| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 | /* dlaqps.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b8 = -1.;static doublereal c_b9 = 1.;static doublereal c_b16 = 0.;/* Subroutine */ int _starpu_dlaqps_(integer *m, integer *n, integer *offset, integer 	*nb, integer *kb, doublereal *a, integer *lda, integer *jpvt, 	doublereal *tau, doublereal *vn1, doublereal *vn2, doublereal *auxv, 	doublereal *f, integer *ldf){    /* System generated locals */    integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    integer i_dnnt(doublereal *);    /* Local variables */    integer j, k, rk;    doublereal akk;    integer pvt;    doublereal temp;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    doublereal temp2, tol3z;    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *),	     _starpu_dgemv_(char *, integer *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *);    integer itemp;    extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dlarfp_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *);    integer lsticc, lastrk;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAQPS computes a step of QR factorization with column pivoting *//*  of a real M-by-N matrix A by using Blas-3.  It tries to factorize *//*  NB columns from A starting from the row OFFSET+1, and updates all *//*  of the matrix with Blas-3 xGEMM. *//*  In some cases, due to catastrophic cancellations, it cannot *//*  factorize NB columns.  Hence, the actual number of factorized *//*  columns is returned in KB. *//*  Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A. N >= 0 *//*  OFFSET  (input) INTEGER *//*          The number of rows of A that have been factorized in *//*          previous steps. *//*  NB      (input) INTEGER *//*          The number of columns to factorize. *//*  KB      (output) INTEGER *//*          The number of columns actually factorized. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, block A(OFFSET+1:M,1:KB) is the triangular *//*          factor obtained and block A(1:OFFSET,1:N) has been *//*          accordingly pivoted, but no factorized. *//*          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has *//*          been updated. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  JPVT    (input/output) INTEGER array, dimension (N) *//*          JPVT(I) = K <==> Column K of the full matrix A has been *//*          permuted into position I in AP. *//*  TAU     (output) DOUBLE PRECISION array, dimension (KB) *//*          The scalar factors of the elementary reflectors. *//*  VN1     (input/output) DOUBLE PRECISION array, dimension (N) *//*          The vector with the partial column norms. *//*  VN2     (input/output) DOUBLE PRECISION array, dimension (N) *//*          The vector with the exact column norms. *//*  AUXV    (input/output) DOUBLE PRECISION array, dimension (NB) *//*          Auxiliar vector. *//*  F       (input/output) DOUBLE PRECISION array, dimension (LDF,NB) *//*          Matrix F' = L*Y'*A. *//*  LDF     (input) INTEGER *//*          The leading dimension of the array F. LDF >= max(1,N). *//*  Further Details *//*  =============== *//*  Based on contributions by *//*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain *//*    X. Sun, Computer Science Dept., Duke University, USA *//*  Partial column norm updating strategy modified by *//*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, *//*    University of Zagreb, Croatia. *//*    June 2006. *//*  For more details see LAPACK Working Note 176. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --jpvt;    --tau;    --vn1;    --vn2;    --auxv;    f_dim1 = *ldf;    f_offset = 1 + f_dim1;    f -= f_offset;    /* Function Body *//* Computing MIN */    i__1 = *m, i__2 = *n + *offset;    lastrk = min(i__1,i__2);    lsticc = 0;    k = 0;    tol3z = sqrt(_starpu_dlamch_("Epsilon"));/*     Beginning of while loop. */L10:    if (k < *nb && lsticc == 0) {	++k;	rk = *offset + k;/*        Determine ith pivot column and swap if necessary */	i__1 = *n - k + 1;	pvt = k - 1 + _starpu_idamax_(&i__1, &vn1[k], &c__1);	if (pvt != k) {	    _starpu_dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);	    i__1 = k - 1;	    _starpu_dswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf);	    itemp = jpvt[pvt];	    jpvt[pvt] = jpvt[k];	    jpvt[k] = itemp;	    vn1[pvt] = vn1[k];	    vn2[pvt] = vn2[k];	}/*        Apply previous Householder reflectors to column K: *//*        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'. */	if (k > 1) {	    i__1 = *m - rk + 1;	    i__2 = k - 1;	    _starpu_dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[rk + a_dim1], lda, 		    &f[k + f_dim1], ldf, &c_b9, &a[rk + k * a_dim1], &c__1);	}/*        Generate elementary reflector H(k). */	if (rk < *m) {	    i__1 = *m - rk + 1;	    _starpu_dlarfp_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], &		    c__1, &tau[k]);	} else {	    _starpu_dlarfp_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, &		    tau[k]);	}	akk = a[rk + k * a_dim1];	a[rk + k * a_dim1] = 1.;/*        Compute Kth column of F: *//*        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K). */	if (k < *n) {	    i__1 = *m - rk + 1;	    i__2 = *n - k;	    _starpu_dgemv_("Transpose", &i__1, &i__2, &tau[k], &a[rk + (k + 1) * 		    a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b16, &f[k + 		    1 + k * f_dim1], &c__1);	}/*        Padding F(1:K,K) with zeros. */	i__1 = k;	for (j = 1; j <= i__1; ++j) {	    f[j + k * f_dim1] = 0.;/* L20: */	}/*        Incremental updating of F: *//*        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)' *//*                    *A(RK:M,K). */	if (k > 1) {	    i__1 = *m - rk + 1;	    i__2 = k - 1;	    d__1 = -tau[k];	    _starpu_dgemv_("Transpose", &i__1, &i__2, &d__1, &a[rk + a_dim1], lda, &a[		    rk + k * a_dim1], &c__1, &c_b16, &auxv[1], &c__1);	    i__1 = k - 1;	    _starpu_dgemv_("No transpose", n, &i__1, &c_b9, &f[f_dim1 + 1], ldf, &		    auxv[1], &c__1, &c_b9, &f[k * f_dim1 + 1], &c__1);	}/*        Update the current row of A: *//*        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'. */	if (k < *n) {	    i__1 = *n - k;	    _starpu_dgemv_("No transpose", &i__1, &k, &c_b8, &f[k + 1 + f_dim1], ldf, 		    &a[rk + a_dim1], lda, &c_b9, &a[rk + (k + 1) * a_dim1], 		    lda);	}/*        Update partial column norms. */	if (rk < lastrk) {	    i__1 = *n;	    for (j = k + 1; j <= i__1; ++j) {		if (vn1[j] != 0.) {/*                 NOTE: The following 4 lines follow from the analysis in *//*                 Lapack Working Note 176. */		    temp = (d__1 = a[rk + j * a_dim1], abs(d__1)) / vn1[j];/* Computing MAX */		    d__1 = 0., d__2 = (temp + 1.) * (1. - temp);		    temp = max(d__1,d__2);/* Computing 2nd power */		    d__1 = vn1[j] / vn2[j];		    temp2 = temp * (d__1 * d__1);		    if (temp2 <= tol3z) {			vn2[j] = (doublereal) lsticc;			lsticc = j;		    } else {			vn1[j] *= sqrt(temp);		    }		}/* L30: */	    }	}	a[rk + k * a_dim1] = akk;/*        End of while loop. */	goto L10;    }    *kb = k;    rk = *offset + *kb;/*     Apply the block reflector to the rest of the matrix: *//*     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - *//*                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'. *//* Computing MIN */    i__1 = *n, i__2 = *m - *offset;    if (*kb < min(i__1,i__2)) {	i__1 = *m - rk;	i__2 = *n - *kb;	_starpu_dgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b8, &a[rk + 		1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b9, &a[rk + 1 		+ (*kb + 1) * a_dim1], lda);    }/*     Recomputation of difficult columns. */L40:    if (lsticc > 0) {	itemp = i_dnnt(&vn2[lsticc]);	i__1 = *m - rk;	vn1[lsticc] = _starpu_dnrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1);/*        NOTE: The computation of VN1( LSTICC ) relies on the fact that *//*        SNRM2 does not fail on vectors with norm below the value of *//*        SQRT(DLAMCH('S')) */	vn2[lsticc] = vn1[lsticc];	lsticc = itemp;	goto L40;    }    return 0;/*     End of DLAQPS */} /* _starpu_dlaqps_ */
 |