| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 | /* dlaed9.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dlaed9_(integer *k, integer *kstart, integer *kstop, 	integer *n, doublereal *d__, doublereal *q, integer *ldq, doublereal *	rho, doublereal *dlamda, doublereal *w, doublereal *s, integer *lds, 	integer *info){    /* System generated locals */    integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    integer i__, j;    doublereal temp;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dlaed4_(integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, integer *);    extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAED9 finds the roots of the secular equation, as defined by the *//*  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the *//*  appropriate calls to DLAED4 and then stores the new matrix of *//*  eigenvectors for use in calculating the next level of Z vectors. *//*  Arguments *//*  ========= *//*  K       (input) INTEGER *//*          The number of terms in the rational function to be solved by *//*          DLAED4.  K >= 0. *//*  KSTART  (input) INTEGER *//*  KSTOP   (input) INTEGER *//*          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP *//*          are to be computed.  1 <= KSTART <= KSTOP <= K. *//*  N       (input) INTEGER *//*          The number of rows and columns in the Q matrix. *//*          N >= K (delation may result in N > K). *//*  D       (output) DOUBLE PRECISION array, dimension (N) *//*          D(I) contains the updated eigenvalues *//*          for KSTART <= I <= KSTOP. *//*  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N) *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q.  LDQ >= max( 1, N ). *//*  RHO     (input) DOUBLE PRECISION *//*          The value of the parameter in the rank one update equation. *//*          RHO >= 0 required. *//*  DLAMDA  (input) DOUBLE PRECISION array, dimension (K) *//*          The first K elements of this array contain the old roots *//*          of the deflated updating problem.  These are the poles *//*          of the secular equation. *//*  W       (input) DOUBLE PRECISION array, dimension (K) *//*          The first K elements of this array contain the components *//*          of the deflation-adjusted updating vector. *//*  S       (output) DOUBLE PRECISION array, dimension (LDS, K) *//*          Will contain the eigenvectors of the repaired matrix which *//*          will be stored for subsequent Z vector calculation and *//*          multiplied by the previously accumulated eigenvectors *//*          to update the system. *//*  LDS     (input) INTEGER *//*          The leading dimension of S.  LDS >= max( 1, K ). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an eigenvalue did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --dlamda;    --w;    s_dim1 = *lds;    s_offset = 1 + s_dim1;    s -= s_offset;    /* Function Body */    *info = 0;    if (*k < 0) {	*info = -1;    } else if (*kstart < 1 || *kstart > max(1,*k)) {	*info = -2;    } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {	*info = -3;    } else if (*n < *k) {	*info = -4;    } else if (*ldq < max(1,*k)) {	*info = -7;    } else if (*lds < max(1,*k)) {	*info = -12;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLAED9", &i__1);	return 0;    }/*     Quick return if possible */    if (*k == 0) {	return 0;    }/*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can *//*     be computed with high relative accuracy (barring over/underflow). *//*     This is a problem on machines without a guard digit in *//*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). *//*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), *//*     which on any of these machines zeros out the bottommost *//*     bit of DLAMDA(I) if it is 1; this makes the subsequent *//*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation *//*     occurs. On binary machines with a guard digit (almost all *//*     machines) it does not change DLAMDA(I) at all. On hexadecimal *//*     and decimal machines with a guard digit, it slightly *//*     changes the bottommost bits of DLAMDA(I). It does not account *//*     for hexadecimal or decimal machines without guard digits *//*     (we know of none). We use a subroutine call to compute *//*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating *//*     this code. */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	dlamda[i__] = _starpu_dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];/* L10: */    }    i__1 = *kstop;    for (j = *kstart; j <= i__1; ++j) {	_starpu_dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 		info);/*        If the zero finder fails, the computation is terminated. */	if (*info != 0) {	    goto L120;	}/* L20: */    }    if (*k == 1 || *k == 2) {	i__1 = *k;	for (i__ = 1; i__ <= i__1; ++i__) {	    i__2 = *k;	    for (j = 1; j <= i__2; ++j) {		s[j + i__ * s_dim1] = q[j + i__ * q_dim1];/* L30: */	    }/* L40: */	}	goto L120;    }/*     Compute updated W. */    _starpu_dcopy_(k, &w[1], &c__1, &s[s_offset], &c__1);/*     Initialize W(I) = Q(I,I) */    i__1 = *ldq + 1;    _starpu_dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	i__2 = j - 1;	for (i__ = 1; i__ <= i__2; ++i__) {	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);/* L50: */	}	i__2 = *k;	for (i__ = j + 1; i__ <= i__2; ++i__) {	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);/* L60: */	}/* L70: */    }    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	d__1 = sqrt(-w[i__]);	w[i__] = d_sign(&d__1, &s[i__ + s_dim1]);/* L80: */    }/*     Compute eigenvectors of the modified rank-1 modification. */    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	i__2 = *k;	for (i__ = 1; i__ <= i__2; ++i__) {	    q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1];/* L90: */	}	temp = _starpu_dnrm2_(k, &q[j * q_dim1 + 1], &c__1);	i__2 = *k;	for (i__ = 1; i__ <= i__2; ++i__) {	    s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp;/* L100: */	}/* L110: */    }L120:    return 0;/*     End of DLAED9 */} /* _starpu_dlaed9_ */
 |