| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 | /* dlagtm.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlagtm_(char *trans, integer *n, integer *nrhs, 	doublereal *alpha, doublereal *dl, doublereal *d__, doublereal *du, 	doublereal *x, integer *ldx, doublereal *beta, doublereal *b, integer 	*ldb){    /* System generated locals */    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;    /* Local variables */    integer i__, j;    extern logical _starpu_lsame_(char *, char *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAGTM performs a matrix-vector product of the form *//*     B := alpha * A * X + beta * B *//*  where A is a tridiagonal matrix of order N, B and X are N by NRHS *//*  matrices, and alpha and beta are real scalars, each of which may be *//*  0., 1., or -1. *//*  Arguments *//*  ========= *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the operation applied to A. *//*          = 'N':  No transpose, B := alpha * A * X + beta * B *//*          = 'T':  Transpose,    B := alpha * A'* X + beta * B *//*          = 'C':  Conjugate transpose = Transpose *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrices X and B. *//*  ALPHA   (input) DOUBLE PRECISION *//*          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise, *//*          it is assumed to be 0. *//*  DL      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) sub-diagonal elements of T. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The diagonal elements of T. *//*  DU      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) super-diagonal elements of T. *//*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          The N by NRHS matrix X. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(N,1). *//*  BETA    (input) DOUBLE PRECISION *//*          The scalar beta.  BETA must be 0., 1., or -1.; otherwise, *//*          it is assumed to be 1. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N by NRHS matrix B. *//*          On exit, B is overwritten by the matrix expression *//*          B := alpha * A * X + beta * B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(N,1). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --dl;    --d__;    --du;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    if (*n == 0) {	return 0;    }/*     Multiply B by BETA if BETA.NE.1. */    if (*beta == 0.) {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    i__2 = *n;	    for (i__ = 1; i__ <= i__2; ++i__) {		b[i__ + j * b_dim1] = 0.;/* L10: */	    }/* L20: */	}    } else if (*beta == -1.) {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    i__2 = *n;	    for (i__ = 1; i__ <= i__2; ++i__) {		b[i__ + j * b_dim1] = -b[i__ + j * b_dim1];/* L30: */	    }/* L40: */	}    }    if (*alpha == 1.) {	if (_starpu_lsame_(trans, "N")) {/*           Compute B := B + A*X */	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		if (*n == 1) {		    b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];		} else {		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j * 			    x_dim1 + 1] + du[1] * x[j * x_dim1 + 2];		    b[*n + j * b_dim1] = b[*n + j * b_dim1] + dl[*n - 1] * x[*			    n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]			    ;		    i__2 = *n - 1;		    for (i__ = 2; i__ <= i__2; ++i__) {			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + dl[i__ - 				1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[				i__ + j * x_dim1] + du[i__] * x[i__ + 1 + j * 				x_dim1];/* L50: */		    }		}/* L60: */	    }	} else {/*           Compute B := B + A'*X */	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		if (*n == 1) {		    b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];		} else {		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j * 			    x_dim1 + 1] + dl[1] * x[j * x_dim1 + 2];		    b[*n + j * b_dim1] = b[*n + j * b_dim1] + du[*n - 1] * x[*			    n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]			    ;		    i__2 = *n - 1;		    for (i__ = 2; i__ <= i__2; ++i__) {			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + du[i__ - 				1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[				i__ + j * x_dim1] + dl[i__] * x[i__ + 1 + j * 				x_dim1];/* L70: */		    }		}/* L80: */	    }	}    } else if (*alpha == -1.) {	if (_starpu_lsame_(trans, "N")) {/*           Compute B := B - A*X */	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		if (*n == 1) {		    b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];		} else {		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j * 			    x_dim1 + 1] - du[1] * x[j * x_dim1 + 2];		    b[*n + j * b_dim1] = b[*n + j * b_dim1] - dl[*n - 1] * x[*			    n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]			    ;		    i__2 = *n - 1;		    for (i__ = 2; i__ <= i__2; ++i__) {			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - dl[i__ - 				1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[				i__ + j * x_dim1] - du[i__] * x[i__ + 1 + j * 				x_dim1];/* L90: */		    }		}/* L100: */	    }	} else {/*           Compute B := B - A'*X */	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		if (*n == 1) {		    b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];		} else {		    b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j * 			    x_dim1 + 1] - dl[1] * x[j * x_dim1 + 2];		    b[*n + j * b_dim1] = b[*n + j * b_dim1] - du[*n - 1] * x[*			    n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]			    ;		    i__2 = *n - 1;		    for (i__ = 2; i__ <= i__2; ++i__) {			b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - du[i__ - 				1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[				i__ + j * x_dim1] - dl[i__] * x[i__ + 1 + j * 				x_dim1];/* L110: */		    }		}/* L120: */	    }	}    }    return 0;/*     End of DLAGTM */} /* _starpu_dlagtm_ */
 |