| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 | /* dlantp.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;doublereal _starpu_dlantp_(char *norm, char *uplo, char *diag, integer *n, doublereal 	*ap, doublereal *work){    /* System generated locals */    integer i__1, i__2;    doublereal ret_val, d__1, d__2, d__3;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k;    doublereal sum, scale;    logical udiag;    extern logical _starpu_lsame_(char *, char *);    doublereal value;    extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *, 	    doublereal *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLANTP  returns the value of the one norm,  or the Frobenius norm, or *//*  the  infinity norm,  or the  element of  largest absolute value  of a *//*  triangular matrix A, supplied in packed form. *//*  Description *//*  =========== *//*  DLANTP returns the value *//*     DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' *//*              ( *//*              ( norm1(A),         NORM = '1', 'O' or 'o' *//*              ( *//*              ( normI(A),         NORM = 'I' or 'i' *//*              ( *//*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' *//*  where  norm1  denotes the  one norm of a matrix (maximum column sum), *//*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and *//*  normF  denotes the  Frobenius norm of a matrix (square root of sum of *//*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. *//*  Arguments *//*  ========= *//*  NORM    (input) CHARACTER*1 *//*          Specifies the value to be returned in DLANTP as described *//*          above. *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the matrix A is upper or lower triangular. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  DIAG    (input) CHARACTER*1 *//*          Specifies whether or not the matrix A is unit triangular. *//*          = 'N':  Non-unit triangular *//*          = 'U':  Unit triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0.  When N = 0, DLANTP is *//*          set to zero. *//*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          The upper or lower triangular matrix A, packed columnwise in *//*          a linear array.  The j-th column of A is stored in the array *//*          AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*          Note that when DIAG = 'U', the elements of the array AP *//*          corresponding to the diagonal elements of the matrix A are *//*          not referenced, but are assumed to be one. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), *//*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not *//*          referenced. *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --work;    --ap;    /* Function Body */    if (*n == 0) {	value = 0.;    } else if (_starpu_lsame_(norm, "M")) {/*        Find max(abs(A(i,j))). */	k = 1;	if (_starpu_lsame_(diag, "U")) {	    value = 1.;	    if (_starpu_lsame_(uplo, "U")) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = k + j - 2;		    for (i__ = k; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1));			value = max(d__2,d__3);/* L10: */		    }		    k += j;/* L20: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = k + *n - j;		    for (i__ = k + 1; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1));			value = max(d__2,d__3);/* L30: */		    }		    k = k + *n - j + 1;/* L40: */		}	    }	} else {	    value = 0.;	    if (_starpu_lsame_(uplo, "U")) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = k + j - 1;		    for (i__ = k; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1));			value = max(d__2,d__3);/* L50: */		    }		    k += j;/* L60: */		}	    } else {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = k + *n - j;		    for (i__ = k; i__ <= i__2; ++i__) {/* Computing MAX */			d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1));			value = max(d__2,d__3);/* L70: */		    }		    k = k + *n - j + 1;/* L80: */		}	    }	}    } else if (_starpu_lsame_(norm, "O") || *(unsigned char *)	    norm == '1') {/*        Find norm1(A). */	value = 0.;	k = 1;	udiag = _starpu_lsame_(diag, "U");	if (_starpu_lsame_(uplo, "U")) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (udiag) {		    sum = 1.;		    i__2 = k + j - 2;		    for (i__ = k; i__ <= i__2; ++i__) {			sum += (d__1 = ap[i__], abs(d__1));/* L90: */		    }		} else {		    sum = 0.;		    i__2 = k + j - 1;		    for (i__ = k; i__ <= i__2; ++i__) {			sum += (d__1 = ap[i__], abs(d__1));/* L100: */		    }		}		k += j;		value = max(value,sum);/* L110: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (udiag) {		    sum = 1.;		    i__2 = k + *n - j;		    for (i__ = k + 1; i__ <= i__2; ++i__) {			sum += (d__1 = ap[i__], abs(d__1));/* L120: */		    }		} else {		    sum = 0.;		    i__2 = k + *n - j;		    for (i__ = k; i__ <= i__2; ++i__) {			sum += (d__1 = ap[i__], abs(d__1));/* L130: */		    }		}		k = k + *n - j + 1;		value = max(value,sum);/* L140: */	    }	}    } else if (_starpu_lsame_(norm, "I")) {/*        Find normI(A). */	k = 1;	if (_starpu_lsame_(uplo, "U")) {	    if (_starpu_lsame_(diag, "U")) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 1.;/* L150: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = j - 1;		    for (i__ = 1; i__ <= i__2; ++i__) {			work[i__] += (d__1 = ap[k], abs(d__1));			++k;/* L160: */		    }		    ++k;/* L170: */		}	    } else {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 0.;/* L180: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = j;		    for (i__ = 1; i__ <= i__2; ++i__) {			work[i__] += (d__1 = ap[k], abs(d__1));			++k;/* L190: */		    }/* L200: */		}	    }	} else {	    if (_starpu_lsame_(diag, "U")) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 1.;/* L210: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    ++k;		    i__2 = *n;		    for (i__ = j + 1; i__ <= i__2; ++i__) {			work[i__] += (d__1 = ap[k], abs(d__1));			++k;/* L220: */		    }/* L230: */		}	    } else {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    work[i__] = 0.;/* L240: */		}		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *n;		    for (i__ = j; i__ <= i__2; ++i__) {			work[i__] += (d__1 = ap[k], abs(d__1));			++k;/* L250: */		    }/* L260: */		}	    }	}	value = 0.;	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */	    d__1 = value, d__2 = work[i__];	    value = max(d__1,d__2);/* L270: */	}    } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {/*        Find normF(A). */	if (_starpu_lsame_(uplo, "U")) {	    if (_starpu_lsame_(diag, "U")) {		scale = 1.;		sum = (doublereal) (*n);		k = 2;		i__1 = *n;		for (j = 2; j <= i__1; ++j) {		    i__2 = j - 1;		    _starpu_dlassq_(&i__2, &ap[k], &c__1, &scale, &sum);		    k += j;/* L280: */		}	    } else {		scale = 0.;		sum = 1.;		k = 1;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    _starpu_dlassq_(&j, &ap[k], &c__1, &scale, &sum);		    k += j;/* L290: */		}	    }	} else {	    if (_starpu_lsame_(diag, "U")) {		scale = 1.;		sum = (doublereal) (*n);		k = 2;		i__1 = *n - 1;		for (j = 1; j <= i__1; ++j) {		    i__2 = *n - j;		    _starpu_dlassq_(&i__2, &ap[k], &c__1, &scale, &sum);		    k = k + *n - j + 1;/* L300: */		}	    } else {		scale = 0.;		sum = 1.;		k = 1;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    i__2 = *n - j + 1;		    _starpu_dlassq_(&i__2, &ap[k], &c__1, &scale, &sum);		    k = k + *n - j + 1;/* L310: */		}	    }	}	value = scale * sqrt(sum);    }    ret_val = value;    return ret_val;/*     End of DLANTP */} /* _starpu_dlantp_ */
 |