| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | /* dlarrr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlarrr_(integer *n, doublereal *d__, doublereal *e, 	integer *info){    /* System generated locals */    integer i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__;    doublereal eps, tmp, tmp2, rmin;    extern doublereal _starpu_dlamch_(char *);    doublereal offdig, safmin;    logical yesrel;    doublereal smlnum, offdig2;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  Perform tests to decide whether the symmetric tridiagonal matrix T *//*  warrants expensive computations which guarantee high relative accuracy *//*  in the eigenvalues. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix. N > 0. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The N diagonal elements of the tridiagonal matrix T. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the first (N-1) entries contain the subdiagonal *//*          elements of the tridiagonal matrix T; E(N) is set to ZERO. *//*  INFO    (output) INTEGER *//*          INFO = 0(default) : the matrix warrants computations preserving *//*                              relative accuracy. *//*          INFO = 1          : the matrix warrants computations guaranteeing *//*                              only absolute accuracy. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Beresford Parlett, University of California, Berkeley, USA *//*     Jim Demmel, University of California, Berkeley, USA *//*     Inderjit Dhillon, University of Texas, Austin, USA *//*     Osni Marques, LBNL/NERSC, USA *//*     Christof Voemel, University of California, Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     As a default, do NOT go for relative-accuracy preserving computations. */    /* Parameter adjustments */    --e;    --d__;    /* Function Body */    *info = 1;    safmin = _starpu_dlamch_("Safe minimum");    eps = _starpu_dlamch_("Precision");    smlnum = safmin / eps;    rmin = sqrt(smlnum);/*     Tests for relative accuracy *//*     Test for scaled diagonal dominance *//*     Scale the diagonal entries to one and check whether the sum of the *//*     off-diagonals is less than one *//*     The sdd relative error bounds have a 1/(1- 2*x) factor in them, *//*     x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative *//*     accuracy is promised.  In the notation of the code fragment below, *//*     1/(1 - (OFFDIG + OFFDIG2)) is the condition number. *//*     We don't think it is worth going into "sdd mode" unless the relative *//*     condition number is reasonable, not 1/macheps. *//*     The threshold should be compatible with other thresholds used in the *//*     code. We set  OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds *//*     to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000 *//*     instead of the current OFFDIG + OFFDIG2 < 1 */    yesrel = TRUE_;    offdig = 0.;    tmp = sqrt((abs(d__[1])));    if (tmp < rmin) {	yesrel = FALSE_;    }    if (! yesrel) {	goto L11;    }    i__1 = *n;    for (i__ = 2; i__ <= i__1; ++i__) {	tmp2 = sqrt((d__1 = d__[i__], abs(d__1)));	if (tmp2 < rmin) {	    yesrel = FALSE_;	}	if (! yesrel) {	    goto L11;	}	offdig2 = (d__1 = e[i__ - 1], abs(d__1)) / (tmp * tmp2);	if (offdig + offdig2 >= .999) {	    yesrel = FALSE_;	}	if (! yesrel) {	    goto L11;	}	tmp = tmp2;	offdig = offdig2;/* L10: */    }L11:    if (yesrel) {	*info = 0;	return 0;    } else {    }/*     *** MORE TO BE IMPLEMENTED *** *//*     Test if the lower bidiagonal matrix L from T = L D L^T *//*     (zero shift facto) is well conditioned *//*     Test if the upper bidiagonal matrix U from T = U D U^T *//*     (zero shift facto) is well conditioned. *//*     In this case, the matrix needs to be flipped and, at the end *//*     of the eigenvector computation, the flip needs to be applied *//*     to the computed eigenvectors (and the support) */    return 0;/*     END OF DLARRR */} /* _starpu_dlarrr_ */
 |