtisq = work[*i__] * delta[*i__];
 
- 		if (! swtch) {
 
- 		    if (orgati) {
 
- /* Computing 2nd power */
 
- 			d__1 = z__[*i__] / dtisq;
 
- 			c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
 
- 		    } else {
 
- /* Computing 2nd power */
 
- 			d__1 = z__[ip1] / dtipsq;
 
- 			c__ = w - dtisq * dw - delsq * (d__1 * d__1);
 
- 		    }
 
- 		} else {
 
- 		    temp = z__[ii] / (work[ii] * delta[ii]);
 
- 		    if (orgati) {
 
- 			dpsi += temp * temp;
 
- 		    } else {
 
- 			dphi += temp * temp;
 
- 		    }
 
- 		    c__ = w - dtisq * dpsi - dtipsq * dphi;
 
- 		}
 
- 		a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
 
- 		b = dtipsq * dtisq * w;
 
- 		if (c__ == 0.) {
 
- 		    if (a == 0.) {
 
- 			if (! swtch) {
 
- 			    if (orgati) {
 
- 				a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * 
 
- 					(dpsi + dphi);
 
- 			    } else {
 
- 				a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
 
- 					dpsi + dphi);
 
- 			    }
 
- 			} else {
 
- 			    a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
 
- 			}
 
- 		    }
 
- 		    eta = b / a;
 
- 		} else if (a <= 0.) {
 
- 		    eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
 
- 			     / (c__ * 2.);
 
- 		} else {
 
- 		    eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, 
 
- 			    abs(d__1))));
 
- 		}
 
- 	    } else {
 
- /*              Interpolation using THREE most relevant poles */
 
- 		dtiim = work[iim1] * delta[iim1];
 
- 		dtiip = work[iip1] * delta[iip1];
 
- 		temp = rhoinv + psi + phi;
 
- 		if (swtch) {
 
- 		    c__ = temp - dtiim * dpsi - dtiip * dphi;
 
- 		    zz[0] = dtiim * dtiim * dpsi;
 
- 		    zz[2] = dtiip * dtiip * dphi;
 
- 		} else {
 
- 		    if (orgati) {
 
- 			temp1 = z__[iim1] / dtiim;
 
- 			temp1 *= temp1;
 
- 			temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
 
- 				iip1]) * temp1;
 
- 			c__ = temp - dtiip * (dpsi + dphi) - temp2;
 
- 			zz[0] = z__[iim1] * z__[iim1];
 
- 			if (dpsi < temp1) {
 
- 			    zz[2] = dtiip * dtiip * dphi;
 
- 			} else {
 
- 			    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
 
- 			}
 
- 		    } else {
 
- 			temp1 = z__[iip1] / dtiip;
 
- 			temp1 *= temp1;
 
- 			temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
 
- 				iip1]) * temp1;
 
- 			c__ = temp - dtiim * (dpsi + dphi) - temp2;
 
- 			if (dphi < temp1) {
 
- 			    zz[0] = dtiim * dtiim * dpsi;
 
- 			} else {
 
- 			    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
 
- 			}
 
- 			zz[2] = z__[iip1] * z__[iip1];
 
- 		    }
 
- 		}
 
- 		dd[0] = dtiim;
 
- 		dd[1] = delta[ii] * work[ii];
 
- 		dd[2] = dtiip;
 
- 		_starpu_dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
 
- 		if (*info != 0) {
 
- 		    goto L240;
 
- 		}
 
- 	    }
 
- /*           Note, eta should be positive if w is negative, and */
 
- /*           eta should be negative otherwise. However, */
 
- /*           if for some reason caused by roundoff, eta*w > 0, */
 
- /*           we simply use one Newton step instead. This way */
 
- /*           will guarantee eta*w < 0. */
 
- 	    if (w * eta >= 0.) {
 
- 		eta = -w / dw;
 
- 	    }
 
- 	    if (orgati) {
 
- 		temp1 = work[*i__] * delta[*i__];
 
- 		temp = eta - temp1;
 
- 	    } else {
 
- 		temp1 = work[ip1] * delta[ip1];
 
- 		temp = eta - temp1;
 
- 	    }
 
- 	    if (temp > sg2ub || temp < sg2lb) {
 
- 		if (w < 0.) {
 
- 		    eta = (sg2ub - tau) / 2.;
 
- 		} else {
 
- 		    eta = (sg2lb - tau) / 2.;
 
- 		}
 
- 	    }
 
- 	    tau += eta;
 
- 	    eta /= *sigma + sqrt(*sigma * *sigma + eta);
 
- 	    *sigma += eta;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		work[j] += eta;
 
- 		delta[j] -= eta;
 
- /* L200: */
 
- 	    }
 
- 	    prew = w;
 
- /*           Evaluate PSI and the derivative DPSI */
 
- 	    dpsi = 0.;
 
- 	    psi = 0.;
 
- 	    erretm = 0.;
 
- 	    i__1 = iim1;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		temp = z__[j] / (work[j] * delta[j]);
 
- 		psi += z__[j] * temp;
 
- 		dpsi += temp * temp;
 
- 		erretm += psi;
 
- /* L210: */
 
- 	    }
 
- 	    erretm = abs(erretm);
 
- /*           Evaluate PHI and the derivative DPHI */
 
- 	    dphi = 0.;
 
- 	    phi = 0.;
 
- 	    i__1 = iip1;
 
- 	    for (j = *n; j >= i__1; --j) {
 
- 		temp = z__[j] / (work[j] * delta[j]);
 
- 		phi += z__[j] * temp;
 
- 		dphi += temp * temp;
 
- 		erretm += phi;
 
- /* L220: */
 
- 	    }
 
- 	    temp = z__[ii] / (work[ii] * delta[ii]);
 
- 	    dw = dpsi + dphi + temp * temp;
 
- 	    temp = z__[ii] * temp;
 
- 	    w = rhoinv + phi + psi + temp;
 
- 	    erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. 
 
- 		    + abs(tau) * dw;
 
- 	    if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
 
- 		swtch = ! swtch;
 
- 	    }
 
- 	    if (w <= 0.) {
 
- 		sg2lb = max(sg2lb,tau);
 
- 	    } else {
 
- 		sg2ub = min(sg2ub,tau);
 
- 	    }
 
- /* L230: */
 
- 	}
 
- /*        Return with INFO = 1, NITER = MAXIT and not converged */
 
- 	*info = 1;
 
-     }
 
- L240:
 
-     return 0;
 
- /*     End of DLASD4 */
 
- } /* _starpu_dlasd4_ */
 
 
  |