| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 | /* dlarrj.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlarrj_(integer *n, doublereal *d__, doublereal *e2, 	integer *ifirst, integer *ilast, doublereal *rtol, integer *offset, 	doublereal *w, doublereal *werr, doublereal *work, integer *iwork, 	doublereal *pivmin, doublereal *spdiam, integer *info){    /* System generated locals */    integer i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double log(doublereal);    /* Local variables */    integer i__, j, k, p;    doublereal s;    integer i1, i2, ii;    doublereal fac, mid;    integer cnt;    doublereal tmp, left;    integer iter, nint, prev, next, savi1;    doublereal right, width, dplus;    integer olnint, maxitr;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  Given the initial eigenvalue approximations of T, DLARRJ *//*  does  bisection to refine the eigenvalues of T, *//*  W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial *//*  guesses for these eigenvalues are input in W, the corresponding estimate *//*  of the error in these guesses in WERR. During bisection, intervals *//*  [left, right] are maintained by storing their mid-points and *//*  semi-widths in the arrays W and WERR respectively. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The N diagonal elements of T. *//*  E2      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The Squares of the (N-1) subdiagonal elements of T. *//*  IFIRST  (input) INTEGER *//*          The index of the first eigenvalue to be computed. *//*  ILAST   (input) INTEGER *//*          The index of the last eigenvalue to be computed. *//*  RTOL   (input) DOUBLE PRECISION *//*          Tolerance for the convergence of the bisection intervals. *//*          An interval [LEFT,RIGHT] has converged if *//*          RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|). *//*  OFFSET  (input) INTEGER *//*          Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET *//*          through ILAST-OFFSET elements of these arrays are to be used. *//*  W       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are *//*          estimates of the eigenvalues of L D L^T indexed IFIRST through *//*          ILAST. *//*          On output, these estimates are refined. *//*  WERR    (input/output) DOUBLE PRECISION array, dimension (N) *//*          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are *//*          the errors in the estimates of the corresponding elements in W. *//*          On output, these errors are refined. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) *//*          Workspace. *//*  IWORK   (workspace) INTEGER array, dimension (2*N) *//*          Workspace. *//*  PIVMIN  (input) DOUBLE PRECISION *//*          The minimum pivot in the Sturm sequence for T. *//*  SPDIAM  (input) DOUBLE PRECISION *//*          The spectral diameter of T. *//*  INFO    (output) INTEGER *//*          Error flag. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Beresford Parlett, University of California, Berkeley, USA *//*     Jim Demmel, University of California, Berkeley, USA *//*     Inderjit Dhillon, University of Texas, Austin, USA *//*     Osni Marques, LBNL/NERSC, USA *//*     Christof Voemel, University of California, Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --iwork;    --work;    --werr;    --w;    --e2;    --d__;    /* Function Body */    *info = 0;    maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.)) + 	    2;/*     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. *//*     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while *//*     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) *//*     for an unconverged interval is set to the index of the next unconverged *//*     interval, and is -1 or 0 for a converged interval. Thus a linked *//*     list of unconverged intervals is set up. */    i1 = *ifirst;    i2 = *ilast;/*     The number of unconverged intervals */    nint = 0;/*     The last unconverged interval found */    prev = 0;    i__1 = i2;    for (i__ = i1; i__ <= i__1; ++i__) {	k = i__ << 1;	ii = i__ - *offset;	left = w[ii] - werr[ii];	mid = w[ii];	right = w[ii] + werr[ii];	width = right - mid;/* Computing MAX */	d__1 = abs(left), d__2 = abs(right);	tmp = max(d__1,d__2);/*        The following test prevents the test of converged intervals */	if (width < *rtol * tmp) {/*           This interval has already converged and does not need refinement. *//*           (Note that the gaps might change through refining the *//*            eigenvalues, however, they can only get bigger.) *//*           Remove it from the list. */	    iwork[k - 1] = -1;/*           Make sure that I1 always points to the first unconverged interval */	    if (i__ == i1 && i__ < i2) {		i1 = i__ + 1;	    }	    if (prev >= i1 && i__ <= i2) {		iwork[(prev << 1) - 1] = i__ + 1;	    }	} else {/*           unconverged interval found */	    prev = i__;/*           Make sure that [LEFT,RIGHT] contains the desired eigenvalue *//*           Do while( CNT(LEFT).GT.I-1 ) */	    fac = 1.;L20:	    cnt = 0;	    s = left;	    dplus = d__[1] - s;	    if (dplus < 0.) {		++cnt;	    }	    i__2 = *n;	    for (j = 2; j <= i__2; ++j) {		dplus = d__[j] - s - e2[j - 1] / dplus;		if (dplus < 0.) {		    ++cnt;		}/* L30: */	    }	    if (cnt > i__ - 1) {		left -= werr[ii] * fac;		fac *= 2.;		goto L20;	    }/*           Do while( CNT(RIGHT).LT.I ) */	    fac = 1.;L50:	    cnt = 0;	    s = right;	    dplus = d__[1] - s;	    if (dplus < 0.) {		++cnt;	    }	    i__2 = *n;	    for (j = 2; j <= i__2; ++j) {		dplus = d__[j] - s - e2[j - 1] / dplus;		if (dplus < 0.) {		    ++cnt;		}/* L60: */	    }	    if (cnt < i__) {		right += werr[ii] * fac;		fac *= 2.;		goto L50;	    }	    ++nint;	    iwork[k - 1] = i__ + 1;	    iwork[k] = cnt;	}	work[k - 1] = left;	work[k] = right;/* L75: */    }    savi1 = i1;/*     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals *//*     and while (ITER.LT.MAXITR) */    iter = 0;L80:    prev = i1 - 1;    i__ = i1;    olnint = nint;    i__1 = olnint;    for (p = 1; p <= i__1; ++p) {	k = i__ << 1;	ii = i__ - *offset;	next = iwork[k - 1];	left = work[k - 1];	right = work[k];	mid = (left + right) * .5;/*        semiwidth of interval */	width = right - mid;/* Computing MAX */	d__1 = abs(left), d__2 = abs(right);	tmp = max(d__1,d__2);	if (width < *rtol * tmp || iter == maxitr) {/*           reduce number of unconverged intervals */	    --nint;/*           Mark interval as converged. */	    iwork[k - 1] = 0;	    if (i1 == i__) {		i1 = next;	    } else {/*              Prev holds the last unconverged interval previously examined */		if (prev >= i1) {		    iwork[(prev << 1) - 1] = next;		}	    }	    i__ = next;	    goto L100;	}	prev = i__;/*        Perform one bisection step */	cnt = 0;	s = mid;	dplus = d__[1] - s;	if (dplus < 0.) {	    ++cnt;	}	i__2 = *n;	for (j = 2; j <= i__2; ++j) {	    dplus = d__[j] - s - e2[j - 1] / dplus;	    if (dplus < 0.) {		++cnt;	    }/* L90: */	}	if (cnt <= i__ - 1) {	    work[k - 1] = mid;	} else {	    work[k] = mid;	}	i__ = next;L100:	;    }    ++iter;/*     do another loop if there are still unconverged intervals *//*     However, in the last iteration, all intervals are accepted *//*     since this is the best we can do. */    if (nint > 0 && iter <= maxitr) {	goto L80;    }/*     At this point, all the intervals have converged */    i__1 = *ilast;    for (i__ = savi1; i__ <= i__1; ++i__) {	k = i__ << 1;	ii = i__ - *offset;/*        All intervals marked by '0' have been refined. */	if (iwork[k - 1] == 0) {	    w[ii] = (work[k - 1] + work[k]) * .5;	    werr[ii] = work[k] - w[ii];	}/* L110: */    }    return 0;/*     End of DLARRJ */} /* _starpu_dlarrj_ */
 |