| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843 | /* dgegv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b27 = 1.;static doublereal c_b38 = 0.;/* Subroutine */ int _starpu_dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *	a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, 	doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, 	doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 	    vr_offset, i__1, i__2;    doublereal d__1, d__2, d__3, d__4;    /* Local variables */    integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo;    doublereal eps;    logical ilv;    doublereal absb, anrm, bnrm;    integer itau;    doublereal temp;    logical ilvl, ilvr;    integer lopt;    doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;    extern logical _starpu_lsame_(char *, char *);    integer ileft, iinfo, icols, iwork, irows;    extern /* Subroutine */ int _starpu_dggbak_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, integer *), _starpu_dggbal_(char *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    doublereal salfai;    extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    doublereal salfar;    extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), 	    _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *);    doublereal safmin;    extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *);    doublereal safmax;    char chtemp[1];    logical ldumma[1];    extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *), _starpu_dtgevc_(char *, char *, 	    logical *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    integer ijobvl, iright;    logical ilimit;    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ijobvr;    extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *);    doublereal onepls;    integer lwkmin;    extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This routine is deprecated and has been replaced by routine DGGEV. *//*  DGEGV computes the eigenvalues and, optionally, the left and/or right *//*  eigenvectors of a real matrix pair (A,B). *//*  Given two square matrices A and B, *//*  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the *//*  eigenvalues lambda and corresponding (non-zero) eigenvectors x such *//*  that *//*     A*x = lambda*B*x. *//*  An alternate form is to find the eigenvalues mu and corresponding *//*  eigenvectors y such that *//*     mu*A*y = B*y. *//*  These two forms are equivalent with mu = 1/lambda and x = y if *//*  neither lambda nor mu is zero.  In order to deal with the case that *//*  lambda or mu is zero or small, two values alpha and beta are returned *//*  for each eigenvalue, such that lambda = alpha/beta and *//*  mu = beta/alpha. *//*  The vectors x and y in the above equations are right eigenvectors of *//*  the matrix pair (A,B).  Vectors u and v satisfying *//*     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B *//*  are left eigenvectors of (A,B). *//*  Note: this routine performs "full balancing" on A and B -- see *//*  "Further Details", below. *//*  Arguments *//*  ========= *//*  JOBVL   (input) CHARACTER*1 *//*          = 'N':  do not compute the left generalized eigenvectors; *//*          = 'V':  compute the left generalized eigenvectors (returned *//*                  in VL). *//*  JOBVR   (input) CHARACTER*1 *//*          = 'N':  do not compute the right generalized eigenvectors; *//*          = 'V':  compute the right generalized eigenvectors (returned *//*                  in VR). *//*  N       (input) INTEGER *//*          The order of the matrices A, B, VL, and VR.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the matrix A. *//*          If JOBVL = 'V' or JOBVR = 'V', then on exit A *//*          contains the real Schur form of A from the generalized Schur *//*          factorization of the pair (A,B) after balancing. *//*          If no eigenvectors were computed, then only the diagonal *//*          blocks from the Schur form will be correct.  See DGGHRD and *//*          DHGEQZ for details. *//*  LDA     (input) INTEGER *//*          The leading dimension of A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) *//*          On entry, the matrix B. *//*          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the *//*          upper triangular matrix obtained from B in the generalized *//*          Schur factorization of the pair (A,B) after balancing. *//*          If no eigenvectors were computed, then only those elements of *//*          B corresponding to the diagonal blocks from the Schur form of *//*          A will be correct.  See DGGHRD and DHGEQZ for details. *//*  LDB     (input) INTEGER *//*          The leading dimension of B.  LDB >= max(1,N). *//*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) *//*          The real parts of each scalar alpha defining an eigenvalue of *//*          GNEP. *//*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) *//*          The imaginary parts of each scalar alpha defining an *//*          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th *//*          eigenvalue is real; if positive, then the j-th and *//*          (j+1)-st eigenvalues are a complex conjugate pair, with *//*          ALPHAI(j+1) = -ALPHAI(j). *//*  BETA    (output) DOUBLE PRECISION array, dimension (N) *//*          The scalars beta that define the eigenvalues of GNEP. *//*          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and *//*          beta = BETA(j) represent the j-th eigenvalue of the matrix *//*          pair (A,B), in one of the forms lambda = alpha/beta or *//*          mu = beta/alpha.  Since either lambda or mu may overflow, *//*          they should not, in general, be computed. *//*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) *//*          If JOBVL = 'V', the left eigenvectors u(j) are stored *//*          in the columns of VL, in the same order as their eigenvalues. *//*          If the j-th eigenvalue is real, then u(j) = VL(:,j). *//*          If the j-th and (j+1)-st eigenvalues form a complex conjugate *//*          pair, then *//*             u(j) = VL(:,j) + i*VL(:,j+1) *//*          and *//*            u(j+1) = VL(:,j) - i*VL(:,j+1). *//*          Each eigenvector is scaled so that its largest component has *//*          abs(real part) + abs(imag. part) = 1, except for eigenvectors *//*          corresponding to an eigenvalue with alpha = beta = 0, which *//*          are set to zero. *//*          Not referenced if JOBVL = 'N'. *//*  LDVL    (input) INTEGER *//*          The leading dimension of the matrix VL. LDVL >= 1, and *//*          if JOBVL = 'V', LDVL >= N. *//*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) *//*          If JOBVR = 'V', the right eigenvectors x(j) are stored *//*          in the columns of VR, in the same order as their eigenvalues. *//*          If the j-th eigenvalue is real, then x(j) = VR(:,j). *//*          If the j-th and (j+1)-st eigenvalues form a complex conjugate *//*          pair, then *//*            x(j) = VR(:,j) + i*VR(:,j+1) *//*          and *//*            x(j+1) = VR(:,j) - i*VR(:,j+1). *//*          Each eigenvector is scaled so that its largest component has *//*          abs(real part) + abs(imag. part) = 1, except for eigenvalues *//*          corresponding to an eigenvalue with alpha = beta = 0, which *//*          are set to zero. *//*          Not referenced if JOBVR = 'N'. *//*  LDVR    (input) INTEGER *//*          The leading dimension of the matrix VR. LDVR >= 1, and *//*          if JOBVR = 'V', LDVR >= N. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,8*N). *//*          For good performance, LWORK must generally be larger. *//*          To compute the optimal value of LWORK, call ILAENV to get *//*          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute: *//*          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; *//*          The optimal LWORK is: *//*              2*N + MAX( 6*N, N*(NB+1) ). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          = 1,...,N: *//*                The QZ iteration failed.  No eigenvectors have been *//*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) *//*                should be correct for j=INFO+1,...,N. *//*          > N:  errors that usually indicate LAPACK problems: *//*                =N+1: error return from DGGBAL *//*                =N+2: error return from DGEQRF *//*                =N+3: error return from DORMQR *//*                =N+4: error return from DORGQR *//*                =N+5: error return from DGGHRD *//*                =N+6: error return from DHGEQZ (other than failed *//*                                                iteration) *//*                =N+7: error return from DTGEVC *//*                =N+8: error return from DGGBAK (computing VL) *//*                =N+9: error return from DGGBAK (computing VR) *//*                =N+10: error return from DLASCL (various calls) *//*  Further Details *//*  =============== *//*  Balancing *//*  --------- *//*  This driver calls DGGBAL to both permute and scale rows and columns *//*  of A and B.  The permutations PL and PR are chosen so that PL*A*PR *//*  and PL*B*R will be upper triangular except for the diagonal blocks *//*  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as *//*  possible.  The diagonal scaling matrices DL and DR are chosen so *//*  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to *//*  one (except for the elements that start out zero.) *//*  After the eigenvalues and eigenvectors of the balanced matrices *//*  have been computed, DGGBAK transforms the eigenvectors back to what *//*  they would have been (in perfect arithmetic) if they had not been *//*  balanced. *//*  Contents of A and B on Exit *//*  -------- -- - --- - -- ---- *//*  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or *//*  both), then on exit the arrays A and B will contain the real Schur *//*  form[*] of the "balanced" versions of A and B.  If no eigenvectors *//*  are computed, then only the diagonal blocks will be correct. *//*  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", *//*      by Golub & van Loan, pub. by Johns Hopkins U. Press. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --alphar;    --alphai;    --beta;    vl_dim1 = *ldvl;    vl_offset = 1 + vl_dim1;    vl -= vl_offset;    vr_dim1 = *ldvr;    vr_offset = 1 + vr_dim1;    vr -= vr_offset;    --work;    /* Function Body */    if (_starpu_lsame_(jobvl, "N")) {	ijobvl = 1;	ilvl = FALSE_;    } else if (_starpu_lsame_(jobvl, "V")) {	ijobvl = 2;	ilvl = TRUE_;    } else {	ijobvl = -1;	ilvl = FALSE_;    }    if (_starpu_lsame_(jobvr, "N")) {	ijobvr = 1;	ilvr = FALSE_;    } else if (_starpu_lsame_(jobvr, "V")) {	ijobvr = 2;	ilvr = TRUE_;    } else {	ijobvr = -1;	ilvr = FALSE_;    }    ilv = ilvl || ilvr;/*     Test the input arguments *//* Computing MAX */    i__1 = *n << 3;    lwkmin = max(i__1,1);    lwkopt = lwkmin;    work[1] = (doublereal) lwkopt;    lquery = *lwork == -1;    *info = 0;    if (ijobvl <= 0) {	*info = -1;    } else if (ijobvr <= 0) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -7;    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {	*info = -12;    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {	*info = -14;    } else if (*lwork < lwkmin && ! lquery) {	*info = -16;    }    if (*info == 0) {	nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1);	nb2 = _starpu_ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1);	nb3 = _starpu_ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1);/* Computing MAX */	i__1 = max(nb1,nb2);	nb = max(i__1,nb3);/* Computing MAX */	i__1 = *n * 6, i__2 = *n * (nb + 1);	lopt = (*n << 1) + max(i__1,i__2);	work[1] = (doublereal) lopt;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGEGV ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Get machine constants */    eps = _starpu_dlamch_("E") * _starpu_dlamch_("B");    safmin = _starpu_dlamch_("S");    safmin += safmin;    safmax = 1. / safmin;    onepls = eps * 4 + 1.;/*     Scale A */    anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);    anrm1 = anrm;    anrm2 = 1.;    if (anrm < 1.) {	if (safmax * anrm < 1.) {	    anrm1 = safmin;	    anrm2 = safmax * anrm;	}    }    if (anrm > 0.) {	_starpu_dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &		iinfo);	if (iinfo != 0) {	    *info = *n + 10;	    return 0;	}    }/*     Scale B */    bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);    bnrm1 = bnrm;    bnrm2 = 1.;    if (bnrm < 1.) {	if (safmax * bnrm < 1.) {	    bnrm1 = safmin;	    bnrm2 = safmax * bnrm;	}    }    if (bnrm > 0.) {	_starpu_dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &		iinfo);	if (iinfo != 0) {	    *info = *n + 10;	    return 0;	}    }/*     Permute the matrix to make it more nearly triangular *//*     Workspace layout:  (8*N words -- "work" requires 6*N words) *//*        left_permutation, right_permutation, work... */    ileft = 1;    iright = *n + 1;    iwork = iright + *n;    _starpu_dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[	    ileft], &work[iright], &work[iwork], &iinfo);    if (iinfo != 0) {	*info = *n + 1;	goto L120;    }/*     Reduce B to triangular form, and initialize VL and/or VR *//*     Workspace layout:  ("work..." must have at least N words) *//*        left_permutation, right_permutation, tau, work... */    irows = ihi + 1 - ilo;    if (ilv) {	icols = *n + 1 - ilo;    } else {	icols = irows;    }    itau = iwork;    iwork = itau + irows;    i__1 = *lwork + 1 - iwork;    _starpu_dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[	    iwork], &i__1, &iinfo);    if (iinfo >= 0) {/* Computing MAX */	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	lwkopt = max(i__1,i__2);    }    if (iinfo != 0) {	*info = *n + 2;	goto L120;    }    i__1 = *lwork + 1 - iwork;    _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &	    iinfo);    if (iinfo >= 0) {/* Computing MAX */	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	lwkopt = max(i__1,i__2);    }    if (iinfo != 0) {	*info = *n + 3;	goto L120;    }    if (ilvl) {	_starpu_dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)		;	i__1 = irows - 1;	i__2 = irows - 1;	_starpu_dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 		1 + ilo * vl_dim1], ldvl);	i__1 = *lwork + 1 - iwork;	_starpu_dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[		itau], &work[iwork], &i__1, &iinfo);	if (iinfo >= 0) {/* Computing MAX */	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	    lwkopt = max(i__1,i__2);	}	if (iinfo != 0) {	    *info = *n + 4;	    goto L120;	}    }    if (ilvr) {	_starpu_dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)		;    }/*     Reduce to generalized Hessenberg form */    if (ilv) {/*        Eigenvectors requested -- work on whole matrix. */	_starpu_dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);    } else {	_starpu_dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[		vr_offset], ldvr, &iinfo);    }    if (iinfo != 0) {	*info = *n + 5;	goto L120;    }/*     Perform QZ algorithm *//*     Workspace layout:  ("work..." must have at least 1 word) *//*        left_permutation, right_permutation, work... */    iwork = itau;    if (ilv) {	*(unsigned char *)chtemp = 'S';    } else {	*(unsigned char *)chtemp = 'E';    }    i__1 = *lwork + 1 - iwork;    _starpu_dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 	    ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);    if (iinfo >= 0) {/* Computing MAX */	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	lwkopt = max(i__1,i__2);    }    if (iinfo != 0) {	if (iinfo > 0 && iinfo <= *n) {	    *info = iinfo;	} else if (iinfo > *n && iinfo <= *n << 1) {	    *info = iinfo - *n;	} else {	    *info = *n + 6;	}	goto L120;    }    if (ilv) {/*        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace) */	if (ilvl) {	    if (ilvr) {		*(unsigned char *)chtemp = 'B';	    } else {		*(unsigned char *)chtemp = 'L';	    }	} else {	    *(unsigned char *)chtemp = 'R';	}	_starpu_dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[		iwork], &iinfo);	if (iinfo != 0) {	    *info = *n + 7;	    goto L120;	}/*        Undo balancing on VL and VR, rescale */	if (ilvl) {	    _starpu_dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &		    vl[vl_offset], ldvl, &iinfo);	    if (iinfo != 0) {		*info = *n + 8;		goto L120;	    }	    i__1 = *n;	    for (jc = 1; jc <= i__1; ++jc) {		if (alphai[jc] < 0.) {		    goto L50;		}		temp = 0.;		if (alphai[jc] == 0.) {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */			d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], 				abs(d__1));			temp = max(d__2,d__3);/* L10: */		    }		} else {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */			d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], 				abs(d__1)) + (d__2 = vl[jr + (jc + 1) * 				vl_dim1], abs(d__2));			temp = max(d__3,d__4);/* L20: */		    }		}		if (temp < safmin) {		    goto L50;		}		temp = 1. / temp;		if (alphai[jc] == 0.) {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			vl[jr + jc * vl_dim1] *= temp;/* L30: */		    }		} else {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			vl[jr + jc * vl_dim1] *= temp;			vl[jr + (jc + 1) * vl_dim1] *= temp;/* L40: */		    }		}L50:		;	    }	}	if (ilvr) {	    _starpu_dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &		    vr[vr_offset], ldvr, &iinfo);	    if (iinfo != 0) {		*info = *n + 9;		goto L120;	    }	    i__1 = *n;	    for (jc = 1; jc <= i__1; ++jc) {		if (alphai[jc] < 0.) {		    goto L100;		}		temp = 0.;		if (alphai[jc] == 0.) {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */			d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], 				abs(d__1));			temp = max(d__2,d__3);/* L60: */		    }		} else {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {/* Computing MAX */			d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], 				abs(d__1)) + (d__2 = vr[jr + (jc + 1) * 				vr_dim1], abs(d__2));			temp = max(d__3,d__4);/* L70: */		    }		}		if (temp < safmin) {		    goto L100;		}		temp = 1. / temp;		if (alphai[jc] == 0.) {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			vr[jr + jc * vr_dim1] *= temp;/* L80: */		    }		} else {		    i__2 = *n;		    for (jr = 1; jr <= i__2; ++jr) {			vr[jr + jc * vr_dim1] *= temp;			vr[jr + (jc + 1) * vr_dim1] *= temp;/* L90: */		    }		}L100:		;	    }	}/*        End of eigenvector calculation */    }/*     Undo scaling in alpha, beta *//*     Note: this does not give the alpha and beta for the unscaled *//*     problem. *//*     Un-scaling is limited to avoid underflow in alpha and beta *//*     if they are significant. */    i__1 = *n;    for (jc = 1; jc <= i__1; ++jc) {	absar = (d__1 = alphar[jc], abs(d__1));	absai = (d__1 = alphai[jc], abs(d__1));	absb = (d__1 = beta[jc], abs(d__1));	salfar = anrm * alphar[jc];	salfai = anrm * alphai[jc];	sbeta = bnrm * beta[jc];	ilimit = FALSE_;	scale = 1.;/*        Check for significant underflow in ALPHAI *//* Computing MAX */	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *		 absb;	if (abs(salfai) < safmin && absai >= max(d__1,d__2)) {	    ilimit = TRUE_;/* Computing MAX */	    d__1 = onepls * safmin, d__2 = anrm2 * absai;	    scale = onepls * safmin / anrm1 / max(d__1,d__2);	} else if (salfai == 0.) {/*           If insignificant underflow in ALPHAI, then make the *//*           conjugate eigenvalue real. */	    if (alphai[jc] < 0. && jc > 1) {		alphai[jc - 1] = 0.;	    } else if (alphai[jc] > 0. && jc < *n) {		alphai[jc + 1] = 0.;	    }	}/*        Check for significant underflow in ALPHAR *//* Computing MAX */	d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps *		 absb;	if (abs(salfar) < safmin && absar >= max(d__1,d__2)) {	    ilimit = TRUE_;/* Computing MAX *//* Computing MAX */	    d__3 = onepls * safmin, d__4 = anrm2 * absar;	    d__1 = scale, d__2 = onepls * safmin / anrm1 / max(d__3,d__4);	    scale = max(d__1,d__2);	}/*        Check for significant underflow in BETA *//* Computing MAX */	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *		 absai;	if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) {	    ilimit = TRUE_;/* Computing MAX *//* Computing MAX */	    d__3 = onepls * safmin, d__4 = bnrm2 * absb;	    d__1 = scale, d__2 = onepls * safmin / bnrm1 / max(d__3,d__4);	    scale = max(d__1,d__2);	}/*        Check for possible overflow when limiting scaling */	if (ilimit) {/* Computing MAX */	    d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2), 		    d__2 = abs(sbeta);	    temp = scale * safmin * max(d__1,d__2);	    if (temp > 1.) {		scale /= temp;	    }	    if (scale < 1.) {		ilimit = FALSE_;	    }	}/*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */	if (ilimit) {	    salfar = scale * alphar[jc] * anrm;	    salfai = scale * alphai[jc] * anrm;	    sbeta = scale * beta[jc] * bnrm;	}	alphar[jc] = salfar;	alphai[jc] = salfai;	beta[jc] = sbeta;/* L110: */    }L120:    work[1] = (doublereal) lwkopt;    return 0;/*     End of DGEGV */} /* _starpu_dgegv_ */
 |