starpu.texi 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. * Function Index:: Index of C functions.
  38. @end menu
  39. @c ---------------------------------------------------------------------
  40. @c Introduction to StarPU
  41. @c ---------------------------------------------------------------------
  42. @node Introduction
  43. @chapter Introduction to StarPU
  44. @menu
  45. * Motivation:: Why StarPU ?
  46. * StarPU in a Nutshell:: The Fundamentals of StarPU
  47. @end menu
  48. @node Motivation
  49. @section Motivation
  50. @c complex machines with heterogeneous cores/devices
  51. The use of specialized hardware such as accelerators or coprocessors offers an
  52. interesting approach to overcome the physical limits encountered by processor
  53. architects. As a result, many machines are now equipped with one or several
  54. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  55. efforts have been devoted to offload computation onto such accelerators, very
  56. little attention as been paid to portability concerns on the one hand, and to the
  57. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  58. StarPU is a runtime system that offers support for heterogeneous multicore
  59. architectures, it not only offers a unified view of the computational resources
  60. (i.e. CPUs and accelerators at the same time), but it also takes care of
  61. efficiently mapping and executing tasks onto an heterogeneous machine while
  62. transparently handling low-level issues such as data transfers in a portable
  63. fashion.
  64. @c this leads to a complicated distributed memory design
  65. @c which is not (easily) manageable by hand
  66. @c added value/benefits of StarPU
  67. @c - portability
  68. @c - scheduling, perf. portability
  69. @node StarPU in a Nutshell
  70. @section StarPU in a Nutshell
  71. @menu
  72. * Codelet and Tasks::
  73. * StarPU Data Management Library::
  74. * Research Papers::
  75. @end menu
  76. From a programming point of view, StarPU is not a new language but a library
  77. that executes tasks explicitly submitted by the application. The data that a
  78. task manipulates are automatically transferred onto the accelerator so that the
  79. programmer does not have to take care of complex data movements. StarPU also
  80. takes particular care of scheduling those tasks efficiently and allows
  81. scheduling experts to implement custom scheduling policies in a portable
  82. fashion.
  83. @c explain the notion of codelet and task (i.e. g(A, B)
  84. @node Codelet and Tasks
  85. @subsection Codelet and Tasks
  86. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  87. computational kernel that can possibly be implemented on multiple architectures
  88. such as a CPU, a CUDA device or a Cell's SPU.
  89. @c TODO insert illustration f : f_spu, f_cpu, ...
  90. Another important data structure is the @b{task}. Executing a StarPU task
  91. consists in applying a codelet on a data set, on one of the architectures on
  92. which the codelet is implemented. In addition to the codelet that a task
  93. useuses, it also describes which data are accessed, and how they are
  94. accessed during the computation (read and/or write).
  95. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  96. operation. The task structure can also specify a @b{callback} function that is
  97. called once StarPU has properly executed the task. It also contains optional
  98. fields that the application may use to give hints to the scheduler (such as
  99. priority levels).
  100. A task may be identified by a unique 64-bit number chosen by the application
  101. which we refer as a @b{tag}.
  102. Task dependencies can be enforced either by the means of callback functions, by
  103. expressing dependencies between explicit tasks or by expressing dependencies
  104. between tags (which can thus correspond to tasks that have not been submitted
  105. yet).
  106. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  107. @c DSM
  108. @node StarPU Data Management Library
  109. @subsection StarPU Data Management Library
  110. Because StarPU schedules tasks at runtime, data transfers have to be
  111. done automatically and ``just-in-time'' between processing units,
  112. relieving the application programmer from explicit data transfers.
  113. Moreover, to avoid unnecessary transfers, StarPU keeps data
  114. where it was last needed, even if was modified there, and it
  115. allows multiple copies of the same data to reside at the same time on
  116. several processing units as long as it is not modified.
  117. @node Research Papers
  118. @subsection Research Papers
  119. Research papers about StarPU can be found at
  120. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  121. Notably a good overview in the research report
  122. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  123. @c ---------------------------------------------------------------------
  124. @c Installing StarPU
  125. @c ---------------------------------------------------------------------
  126. @node Installing StarPU
  127. @chapter Installing StarPU
  128. @menu
  129. * Downloading StarPU::
  130. * Configuration of StarPU::
  131. * Building and Installing StarPU::
  132. @end menu
  133. StarPU can be built and installed by the standard means of the GNU
  134. autotools. The following chapter is intended to briefly remind how these tools
  135. can be used to install StarPU.
  136. @node Downloading StarPU
  137. @section Downloading StarPU
  138. @menu
  139. * Getting Sources::
  140. * Optional dependencies::
  141. @end menu
  142. @node Getting Sources
  143. @subsection Getting Sources
  144. The simplest way to get StarPU sources is to download the latest official
  145. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  146. or the latest nightly snapshot from
  147. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  148. how to get the very latest version from the subversion repository itself, it
  149. should be needed only if you need the very latest changes (i.e. less than a
  150. day!)
  151. The source code is managed by a Subversion server hosted by the
  152. InriaGforge. To get the source code, you need:
  153. @itemize
  154. @item
  155. To install the client side of the software Subversion if it is
  156. not already available on your system. The software can be obtained from
  157. @indicateurl{http://subversion.tigris.org} . If you are running
  158. on Windows, you will probably prefer to use TortoiseSVN from
  159. @indicateurl{http://tortoisesvn.tigris.org/} .
  160. @item
  161. You can check out the project's SVN repository through anonymous
  162. access. This will provide you with a read access to the
  163. repository.
  164. If you need to have write access on the StarPU project, you can also choose to
  165. become a member of the project @code{starpu}. For this, you first need to get
  166. an account to the gForge server. You can then send a request to join the project
  167. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  168. @item
  169. More information on how to get a gForge account, to become a member of
  170. a project, or on any other related task can be obtained from the
  171. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  172. thing is to upload your public SSH key on the gForge server (see the
  173. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  174. instructions).
  175. @end itemize
  176. You can now check out the latest version from the Subversion server:
  177. @itemize
  178. @item
  179. using the anonymous access via svn:
  180. @example
  181. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  182. @end example
  183. @item
  184. using the anonymous access via https:
  185. @example
  186. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  187. @end example
  188. The password is @code{anonsvn}.
  189. @item
  190. using your gForge account
  191. @example
  192. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  193. @end example
  194. @end itemize
  195. The following step requires the availability of @code{autoconf} and
  196. @code{automake} to generate the @code{./configure} script. This is
  197. done by calling @code{./autogen.sh}. The required version for
  198. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  199. @example
  200. % ./autogen.sh
  201. @end example
  202. If the autotools are not available on your machine or not recent
  203. enough, you can choose to download the latest nightly tarball, which
  204. is provided with a @code{configure} script.
  205. @example
  206. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  207. @end example
  208. @node Optional dependencies
  209. @subsection Optional dependencies
  210. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  211. but strongly recommended. It allows to increase performance, and to
  212. perform some topology aware scheduling.
  213. @code{hwloc} is available in major distributions and for most OSes and can be
  214. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  215. @node Configuration of StarPU
  216. @section Configuration of StarPU
  217. @menu
  218. * Generating Makefiles and configuration scripts::
  219. * Running the configuration::
  220. @end menu
  221. @node Generating Makefiles and configuration scripts
  222. @subsection Generating Makefiles and configuration scripts
  223. This step is not necessary when using the tarball releases of StarPU. If you
  224. are using the source code from the svn repository, you first need to generate
  225. the configure scripts and the Makefiles.
  226. @example
  227. % ./autogen.sh
  228. @end example
  229. @node Running the configuration
  230. @subsection Running the configuration
  231. @example
  232. % ./configure
  233. @end example
  234. Details about options that are useful to give to @code{./configure} are given in
  235. @ref{Compilation configuration}.
  236. @node Building and Installing StarPU
  237. @section Building and Installing StarPU
  238. @menu
  239. * Building::
  240. * Sanity Checks::
  241. * Installing::
  242. @end menu
  243. @node Building
  244. @subsection Building
  245. @example
  246. % make
  247. @end example
  248. @node Sanity Checks
  249. @subsection Sanity Checks
  250. In order to make sure that StarPU is working properly on the system, it is also
  251. possible to run a test suite.
  252. @example
  253. % make check
  254. @end example
  255. @node Installing
  256. @subsection Installing
  257. In order to install StarPU at the location that was specified during
  258. configuration:
  259. @example
  260. % make install
  261. @end example
  262. @c ---------------------------------------------------------------------
  263. @c Using StarPU
  264. @c ---------------------------------------------------------------------
  265. @node Using StarPU
  266. @chapter Using StarPU
  267. @menu
  268. * Setting flags for compiling and linking applications::
  269. * Running a basic StarPU application::
  270. * Kernel threads started by StarPU::
  271. * Using accelerators::
  272. @end menu
  273. @node Setting flags for compiling and linking applications
  274. @section Setting flags for compiling and linking applications
  275. Compiling and linking an application against StarPU may require to use
  276. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  277. To this end, it is possible to use the @code{pkg-config} tool.
  278. If StarPU was not installed at some standard location, the path of StarPU's
  279. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  280. that @code{pkg-config} can find it. For example if StarPU was installed in
  281. @code{$prefix_dir}:
  282. @example
  283. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  284. @end example
  285. The flags required to compile or link against StarPU are then
  286. accessible with the following commands:
  287. @example
  288. % pkg-config --cflags libstarpu # options for the compiler
  289. % pkg-config --libs libstarpu # options for the linker
  290. @end example
  291. @node Running a basic StarPU application
  292. @section Running a basic StarPU application
  293. Basic examples using StarPU have been built in the directory
  294. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  295. example @code{vector_scal}.
  296. @example
  297. % $prefix_dir/lib/starpu/examples/vector_scal
  298. BEFORE : First element was 1.000000
  299. AFTER First element is 3.140000
  300. %
  301. @end example
  302. When StarPU is used for the first time, the directory
  303. @code{$HOME/.starpu/} is created, performance models will be stored in
  304. that directory.
  305. Please note that buses are benchmarked when StarPU is launched for the
  306. first time. This may take a few minutes, or less if @code{hwloc} is
  307. installed. This step is done only once per user and per machine.
  308. @node Kernel threads started by StarPU
  309. @section Kernel threads started by StarPU
  310. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  311. them per GPU. The application is not supposed to do computations in its own
  312. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  313. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  314. worker).
  315. @node Using accelerators
  316. @section Using accelerators
  317. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  318. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  319. This design choice was necessary as OpenCL and CUDA can not run at the
  320. same time on the same NVIDIA GPU, as there is currently no interoperability
  321. between them.
  322. Details on how to specify devices running OpenCL and the ones running
  323. CUDA are given in @ref{Enabling OpenCL}.
  324. @c ---------------------------------------------------------------------
  325. @c Basic Examples
  326. @c ---------------------------------------------------------------------
  327. @node Basic Examples
  328. @chapter Basic Examples
  329. @menu
  330. * Compiling and linking options::
  331. * Hello World:: Submitting Tasks
  332. * Scaling a Vector:: Manipulating Data
  333. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  334. * Task and Worker Profiling::
  335. * Partitioning Data:: Partitioning Data
  336. * Performance model example::
  337. * Theoretical lower bound on execution time::
  338. * Insert Task Utility::
  339. * More examples:: More examples shipped with StarPU
  340. @end menu
  341. @node Compiling and linking options
  342. @section Compiling and linking options
  343. Let's suppose StarPU has been installed in the directory
  344. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  345. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  346. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  347. libraries at runtime.
  348. @example
  349. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  350. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  351. @end example
  352. The Makefile could for instance contain the following lines to define which
  353. options must be given to the compiler and to the linker:
  354. @cartouche
  355. @example
  356. CFLAGS += $$(pkg-config --cflags libstarpu)
  357. LDFLAGS += $$(pkg-config --libs libstarpu)
  358. @end example
  359. @end cartouche
  360. @node Hello World
  361. @section Hello World
  362. @menu
  363. * Required Headers::
  364. * Defining a Codelet::
  365. * Submitting a Task::
  366. * Execution of Hello World::
  367. @end menu
  368. In this section, we show how to implement a simple program that submits a task to StarPU.
  369. @node Required Headers
  370. @subsection Required Headers
  371. The @code{starpu.h} header should be included in any code using StarPU.
  372. @cartouche
  373. @smallexample
  374. #include <starpu.h>
  375. @end smallexample
  376. @end cartouche
  377. @node Defining a Codelet
  378. @subsection Defining a Codelet
  379. @cartouche
  380. @smallexample
  381. struct params @{
  382. int i;
  383. float f;
  384. @};
  385. void cpu_func(void *buffers[], void *cl_arg)
  386. @{
  387. struct params *params = cl_arg;
  388. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  389. @}
  390. starpu_codelet cl =
  391. @{
  392. .where = STARPU_CPU,
  393. .cpu_func = cpu_func,
  394. .nbuffers = 0
  395. @};
  396. @end smallexample
  397. @end cartouche
  398. A codelet is a structure that represents a computational kernel. Such a codelet
  399. may contain an implementation of the same kernel on different architectures
  400. (e.g. CUDA, Cell's SPU, x86, ...).
  401. The @code{nbuffers} field specifies the number of data buffers that are
  402. manipulated by the codelet: here the codelet does not access or modify any data
  403. that is controlled by our data management library. Note that the argument
  404. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  405. structure) does not count as a buffer since it is not managed by our data
  406. management library, but just contain trivial parameters.
  407. @c TODO need a crossref to the proper description of "where" see bla for more ...
  408. We create a codelet which may only be executed on the CPUs. The @code{where}
  409. field is a bitmask that defines where the codelet may be executed. Here, the
  410. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  411. (@pxref{Codelets and Tasks} for more details on this field).
  412. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  413. which @emph{must} have the following prototype:
  414. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  415. In this example, we can ignore the first argument of this function which gives a
  416. description of the input and output buffers (e.g. the size and the location of
  417. the matrices) since there is none.
  418. The second argument is a pointer to a buffer passed as an
  419. argument to the codelet by the means of the @code{cl_arg} field of the
  420. @code{starpu_task} structure.
  421. @c TODO rewrite so that it is a little clearer ?
  422. Be aware that this may be a pointer to a
  423. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  424. if the codelet modifies this buffer, there is no guarantee that the initial
  425. buffer will be modified as well: this for instance implies that the buffer
  426. cannot be used as a synchronization medium. If synchronization is needed, data
  427. has to be registered to StarPU, see @ref{Scaling a Vector}.
  428. @node Submitting a Task
  429. @subsection Submitting a Task
  430. @cartouche
  431. @smallexample
  432. void callback_func(void *callback_arg)
  433. @{
  434. printf("Callback function (arg %x)\n", callback_arg);
  435. @}
  436. int main(int argc, char **argv)
  437. @{
  438. /* @b{initialize StarPU} */
  439. starpu_init(NULL);
  440. struct starpu_task *task = starpu_task_create();
  441. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  442. struct params params = @{ 1, 2.0f @};
  443. task->cl_arg = &params;
  444. task->cl_arg_size = sizeof(params);
  445. task->callback_func = callback_func;
  446. task->callback_arg = 0x42;
  447. /* @b{starpu_task_submit will be a blocking call} */
  448. task->synchronous = 1;
  449. /* @b{submit the task to StarPU} */
  450. starpu_task_submit(task);
  451. /* @b{terminate StarPU} */
  452. starpu_shutdown();
  453. return 0;
  454. @}
  455. @end smallexample
  456. @end cartouche
  457. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  458. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  459. be submitted after the termination of StarPU by a call to
  460. @code{starpu_shutdown}.
  461. In the example above, a task structure is allocated by a call to
  462. @code{starpu_task_create}. This function only allocates and fills the
  463. corresponding structure with the default settings (@pxref{starpu_task_create}),
  464. but it does not submit the task to StarPU.
  465. @c not really clear ;)
  466. The @code{cl} field is a pointer to the codelet which the task will
  467. execute: in other words, the codelet structure describes which computational
  468. kernel should be offloaded on the different architectures, and the task
  469. structure is a wrapper containing a codelet and the piece of data on which the
  470. codelet should operate.
  471. The optional @code{cl_arg} field is a pointer to a buffer (of size
  472. @code{cl_arg_size}) with some parameters for the kernel
  473. described by the codelet. For instance, if a codelet implements a computational
  474. kernel that multiplies its input vector by a constant, the constant could be
  475. specified by the means of this buffer, instead of registering it as a StarPU
  476. data.
  477. Once a task has been executed, an optional callback function is be called.
  478. While the computational kernel could be offloaded on various architectures, the
  479. callback function is always executed on a CPU. The @code{callback_arg}
  480. pointer is passed as an argument of the callback. The prototype of a callback
  481. function must be:
  482. @code{void (*callback_function)(void *);}
  483. If the @code{synchronous} field is non-zero, task submission will be
  484. synchronous: the @code{starpu_task_submit} function will not return until the
  485. task was executed. Note that the @code{starpu_shutdown} method does not
  486. guarantee that asynchronous tasks have been executed before it returns,
  487. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  488. acquired (@code{starpu_data_acquire(vector_handle, STARPU_R);}), which will
  489. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  490. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  491. @code{starpu_data_set_sequential_consistency_flag}.
  492. @node Execution of Hello World
  493. @subsection Execution of Hello World
  494. @smallexample
  495. % make hello_world
  496. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  497. % ./hello_world
  498. Hello world (params = @{1, 2.000000@} )
  499. Callback function (arg 42)
  500. @end smallexample
  501. @node Scaling a Vector
  502. @section Manipulating Data: Scaling a Vector
  503. The previous example has shown how to submit tasks. In this section,
  504. we show how StarPU tasks can manipulate data. The full source code for
  505. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  506. @menu
  507. * Source code of Vector Scaling::
  508. * Execution of Vector Scaling::
  509. @end menu
  510. @node Source code of Vector Scaling
  511. @subsection Source code of Vector Scaling
  512. Programmers can describe the data layout of their application so that StarPU is
  513. responsible for enforcing data coherency and availability across the machine.
  514. Instead of handling complex (and non-portable) mechanisms to perform data
  515. movements, programmers only declare which piece of data is accessed and/or
  516. modified by a task, and StarPU makes sure that when a computational kernel
  517. starts somewhere (e.g. on a GPU), its data are available locally.
  518. Before submitting those tasks, the programmer first needs to declare the
  519. different pieces of data to StarPU using the @code{starpu_*_data_register}
  520. functions. To ease the development of applications for StarPU, it is possible
  521. to describe multiple types of data layout. A type of data layout is called an
  522. @b{interface}. There are different predefined interfaces available in StarPU:
  523. here we will consider the @b{vector interface}.
  524. The following lines show how to declare an array of @code{NX} elements of type
  525. @code{float} using the vector interface:
  526. @cartouche
  527. @smallexample
  528. float vector[NX];
  529. starpu_data_handle vector_handle;
  530. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  531. sizeof(vector[0]));
  532. @end smallexample
  533. @end cartouche
  534. The first argument, called the @b{data handle}, is an opaque pointer which
  535. designates the array in StarPU. This is also the structure which is used to
  536. describe which data is used by a task. The second argument is the node number
  537. where the data originally resides. Here it is 0 since the @code{vector} array is in
  538. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  539. the number of elements in the vector and the size of each element.
  540. The following shows how to construct a StarPU task that will manipulate the
  541. vector and a constant factor.
  542. @cartouche
  543. @smallexample
  544. float factor = 3.14;
  545. struct starpu_task *task = starpu_task_create();
  546. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  547. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  548. task->buffers[0].mode = STARPU_RW;
  549. task->cl_arg = &factor;
  550. task->cl_arg_size = sizeof(factor);
  551. task->synchronous = 1;
  552. starpu_task_submit(task);
  553. @end smallexample
  554. @end cartouche
  555. Since the factor is a mere constant float value parameter,
  556. it does not need a preliminary registration, and
  557. can just be passed through the @code{cl_arg} pointer like in the previous
  558. example. The vector parameter is described by its handle.
  559. There are two fields in each element of the @code{buffers} array.
  560. @code{handle} is the handle of the data, and @code{mode} specifies how the
  561. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  562. write-only and @code{STARPU_RW} for read and write access).
  563. The definition of the codelet can be written as follows:
  564. @cartouche
  565. @smallexample
  566. void scal_cpu_func(void *buffers[], void *cl_arg)
  567. @{
  568. unsigned i;
  569. float *factor = cl_arg;
  570. /* length of the vector */
  571. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  572. /* local copy of the vector pointer */
  573. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  574. for (i = 0; i < n; i++)
  575. val[i] *= *factor;
  576. @}
  577. starpu_codelet cl = @{
  578. .where = STARPU_CPU,
  579. .cpu_func = scal_cpu_func,
  580. .nbuffers = 1
  581. @};
  582. @end smallexample
  583. @end cartouche
  584. The first argument is an array that gives
  585. a description of all the buffers passed in the @code{task->buffers}@ array. The
  586. size of this array is given by the @code{nbuffers} field of the codelet
  587. structure. For the sake of genericity, this array contains pointers to the
  588. different interfaces describing each buffer. In the case of the @b{vector
  589. interface}, the location of the vector (resp. its length) is accessible in the
  590. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  591. read-write fashion, any modification will automatically affect future accesses
  592. to this vector made by other tasks.
  593. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  594. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  595. constant factor from this pointer.
  596. @node Execution of Vector Scaling
  597. @subsection Execution of Vector Scaling
  598. @smallexample
  599. % make vector_scal
  600. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  601. % ./vector_scal
  602. 0.000000 3.000000 6.000000 9.000000 12.000000
  603. @end smallexample
  604. @node Vector Scaling on an Hybrid CPU/GPU Machine
  605. @section Vector Scaling on an Hybrid CPU/GPU Machine
  606. Contrary to the previous examples, the task submitted in this example may not
  607. only be executed by the CPUs, but also by a CUDA device.
  608. @menu
  609. * Definition of the CUDA Kernel::
  610. * Definition of the OpenCL Kernel::
  611. * Definition of the Main Code::
  612. * Execution of Hybrid Vector Scaling::
  613. @end menu
  614. @node Definition of the CUDA Kernel
  615. @subsection Definition of the CUDA Kernel
  616. The CUDA implementation can be written as follows. It needs to be
  617. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  618. driver.
  619. @cartouche
  620. @smallexample
  621. #include <starpu.h>
  622. static __global__ void vector_mult_cuda(float *val, unsigned n,
  623. float factor)
  624. @{
  625. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  626. if (i < n)
  627. val[i] *= factor;
  628. @}
  629. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  630. @{
  631. float *factor = (float *)_args;
  632. /* length of the vector */
  633. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  634. /* local copy of the vector pointer */
  635. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  636. unsigned threads_per_block = 64;
  637. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  638. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  639. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  640. @}
  641. @end smallexample
  642. @end cartouche
  643. @node Definition of the OpenCL Kernel
  644. @subsection Definition of the OpenCL Kernel
  645. The OpenCL implementation can be written as follows. StarPU provides
  646. tools to compile a OpenCL kernel stored in a file.
  647. @cartouche
  648. @smallexample
  649. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  650. @{
  651. const int i = get_global_id(0);
  652. if (i < nx) @{
  653. val[i] *= factor;
  654. @}
  655. @}
  656. @end smallexample
  657. @end cartouche
  658. @cartouche
  659. @smallexample
  660. #include <starpu.h>
  661. @i{#include <starpu_opencl.h>}
  662. @i{extern struct starpu_opencl_program programs;}
  663. void scal_opencl_func(void *buffers[], void *_args)
  664. @{
  665. float *factor = _args;
  666. @i{ int id, devid, err;}
  667. @i{ cl_kernel kernel;}
  668. @i{ cl_command_queue queue;}
  669. @i{ cl_event event;}
  670. /* length of the vector */
  671. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  672. /* local copy of the vector pointer */
  673. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  674. @i{ id = starpu_worker_get_id();}
  675. @i{ devid = starpu_worker_get_devid(id);}
  676. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  677. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  678. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  679. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  680. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  681. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  682. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ @{}
  684. @i{ size_t global=1;}
  685. @i{ size_t local=1;}
  686. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  687. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  688. @i{ @}}
  689. @i{ clFinish(queue);}
  690. @i{ starpu_opencl_collect_stats(event);}
  691. @i{ clReleaseEvent(event);}
  692. @i{ starpu_opencl_release_kernel(kernel);}
  693. @}
  694. @end smallexample
  695. @end cartouche
  696. @node Definition of the Main Code
  697. @subsection Definition of the Main Code
  698. The CPU implementation is the same as in the previous section.
  699. Here is the source of the main application. You can notice the value of the
  700. field @code{where} for the codelet. We specify
  701. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  702. can be executed either on a CPU or on a CUDA or an OpenCL device.
  703. @cartouche
  704. @smallexample
  705. #include <starpu.h>
  706. #define NX 2048
  707. extern void scal_cuda_func(void *buffers[], void *_args);
  708. extern void scal_cpu_func(void *buffers[], void *_args);
  709. extern void scal_opencl_func(void *buffers[], void *_args);
  710. /* @b{Definition of the codelet} */
  711. static starpu_codelet cl = @{
  712. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  713. /* @b{on a CUDA device, or on an OpenCL device} */
  714. .cuda_func = scal_cuda_func;
  715. .cpu_func = scal_cpu_func;
  716. .opencl_func = scal_opencl_func;
  717. .nbuffers = 1;
  718. @}
  719. #ifdef STARPU_USE_OPENCL
  720. /* @b{The compiled version of the OpenCL program} */
  721. struct starpu_opencl_program programs;
  722. #endif
  723. int main(int argc, char **argv)
  724. @{
  725. float *vector;
  726. int i, ret;
  727. float factor=3.0;
  728. struct starpu_task *task;
  729. starpu_data_handle vector_handle;
  730. starpu_init(NULL); /* @b{Initialising StarPU} */
  731. #ifdef STARPU_USE_OPENCL
  732. starpu_opencl_load_opencl_from_file(
  733. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  734. &programs, NULL);
  735. #endif
  736. vector = malloc(NX*sizeof(vector[0]));
  737. assert(vector);
  738. for(i=0 ; i<NX ; i++) vector[i] = i;
  739. @end smallexample
  740. @end cartouche
  741. @cartouche
  742. @smallexample
  743. /* @b{Registering data within StarPU} */
  744. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  745. NX, sizeof(vector[0]));
  746. /* @b{Definition of the task} */
  747. task = starpu_task_create();
  748. task->cl = &cl;
  749. task->buffers[0].handle = vector_handle;
  750. task->buffers[0].mode = STARPU_RW;
  751. task->cl_arg = &factor;
  752. task->cl_arg_size = sizeof(factor);
  753. @end smallexample
  754. @end cartouche
  755. @cartouche
  756. @smallexample
  757. /* @b{Submitting the task} */
  758. ret = starpu_task_submit(task);
  759. if (ret == -ENODEV) @{
  760. fprintf(stderr, "No worker may execute this task\n");
  761. return 1;
  762. @}
  763. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  764. /* @b{Waiting for its termination} */
  765. starpu_task_wait_for_all();
  766. /* @b{Update the vector in RAM} */
  767. starpu_data_acquire(vector_handle, STARPU_R);
  768. @end smallexample
  769. @end cartouche
  770. @cartouche
  771. @smallexample
  772. /* @b{Access the data} */
  773. for(i=0 ; i<NX; i++) @{
  774. fprintf(stderr, "%f ", vector[i]);
  775. @}
  776. fprintf(stderr, "\n");
  777. /* @b{Release the data and shutdown StarPU} */
  778. starpu_data_release(vector_handle);
  779. starpu_shutdown();
  780. return 0;
  781. @}
  782. @end smallexample
  783. @end cartouche
  784. @node Execution of Hybrid Vector Scaling
  785. @subsection Execution of Hybrid Vector Scaling
  786. The Makefile given at the beginning of the section must be extended to
  787. give the rules to compile the CUDA source code. Note that the source
  788. file of the OpenCL kernel does not need to be compiled now, it will
  789. be compiled at run-time when calling the function
  790. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  791. @cartouche
  792. @smallexample
  793. CFLAGS += $(shell pkg-config --cflags libstarpu)
  794. LDFLAGS += $(shell pkg-config --libs libstarpu)
  795. CC = gcc
  796. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  797. %.o: %.cu
  798. nvcc $(CFLAGS) $< -c $@
  799. clean:
  800. rm -f vector_scal *.o
  801. @end smallexample
  802. @end cartouche
  803. @smallexample
  804. % make
  805. @end smallexample
  806. and to execute it, with the default configuration:
  807. @smallexample
  808. % ./vector_scal
  809. 0.000000 3.000000 6.000000 9.000000 12.000000
  810. @end smallexample
  811. or for example, by disabling CPU devices:
  812. @smallexample
  813. % STARPU_NCPUS=0 ./vector_scal
  814. 0.000000 3.000000 6.000000 9.000000 12.000000
  815. @end smallexample
  816. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  817. see @ref{Using accelerators}):
  818. @smallexample
  819. % STARPU_NCUDA=0 ./vector_scal
  820. 0.000000 3.000000 6.000000 9.000000 12.000000
  821. @end smallexample
  822. @node Task and Worker Profiling
  823. @section Task and Worker Profiling
  824. A full example showing how to use the profiling API is available in
  825. the StarPU sources in the directory @code{examples/profiling/}.
  826. @cartouche
  827. @smallexample
  828. struct starpu_task *task = starpu_task_create();
  829. task->cl = &cl;
  830. task->synchronous = 1;
  831. /* We will destroy the task structure by hand so that we can
  832. * query the profiling info before the task is destroyed. */
  833. task->destroy = 0;
  834. /* Submit and wait for completion (since synchronous was set to 1) */
  835. starpu_task_submit(task);
  836. /* The task is finished, get profiling information */
  837. struct starpu_task_profiling_info *info = task->profiling_info;
  838. /* How much time did it take before the task started ? */
  839. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  840. /* How long was the task execution ? */
  841. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  842. /* We don't need the task structure anymore */
  843. starpu_task_destroy(task);
  844. @end smallexample
  845. @end cartouche
  846. @cartouche
  847. @smallexample
  848. /* Display the occupancy of all workers during the test */
  849. int worker;
  850. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  851. @{
  852. struct starpu_worker_profiling_info worker_info;
  853. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  854. STARPU_ASSERT(!ret);
  855. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  856. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  857. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  858. float executing_ratio = 100.0*executing_time/total_time;
  859. float sleeping_ratio = 100.0*sleeping_time/total_time;
  860. char workername[128];
  861. starpu_worker_get_name(worker, workername, 128);
  862. fprintf(stderr, "Worker %s:\n", workername);
  863. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  864. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  865. executing_ratio);
  866. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  867. sleeping_ratio);
  868. @}
  869. @end smallexample
  870. @end cartouche
  871. @node Partitioning Data
  872. @section Partitioning Data
  873. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  874. @cartouche
  875. @smallexample
  876. int vector[NX];
  877. starpu_data_handle handle;
  878. /* Declare data to StarPU */
  879. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  880. /* Partition the vector in PARTS sub-vectors */
  881. starpu_filter f =
  882. @{
  883. .filter_func = starpu_block_filter_func_vector,
  884. .nchildren = PARTS,
  885. .get_nchildren = NULL,
  886. .get_child_ops = NULL
  887. @};
  888. starpu_data_partition(handle, &f);
  889. @end smallexample
  890. @end cartouche
  891. @cartouche
  892. @smallexample
  893. /* Submit a task on each sub-vector */
  894. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  895. /* Get subdata number i (there is only 1 dimension) */
  896. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  897. struct starpu_task *task = starpu_task_create();
  898. task->buffers[0].handle = sub_handle;
  899. task->buffers[0].mode = STARPU_RW;
  900. task->cl = &cl;
  901. task->synchronous = 1;
  902. task->cl_arg = &factor;
  903. task->cl_arg_size = sizeof(factor);
  904. starpu_task_submit(task);
  905. @}
  906. @end smallexample
  907. @end cartouche
  908. Partitioning can be applied several times, see
  909. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  910. @node Performance model example
  911. @section Performance model example
  912. To achieve good scheduling, StarPU scheduling policies need to be able to
  913. estimate in advance the duration of a task. This is done by giving to codelets a
  914. performance model. There are several kinds of performance models.
  915. @itemize
  916. @item
  917. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  918. see for instance
  919. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  920. @item
  921. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  922. given set of data input/output sizes, the performance will always be about the
  923. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  924. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  925. few different sets of data input/output sizes. StarPU will then keep record of
  926. the average time of previous executions on the various processing units, and use
  927. it as an estimation. History is done per task size, by using a hash of the input
  928. and ouput sizes as an index.
  929. It will also save it in @code{~/.starpu/sampling/codelets}
  930. for further executions, and can be observed by using the
  931. @code{starpu_perfmodel_display} command. The following is a small code example.
  932. @cartouche
  933. @smallexample
  934. static struct starpu_perfmodel_t mult_perf_model = @{
  935. .type = STARPU_HISTORY_BASED,
  936. .symbol = "mult_perf_model"
  937. @};
  938. starpu_codelet cl = @{
  939. .where = STARPU_CPU,
  940. .cpu_func = cpu_mult,
  941. .nbuffers = 3,
  942. /* for the scheduling policy to be able to use performance models */
  943. .model = &mult_perf_model
  944. @};
  945. @end smallexample
  946. @end cartouche
  947. @item
  948. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  949. type). This still assumes performance regularity, but can work with various data
  950. input sizes, by applying a*n^b+c regression over observed execution times.
  951. @end itemize
  952. The same can be done for task power consumption estimation, by setting the
  953. @code{power_model} field the same way as the @code{model} field. Note: for
  954. now, the application has to give to the power consumption performance model
  955. a different name.
  956. @node Theoretical lower bound on execution time
  957. @section Theoretical lower bound on execution time
  958. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  959. bound for the execution time of a whole set of tasks. See for
  960. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  961. call @code{starpu_bound_start}, and after complete execution, call
  962. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  963. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  964. problem corresponding to the schedule of your tasks. Run it through
  965. @code{lp_solve} or any other linear programming solver, and that will give you a
  966. lower bound for the total execution time of your tasks. If StarPU was compiled
  967. with the glpk library installed, @code{starpu_bound_compute} can be used to
  968. solve it immediately and get the optimized minimum. Its @code{integer}
  969. parameter allows to decide whether integer resolution should be computed
  970. and returned.
  971. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  972. dependencies into account. It must be understood that the linear programming
  973. problem size is quadratic with the number of tasks and thus the time to solve it
  974. will be very long, it could be minutes for just a few dozen tasks. You should
  975. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  976. problem to MPS format and then use a better solver, @code{glpsol} might be
  977. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  978. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  979. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  980. of @code{lp_solve}. For instance, we often just use
  981. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  982. the @code{-gr} option can also be quite useful.
  983. Setting @code{deps} to 0 will only take into account the actual computations
  984. on processing units. It however still properly takes into account the varying
  985. performances of kernels and processing units, which is quite more accurate than
  986. just comparing StarPU performances with the fastest of the kernels being used.
  987. The @code{prio} parameter tells StarPU whether to simulate taking into account
  988. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  989. tasks before less prioritized tasks, to check to which extend this results
  990. to a less optimal solution. This increases even more computation time.
  991. Note that for simplicity, all this however doesn't take into account data
  992. transfers, which are assumed to be completely overlapped.
  993. @node Insert Task Utility
  994. @section Insert Task Utility
  995. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  996. the creation and submission of tasks.
  997. @deftypefun int starpu_insert_task (starpu_codelet *cl, ...)
  998. Create and submit a task corresponding to @var{cl} with the following
  999. arguments. The argument list must be zero-terminated.
  1000. The arguments following the codelets can be of the following types:
  1001. @itemize
  1002. @item
  1003. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  1004. @item
  1005. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1006. the size of the constant;
  1007. @item
  1008. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1009. @item
  1010. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1011. argument to the callback function;
  1012. @item
  1013. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1014. @end itemize
  1015. Parameters to be passed to the codelet implementation are defined
  1016. through the type @code{STARPU_VALUE}. The function
  1017. @code{starpu_unpack_cl_args} must be called within the codelet
  1018. implementation to retrieve them.
  1019. @end deftypefun
  1020. Here the implementation of the codelet:
  1021. @smallexample
  1022. void func_cpu(void *descr[], void *_args)
  1023. @{
  1024. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1025. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1026. int ifactor;
  1027. float ffactor;
  1028. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1029. *x0 = *x0 * ifactor;
  1030. *x1 = *x1 * ffactor;
  1031. @}
  1032. starpu_codelet mycodelet = @{
  1033. .where = STARPU_CPU,
  1034. .cpu_func = func_cpu,
  1035. .nbuffers = 2
  1036. @};
  1037. @end smallexample
  1038. And the call to the @code{starpu_insert_task} wrapper:
  1039. @smallexample
  1040. starpu_insert_task(&mycodelet,
  1041. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1042. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1043. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1044. 0);
  1045. @end smallexample
  1046. The call to @code{starpu_insert_task} is equivalent to the following
  1047. code:
  1048. @smallexample
  1049. struct starpu_task *task = starpu_task_create();
  1050. task->cl = &mycodelet;
  1051. task->buffers[0].handle = data_handles[0];
  1052. task->buffers[0].mode = STARPU_RW;
  1053. task->buffers[1].handle = data_handles[1];
  1054. task->buffers[1].mode = STARPU_RW;
  1055. char *arg_buffer;
  1056. size_t arg_buffer_size;
  1057. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1058. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1059. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1060. 0);
  1061. task->cl_arg = arg_buffer;
  1062. task->cl_arg_size = arg_buffer_size;
  1063. int ret = starpu_task_submit(task);
  1064. @end smallexample
  1065. @node More examples
  1066. @section More examples
  1067. More examples are available in the StarPU sources in the @code{examples/}
  1068. directory. Simple examples include:
  1069. @table @asis
  1070. @item @code{incrementer/}:
  1071. Trivial incrementation test.
  1072. @item @code{basic_examples/}:
  1073. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1074. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1075. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1076. interface, and an example using the variable data interface.
  1077. @item @code{matvecmult/}:
  1078. OpenCL example from NVidia, adapted to StarPU.
  1079. @item @code{axpy/}:
  1080. AXPY CUBLAS operation adapted to StarPU.
  1081. @item @code{fortran/}:
  1082. Example of Fortran bindings.
  1083. @end table
  1084. More advanced examples include:
  1085. @table @asis
  1086. @item @code{filters/}:
  1087. Examples using filters, as shown in @ref{Partitioning Data}.
  1088. @item @code{lu/}:
  1089. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1090. @item @code{cholesky/}:
  1091. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1092. @end table
  1093. @c ---------------------------------------------------------------------
  1094. @c Performance options
  1095. @c ---------------------------------------------------------------------
  1096. @node Performance optimization
  1097. @chapter How to optimize performance with StarPU
  1098. TODO: improve!
  1099. @menu
  1100. * Data management::
  1101. * Task submission::
  1102. * Task priorities::
  1103. * Task scheduling policy::
  1104. * Task distribution vs Data transfer::
  1105. * Power-based scheduling::
  1106. * Profiling::
  1107. * CUDA-specific optimizations::
  1108. @end menu
  1109. Simply encapsulating application kernels into tasks already permits to
  1110. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1111. few additional changes are needed.
  1112. @node Data management
  1113. @section Data management
  1114. By default, StarPU does not enable data prefetching, because CUDA does
  1115. not announce when too many data transfers were scheduled and can thus block
  1116. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1117. .
  1118. By default, StarPU leaves replicates of data wherever they were used, in case they
  1119. will be re-used by other tasks, thus saving the data transfer time. When some
  1120. task modifies some data, all the other replicates are invalidated, and only the
  1121. processing unit will have a valid replicate of the data. If the application knows
  1122. that this data will not be re-used by further tasks, it should advise StarPU to
  1123. immediately replicate it to a desired list of memory nodes (given through a
  1124. bitmask). This can be understood like the write-through mode of CPU caches.
  1125. @example
  1126. starpu_data_set_wt_mask(img_handle, 1<<0);
  1127. @end example
  1128. will for instance request to always transfer a replicate into the main memory (node
  1129. 0), as bit 0 of the write-through bitmask is being set.
  1130. When the application allocates data, whenever possible it should use the
  1131. @code{starpu_malloc} function, which will ask CUDA or
  1132. OpenCL to make the allocation itself and pin the corresponding allocated
  1133. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1134. transfer to overlap with computations.
  1135. @node Task submission
  1136. @section Task submission
  1137. To let StarPU make online optimizations, tasks should be submitted
  1138. asynchronously as much as possible. Ideally, all the tasks should be
  1139. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1140. @code{starpu_data_acquire} be done to wait for
  1141. termination. StarPU will then be able to rework the whole schedule, overlap
  1142. computation with communication, manage accelerator local memory usage, etc.
  1143. @node Task priorities
  1144. @section Task priorities
  1145. By default, StarPU will consider the tasks in the order they are submitted by
  1146. the application. If the application programmer knows that some tasks should
  1147. be performed in priority (for instance because their output is needed by many
  1148. other tasks and may thus be a bottleneck if not executed early enough), the
  1149. @code{priority} field of the task structure should be set to transmit the
  1150. priority information to StarPU.
  1151. @node Task scheduling policy
  1152. @section Task scheduling policy
  1153. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1154. because it provides correct load balance even if the application codelets do not
  1155. have performance models. If your application codelets have performance models,
  1156. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1157. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1158. the list of available schedulers.
  1159. Most schedulers are based on an estimation of codelet duration on each kind
  1160. of processing unit. For this to be possible, the application programmer needs
  1161. to configure a performance model for the codelets of the application (see
  1162. @ref{Performance model example} for instance). History-based performance models
  1163. use on-line calibration. StarPU will automatically calibrate codelets
  1164. which have never been calibrated yet. To force continuing calibration, use
  1165. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1166. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1167. Note: due to CUDA limitations, to be able to measure kernel duration,
  1168. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1169. disables data transfer / computation overlapping, and should thus not be used
  1170. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1171. only if a performance-model-based scheduler is chosen.
  1172. @node Task distribution vs Data transfer
  1173. @section Task distribution vs Data transfer
  1174. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1175. thus needs to find a balance between both. The target function that the
  1176. @code{dmda} scheduler of StarPU
  1177. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1178. @code{T_execution} is the estimated execution time of the codelet (usually
  1179. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1180. latter is however estimated based on bus calibration before execution start,
  1181. i.e. with an idle machine. You can force bus re-calibration by running
  1182. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1183. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1184. This is of course imprecise, but in practice, a rough estimation already gives
  1185. the good results that a precise estimation would give.
  1186. @node Power-based scheduling
  1187. @section Power-based scheduling
  1188. If the application can provide some power performance model (through
  1189. the @code{power_model} field of the codelet structure), StarPU will
  1190. take it into account when distributing tasks. The target function that
  1191. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1192. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1193. is the estimated task consumption in Joules. To tune this parameter, use
  1194. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1195. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1196. alpha and beta to zero permits to only take into account power consumption.
  1197. This is however not sufficient to correctly optimize power: the scheduler would
  1198. simply tend to run all computations on the most energy-conservative processing
  1199. unit. To account for the consumption of the whole machine (including idle
  1200. processing units), the idle power of the machine should be given by setting
  1201. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1202. be obtained from the machine power supplier.
  1203. The power actually consumed by the total execution can be displayed by setting
  1204. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1205. @node Profiling
  1206. @section Profiling
  1207. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1208. calling @code{starpu_profiling_status_set} from the source code.
  1209. Statistics on the execution can then be obtained by using @code{export
  1210. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1211. stats will include an approximation of the number of executed tasks even if
  1212. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1213. execution did happen on accelerators without penalizing performance with
  1214. the profiling overhead. More details on performance feedback are provided by the
  1215. next chapter.
  1216. @node CUDA-specific optimizations
  1217. @section CUDA-specific optimizations
  1218. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1219. communications and the codelet computations if the application does not use a
  1220. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1221. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1222. operations. For instance:
  1223. @example
  1224. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1225. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1226. @end example
  1227. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1228. kernels. That will lower the potential for overlapping.
  1229. @c ---------------------------------------------------------------------
  1230. @c Performance feedback
  1231. @c ---------------------------------------------------------------------
  1232. @node Performance feedback
  1233. @chapter Performance feedback
  1234. @menu
  1235. * On-line:: On-line performance feedback
  1236. * Off-line:: Off-line performance feedback
  1237. * Codelet performance:: Performance of codelets
  1238. @end menu
  1239. @node On-line
  1240. @section On-line performance feedback
  1241. @menu
  1242. * Enabling monitoring:: Enabling on-line performance monitoring
  1243. * Task feedback:: Per-task feedback
  1244. * Codelet feedback:: Per-codelet feedback
  1245. * Worker feedback:: Per-worker feedback
  1246. * Bus feedback:: Bus-related feedback
  1247. @end menu
  1248. @node Enabling monitoring
  1249. @subsection Enabling on-line performance monitoring
  1250. In order to enable online performance monitoring, the application can call
  1251. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1252. detect whether monitoring is already enabled or not by calling
  1253. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1254. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1255. can also be set to 1 to achieve the same effect.
  1256. Likewise, performance monitoring is stopped by calling
  1257. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1258. does not reset the performance counters so that the application may consult
  1259. them later on.
  1260. More details about the performance monitoring API are available in section
  1261. @ref{Profiling API}.
  1262. @node Task feedback
  1263. @subsection Per-task feedback
  1264. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1265. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1266. structure when a task terminates.
  1267. This structure is automatically destroyed when the task structure is destroyed,
  1268. either automatically or by calling @code{starpu_task_destroy}.
  1269. The @code{starpu_task_profiling_info} structure indicates the date when the
  1270. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1271. terminated (@code{end_time}), relative to the initialization of
  1272. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1273. that has executed the task (@code{workerid}).
  1274. These date are stored as @code{timespec} structures which the user may convert
  1275. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1276. function.
  1277. It it worth noting that the application may directly access this structure from
  1278. the callback executed at the end of the task. The @code{starpu_task} structure
  1279. associated to the callback currently being executed is indeed accessible with
  1280. the @code{starpu_get_current_task()} function.
  1281. @node Codelet feedback
  1282. @subsection Per-codelet feedback
  1283. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1284. an array of counters. The i-th entry of the array is incremented every time a
  1285. task implementing the codelet is executed on the i-th worker.
  1286. This array is not reinitialized when profiling is enabled or disabled.
  1287. @node Worker feedback
  1288. @subsection Per-worker feedback
  1289. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1290. function is a @code{starpu_worker_profiling_info} structure that gives
  1291. statistics about the specified worker. This structure specifies when StarPU
  1292. started collecting profiling information for that worker (@code{start_time}),
  1293. the duration of the profiling measurement interval (@code{total_time}), the
  1294. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1295. because there is no task to execute at all (@code{sleeping_time}), and the
  1296. number of tasks that were executed while profiling was enabled.
  1297. These values give an estimation of the proportion of time spent do real work,
  1298. and the time spent either sleeping because there are not enough executable
  1299. tasks or simply wasted in pure StarPU overhead.
  1300. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1301. information associated to a worker.
  1302. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1303. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1304. generate a graphic showing the evolution of these values during the time, for
  1305. the different workers.
  1306. @node Bus feedback
  1307. @subsection Bus-related feedback
  1308. TODO
  1309. @c how to enable/disable performance monitoring
  1310. @c what kind of information do we get ?
  1311. @node Off-line
  1312. @section Off-line performance feedback
  1313. @menu
  1314. * Generating traces:: Generating traces with FxT
  1315. * Gantt diagram:: Creating a Gantt Diagram
  1316. * DAG:: Creating a DAG with graphviz
  1317. * starpu-top:: Monitoring activity
  1318. @end menu
  1319. @node Generating traces
  1320. @subsection Generating traces with FxT
  1321. StarPU can use the FxT library (see
  1322. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1323. with a limited runtime overhead.
  1324. You can either get the FxT library from CVS (autotools are required):
  1325. @example
  1326. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1327. % ./bootstrap
  1328. @end example
  1329. If autotools are not available on your machine, or if you prefer to do so,
  1330. FxT's code is also available as a tarball:
  1331. @example
  1332. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1333. @end example
  1334. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1335. done following the standard procedure:
  1336. @example
  1337. % ./configure --prefix=$FXTDIR
  1338. % make
  1339. % make install
  1340. @end example
  1341. In order to have StarPU to generate traces, StarPU should be configured with
  1342. the @code{--with-fxt} option:
  1343. @example
  1344. $ ./configure --with-fxt=$FXTDIR
  1345. @end example
  1346. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1347. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1348. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1349. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1350. @code{/tmp/} directory by default, or by the directory specified by
  1351. the @code{STARPU_FXT_PREFIX} environment variable.
  1352. @node Gantt diagram
  1353. @subsection Creating a Gantt Diagram
  1354. When the FxT trace file @code{filename} has been generated, it is possible to
  1355. generate a trace in the Paje format by calling:
  1356. @example
  1357. % starpu_fxt_tool -i filename
  1358. @end example
  1359. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1360. to 1 before application execution will make StarPU do it automatically at
  1361. application shutdown.
  1362. This will create a @code{paje.trace} file in the current directory that can be
  1363. inspected with the ViTE trace visualizing open-source tool. More information
  1364. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1365. possible to open the @code{paje.trace} file with ViTE by using the following
  1366. command:
  1367. @example
  1368. % vite paje.trace
  1369. @end example
  1370. @node DAG
  1371. @subsection Creating a DAG with graphviz
  1372. When the FxT trace file @code{filename} has been generated, it is possible to
  1373. generate a task graph in the DOT format by calling:
  1374. @example
  1375. $ starpu_fxt_tool -i filename
  1376. @end example
  1377. This will create a @code{dag.dot} file in the current directory. This file is a
  1378. task graph described using the DOT language. It is possible to get a
  1379. graphical output of the graph by using the graphviz library:
  1380. @example
  1381. $ dot -Tpdf dag.dot -o output.pdf
  1382. @end example
  1383. @node starpu-top
  1384. @subsection Monitoring activity
  1385. When the FxT trace file @code{filename} has been generated, it is possible to
  1386. generate a activity trace by calling:
  1387. @example
  1388. $ starpu_fxt_tool -i filename
  1389. @end example
  1390. This will create an @code{activity.data} file in the current
  1391. directory. A profile of the application showing the activity of StarPU
  1392. during the execution of the program can be generated:
  1393. @example
  1394. $ starpu_top.sh activity.data
  1395. @end example
  1396. This will create a file named @code{activity.eps} in the current directory.
  1397. This picture is composed of two parts.
  1398. The first part shows the activity of the different workers. The green sections
  1399. indicate which proportion of the time was spent executed kernels on the
  1400. processing unit. The red sections indicate the proportion of time spent in
  1401. StartPU: an important overhead may indicate that the granularity may be too
  1402. low, and that bigger tasks may be appropriate to use the processing unit more
  1403. efficiently. The black sections indicate that the processing unit was blocked
  1404. because there was no task to process: this may indicate a lack of parallelism
  1405. which may be alleviated by creating more tasks when it is possible.
  1406. The second part of the @code{activity.eps} picture is a graph showing the
  1407. evolution of the number of tasks available in the system during the execution.
  1408. Ready tasks are shown in black, and tasks that are submitted but not
  1409. schedulable yet are shown in grey.
  1410. @node Codelet performance
  1411. @section Performance of codelets
  1412. The performance model of codelets can be examined by using the
  1413. @code{starpu_perfmodel_display} tool:
  1414. @example
  1415. $ starpu_perfmodel_display -l
  1416. file: <malloc_pinned.hannibal>
  1417. file: <starpu_slu_lu_model_21.hannibal>
  1418. file: <starpu_slu_lu_model_11.hannibal>
  1419. file: <starpu_slu_lu_model_22.hannibal>
  1420. file: <starpu_slu_lu_model_12.hannibal>
  1421. @end example
  1422. Here, the codelets of the lu example are available. We can examine the
  1423. performance of the 22 kernel:
  1424. @example
  1425. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1426. performance model for cpu
  1427. # hash size mean dev n
  1428. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1429. performance model for cuda_0
  1430. # hash size mean dev n
  1431. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1432. performance model for cuda_1
  1433. # hash size mean dev n
  1434. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1435. performance model for cuda_2
  1436. # hash size mean dev n
  1437. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1438. @end example
  1439. We can see that for the given size, over a sample of a few hundreds of
  1440. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1441. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1442. CPUs.
  1443. @c ---------------------------------------------------------------------
  1444. @c MPI support
  1445. @c ---------------------------------------------------------------------
  1446. @node StarPU MPI support
  1447. @chapter StarPU MPI support
  1448. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1449. @c ---------------------------------------------------------------------
  1450. @c Configuration options
  1451. @c ---------------------------------------------------------------------
  1452. @node Configuring StarPU
  1453. @chapter Configuring StarPU
  1454. @menu
  1455. * Compilation configuration::
  1456. * Execution configuration through environment variables::
  1457. @end menu
  1458. @node Compilation configuration
  1459. @section Compilation configuration
  1460. The following arguments can be given to the @code{configure} script.
  1461. @menu
  1462. * Common configuration::
  1463. * Configuring workers::
  1464. * Advanced configuration::
  1465. @end menu
  1466. @node Common configuration
  1467. @subsection Common configuration
  1468. @menu
  1469. * --enable-debug::
  1470. * --enable-fast::
  1471. * --enable-verbose::
  1472. * --enable-coverage::
  1473. @end menu
  1474. @node --enable-debug
  1475. @subsubsection @code{--enable-debug}
  1476. @table @asis
  1477. @item @emph{Description}:
  1478. Enable debugging messages.
  1479. @end table
  1480. @node --enable-fast
  1481. @subsubsection @code{--enable-fast}
  1482. @table @asis
  1483. @item @emph{Description}:
  1484. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1485. @end table
  1486. @node --enable-verbose
  1487. @subsubsection @code{--enable-verbose}
  1488. @table @asis
  1489. @item @emph{Description}:
  1490. Augment the verbosity of the debugging messages. This can be disabled
  1491. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1492. any value.
  1493. @smallexample
  1494. % STARPU_SILENT=1 ./vector_scal
  1495. @end smallexample
  1496. @end table
  1497. @node --enable-coverage
  1498. @subsubsection @code{--enable-coverage}
  1499. @table @asis
  1500. @item @emph{Description}:
  1501. Enable flags for the @code{gcov} coverage tool.
  1502. @end table
  1503. @node Configuring workers
  1504. @subsection Configuring workers
  1505. @menu
  1506. * --enable-nmaxcpus::
  1507. * --disable-cpu::
  1508. * --enable-maxcudadev::
  1509. * --disable-cuda::
  1510. * --with-cuda-dir::
  1511. * --with-cuda-include-dir::
  1512. * --with-cuda-lib-dir::
  1513. * --enable-maxopencldev::
  1514. * --disable-opencl::
  1515. * --with-opencl-dir::
  1516. * --with-opencl-include-dir::
  1517. * --with-opencl-lib-dir::
  1518. * --enable-gordon::
  1519. * --with-gordon-dir::
  1520. @end menu
  1521. @node --enable-nmaxcpus
  1522. @subsubsection @code{--enable-nmaxcpus=<number>}
  1523. @table @asis
  1524. @item @emph{Description}:
  1525. Defines the maximum number of CPU cores that StarPU will support, then
  1526. available as the @code{STARPU_NMAXCPUS} macro.
  1527. @end table
  1528. @node --disable-cpu
  1529. @subsubsection @code{--disable-cpu}
  1530. @table @asis
  1531. @item @emph{Description}:
  1532. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1533. @end table
  1534. @node --enable-maxcudadev
  1535. @subsubsection @code{--enable-maxcudadev=<number>}
  1536. @table @asis
  1537. @item @emph{Description}:
  1538. Defines the maximum number of CUDA devices that StarPU will support, then
  1539. available as the @code{STARPU_MAXCUDADEVS} macro.
  1540. @end table
  1541. @node --disable-cuda
  1542. @subsubsection @code{--disable-cuda}
  1543. @table @asis
  1544. @item @emph{Description}:
  1545. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1546. @end table
  1547. @node --with-cuda-dir
  1548. @subsubsection @code{--with-cuda-dir=<path>}
  1549. @table @asis
  1550. @item @emph{Description}:
  1551. Specify the directory where CUDA is installed. This directory should notably contain
  1552. @code{include/cuda.h}.
  1553. @end table
  1554. @node --with-cuda-include-dir
  1555. @subsubsection @code{--with-cuda-include-dir=<path>}
  1556. @table @asis
  1557. @item @emph{Description}:
  1558. Specify the directory where CUDA headers are installed. This directory should
  1559. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1560. value given to @code{--with-cuda-dir}.
  1561. @end table
  1562. @node --with-cuda-lib-dir
  1563. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1564. @table @asis
  1565. @item @emph{Description}:
  1566. Specify the directory where the CUDA library is installed. This directory should
  1567. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1568. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1569. @end table
  1570. @node --enable-maxopencldev
  1571. @subsubsection @code{--enable-maxopencldev=<number>}
  1572. @table @asis
  1573. @item @emph{Description}:
  1574. Defines the maximum number of OpenCL devices that StarPU will support, then
  1575. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1576. @end table
  1577. @node --disable-opencl
  1578. @subsubsection @code{--disable-opencl}
  1579. @table @asis
  1580. @item @emph{Description}:
  1581. Disable the use of OpenCL, even if the SDK is detected.
  1582. @end table
  1583. @node --with-opencl-dir
  1584. @subsubsection @code{--with-opencl-dir=<path>}
  1585. @table @asis
  1586. @item @emph{Description}:
  1587. Specify the location of the OpenCL SDK. This directory should notably contain
  1588. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1589. @end table
  1590. @node --with-opencl-include-dir
  1591. @subsubsection @code{--with-opencl-include-dir=<path>}
  1592. @table @asis
  1593. @item @emph{Description}:
  1594. Specify the location of OpenCL headers. This directory should notably contain
  1595. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1596. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1597. @end table
  1598. @node --with-opencl-lib-dir
  1599. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1600. @table @asis
  1601. @item @emph{Description}:
  1602. Specify the location of the OpenCL library. This directory should notably
  1603. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1604. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1605. @end table
  1606. @node --enable-gordon
  1607. @subsubsection @code{--enable-gordon}
  1608. @table @asis
  1609. @item @emph{Description}:
  1610. Enable the use of the Gordon runtime for Cell SPUs.
  1611. @c TODO: rather default to enabled when detected
  1612. @end table
  1613. @node --with-gordon-dir
  1614. @subsubsection @code{--with-gordon-dir=<path>}
  1615. @table @asis
  1616. @item @emph{Description}:
  1617. Specify the location of the Gordon SDK.
  1618. @end table
  1619. @node Advanced configuration
  1620. @subsection Advanced configuration
  1621. @menu
  1622. * --enable-perf-debug::
  1623. * --enable-model-debug::
  1624. * --enable-stats::
  1625. * --enable-maxbuffers::
  1626. * --enable-allocation-cache::
  1627. * --enable-opengl-render::
  1628. * --enable-blas-lib::
  1629. * --with-magma::
  1630. * --with-fxt::
  1631. * --with-perf-model-dir::
  1632. * --with-mpicc::
  1633. * --with-goto-dir::
  1634. * --with-atlas-dir::
  1635. * --with-mkl-cflags::
  1636. * --with-mkl-ldflags::
  1637. @end menu
  1638. @node --enable-perf-debug
  1639. @subsubsection @code{--enable-perf-debug}
  1640. @table @asis
  1641. @item @emph{Description}:
  1642. Enable performance debugging.
  1643. @end table
  1644. @node --enable-model-debug
  1645. @subsubsection @code{--enable-model-debug}
  1646. @table @asis
  1647. @item @emph{Description}:
  1648. Enable performance model debugging.
  1649. @end table
  1650. @node --enable-stats
  1651. @subsubsection @code{--enable-stats}
  1652. @table @asis
  1653. @item @emph{Description}:
  1654. Enable statistics.
  1655. @end table
  1656. @node --enable-maxbuffers
  1657. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1658. @table @asis
  1659. @item @emph{Description}:
  1660. Define the maximum number of buffers that tasks will be able to take
  1661. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1662. @end table
  1663. @node --enable-allocation-cache
  1664. @subsubsection @code{--enable-allocation-cache}
  1665. @table @asis
  1666. @item @emph{Description}:
  1667. Enable the use of a data allocation cache to avoid the cost of it with
  1668. CUDA. Still experimental.
  1669. @end table
  1670. @node --enable-opengl-render
  1671. @subsubsection @code{--enable-opengl-render}
  1672. @table @asis
  1673. @item @emph{Description}:
  1674. Enable the use of OpenGL for the rendering of some examples.
  1675. @c TODO: rather default to enabled when detected
  1676. @end table
  1677. @node --enable-blas-lib
  1678. @subsubsection @code{--enable-blas-lib=<name>}
  1679. @table @asis
  1680. @item @emph{Description}:
  1681. Specify the blas library to be used by some of the examples. The
  1682. library has to be 'atlas' or 'goto'.
  1683. @end table
  1684. @node --with-magma
  1685. @subsubsection @code{--with-magma=<path>}
  1686. @table @asis
  1687. @item @emph{Description}:
  1688. Specify where magma is installed. This directory should notably contain
  1689. @code{include/magmablas.h}.
  1690. @end table
  1691. @node --with-fxt
  1692. @subsubsection @code{--with-fxt=<path>}
  1693. @table @asis
  1694. @item @emph{Description}:
  1695. Specify the location of FxT (for generating traces and rendering them
  1696. using ViTE). This directory should notably contain
  1697. @code{include/fxt/fxt.h}.
  1698. @c TODO add ref to other section
  1699. @end table
  1700. @node --with-perf-model-dir
  1701. @subsubsection @code{--with-perf-model-dir=<dir>}
  1702. @table @asis
  1703. @item @emph{Description}:
  1704. Specify where performance models should be stored (instead of defaulting to the
  1705. current user's home).
  1706. @end table
  1707. @node --with-mpicc
  1708. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1709. @table @asis
  1710. @item @emph{Description}:
  1711. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1712. @end table
  1713. @node --with-goto-dir
  1714. @subsubsection @code{--with-goto-dir=<dir>}
  1715. @table @asis
  1716. @item @emph{Description}:
  1717. Specify the location of GotoBLAS.
  1718. @end table
  1719. @node --with-atlas-dir
  1720. @subsubsection @code{--with-atlas-dir=<dir>}
  1721. @table @asis
  1722. @item @emph{Description}:
  1723. Specify the location of ATLAS. This directory should notably contain
  1724. @code{include/cblas.h}.
  1725. @end table
  1726. @node --with-mkl-cflags
  1727. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1728. @table @asis
  1729. @item @emph{Description}:
  1730. Specify the compilation flags for the MKL Library.
  1731. @end table
  1732. @node --with-mkl-ldflags
  1733. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1734. @table @asis
  1735. @item @emph{Description}:
  1736. Specify the linking flags for the MKL Library. Note that the
  1737. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1738. website provides a script to determine the linking flags.
  1739. @end table
  1740. @c ---------------------------------------------------------------------
  1741. @c Environment variables
  1742. @c ---------------------------------------------------------------------
  1743. @node Execution configuration through environment variables
  1744. @section Execution configuration through environment variables
  1745. @menu
  1746. * Workers:: Configuring workers
  1747. * Scheduling:: Configuring the Scheduling engine
  1748. * Misc:: Miscellaneous and debug
  1749. @end menu
  1750. Note: the values given in @code{starpu_conf} structure passed when
  1751. calling @code{starpu_init} will override the values of the environment
  1752. variables.
  1753. @node Workers
  1754. @subsection Configuring workers
  1755. @menu
  1756. * STARPU_NCPUS:: Number of CPU workers
  1757. * STARPU_NCUDA:: Number of CUDA workers
  1758. * STARPU_NOPENCL:: Number of OpenCL workers
  1759. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1760. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1761. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1762. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1763. @end menu
  1764. @node STARPU_NCPUS
  1765. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1766. @table @asis
  1767. @item @emph{Description}:
  1768. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1769. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1770. the accelerators.
  1771. @end table
  1772. @node STARPU_NCUDA
  1773. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1774. @table @asis
  1775. @item @emph{Description}:
  1776. Specify the number of CUDA devices that StarPU can use. If
  1777. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1778. possible to select which CUDA devices should be used by the means of the
  1779. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1780. create as many CUDA workers as there are CUDA devices.
  1781. @end table
  1782. @node STARPU_NOPENCL
  1783. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1784. @table @asis
  1785. @item @emph{Description}:
  1786. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1787. @end table
  1788. @node STARPU_NGORDON
  1789. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1790. @table @asis
  1791. @item @emph{Description}:
  1792. Specify the number of SPUs that StarPU can use.
  1793. @end table
  1794. @node STARPU_WORKERS_CPUID
  1795. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1796. @table @asis
  1797. @item @emph{Description}:
  1798. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1799. specifies on which logical CPU the different workers should be
  1800. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1801. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1802. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1803. determined by the OS, or provided by the @code{hwloc} library in case it is
  1804. available.
  1805. Note that the first workers correspond to the CUDA workers, then come the
  1806. OpenCL and the SPU, and finally the CPU workers. For example if
  1807. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1808. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1809. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1810. the logical CPUs #1 and #3 will be used by the CPU workers.
  1811. If the number of workers is larger than the array given in
  1812. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1813. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1814. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1815. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1816. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1817. @end table
  1818. @node STARPU_WORKERS_CUDAID
  1819. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1820. @table @asis
  1821. @item @emph{Description}:
  1822. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1823. possible to select which CUDA devices should be used by StarPU. On a machine
  1824. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1825. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1826. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1827. the one reported by CUDA).
  1828. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1829. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1830. @end table
  1831. @node STARPU_WORKERS_OPENCLID
  1832. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1833. @table @asis
  1834. @item @emph{Description}:
  1835. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1836. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1837. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1838. @end table
  1839. @node Scheduling
  1840. @subsection Configuring the Scheduling engine
  1841. @menu
  1842. * STARPU_SCHED:: Scheduling policy
  1843. * STARPU_CALIBRATE:: Calibrate performance models
  1844. * STARPU_PREFETCH:: Use data prefetch
  1845. * STARPU_SCHED_ALPHA:: Computation factor
  1846. * STARPU_SCHED_BETA:: Communication factor
  1847. @end menu
  1848. @node STARPU_SCHED
  1849. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1850. @table @asis
  1851. @item @emph{Description}:
  1852. This chooses between the different scheduling policies proposed by StarPU: work
  1853. random, stealing, greedy, with performance models, etc.
  1854. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1855. @end table
  1856. @node STARPU_CALIBRATE
  1857. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1858. @table @asis
  1859. @item @emph{Description}:
  1860. If this variable is set to 1, the performance models are calibrated during
  1861. the execution. If it is set to 2, the previous values are dropped to restart
  1862. calibration from scratch. Setting this variable to 0 disable calibration, this
  1863. is the default behaviour.
  1864. Note: this currently only applies to dm and dmda scheduling policies.
  1865. @end table
  1866. @node STARPU_PREFETCH
  1867. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1868. @table @asis
  1869. @item @emph{Description}:
  1870. This variable indicates whether data prefetching should be enabled (0 means
  1871. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1872. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1873. advance, so that data is already present on the GPU when the task starts. As a
  1874. result, computation and data transfers are overlapped.
  1875. @end table
  1876. @node STARPU_SCHED_ALPHA
  1877. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1878. @table @asis
  1879. @item @emph{Description}:
  1880. To estimate the cost of a task StarPU takes into account the estimated
  1881. computation time (obtained thanks to performance models). The alpha factor is
  1882. the coefficient to be applied to it before adding it to the communication part.
  1883. @end table
  1884. @node STARPU_SCHED_BETA
  1885. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1886. @table @asis
  1887. @item @emph{Description}:
  1888. To estimate the cost of a task StarPU takes into account the estimated
  1889. data transfer time (obtained thanks to performance models). The beta factor is
  1890. the coefficient to be applied to it before adding it to the computation part.
  1891. @end table
  1892. @node Misc
  1893. @subsection Miscellaneous and debug
  1894. @menu
  1895. * STARPU_SILENT:: Disable verbose mode
  1896. * STARPU_LOGFILENAME:: Select debug file name
  1897. * STARPU_FXT_PREFIX:: FxT trace location
  1898. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1899. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1900. @end menu
  1901. @node STARPU_SILENT
  1902. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1903. @table @asis
  1904. @item @emph{Description}:
  1905. This variable allows to disable verbose mode at runtime when StarPU
  1906. has been configured with the option @code{--enable-verbose}.
  1907. @end table
  1908. @node STARPU_LOGFILENAME
  1909. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1910. @table @asis
  1911. @item @emph{Description}:
  1912. This variable specifies in which file the debugging output should be saved to.
  1913. @end table
  1914. @node STARPU_FXT_PREFIX
  1915. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1916. @table @asis
  1917. @item @emph{Description}
  1918. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1919. @end table
  1920. @node STARPU_LIMIT_GPU_MEM
  1921. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1922. @table @asis
  1923. @item @emph{Description}
  1924. This variable specifies the maximum number of megabytes that should be
  1925. available to the application on each GPUs. In case this value is smaller than
  1926. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1927. on the device. This variable is intended to be used for experimental purposes
  1928. as it emulates devices that have a limited amount of memory.
  1929. @end table
  1930. @node STARPU_GENERATE_TRACE
  1931. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1932. @table @asis
  1933. @item @emph{Description}
  1934. When set to 1, this variable indicates that StarPU should automatically
  1935. generate a Paje trace when starpu_shutdown is called.
  1936. @end table
  1937. @c ---------------------------------------------------------------------
  1938. @c StarPU API
  1939. @c ---------------------------------------------------------------------
  1940. @node StarPU API
  1941. @chapter StarPU API
  1942. @menu
  1943. * Initialization and Termination:: Initialization and Termination methods
  1944. * Workers' Properties:: Methods to enumerate workers' properties
  1945. * Data Library:: Methods to manipulate data
  1946. * Data Interfaces::
  1947. * Data Partition::
  1948. * Codelets and Tasks:: Methods to construct tasks
  1949. * Explicit Dependencies:: Explicit Dependencies
  1950. * Implicit Data Dependencies:: Implicit Data Dependencies
  1951. * Performance Model API::
  1952. * Profiling API:: Profiling API
  1953. * CUDA extensions:: CUDA extensions
  1954. * OpenCL extensions:: OpenCL extensions
  1955. * Cell extensions:: Cell extensions
  1956. * Miscellaneous helpers::
  1957. @end menu
  1958. @node Initialization and Termination
  1959. @section Initialization and Termination
  1960. @menu
  1961. * starpu_init:: Initialize StarPU
  1962. * struct starpu_conf:: StarPU runtime configuration
  1963. * starpu_conf_init:: Initialize starpu_conf structure
  1964. * starpu_shutdown:: Terminate StarPU
  1965. @end menu
  1966. @node starpu_init
  1967. @subsection @code{starpu_init} -- Initialize StarPU
  1968. @table @asis
  1969. @item @emph{Description}:
  1970. This is StarPU initialization method, which must be called prior to any other
  1971. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1972. policy, number of cores, ...) by passing a non-null argument. Default
  1973. configuration is used if the passed argument is @code{NULL}.
  1974. @item @emph{Return value}:
  1975. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1976. indicates that no worker was available (so that StarPU was not initialized).
  1977. @item @emph{Prototype}:
  1978. @code{int starpu_init(struct starpu_conf *conf);}
  1979. @end table
  1980. @node struct starpu_conf
  1981. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1982. @table @asis
  1983. @item @emph{Description}:
  1984. This structure is passed to the @code{starpu_init} function in order
  1985. to configure StarPU.
  1986. When the default value is used, StarPU automatically selects the number
  1987. of processing units and takes the default scheduling policy. This parameter
  1988. overwrites the equivalent environment variables.
  1989. @item @emph{Fields}:
  1990. @table @asis
  1991. @item @code{sched_policy_name} (default = NULL):
  1992. This is the name of the scheduling policy. This can also be specified with the
  1993. @code{STARPU_SCHED} environment variable.
  1994. @item @code{sched_policy} (default = NULL):
  1995. This is the definition of the scheduling policy. This field is ignored
  1996. if @code{sched_policy_name} is set.
  1997. @item @code{ncpus} (default = -1):
  1998. This is the number of CPU cores that StarPU can use. This can also be
  1999. specified with the @code{STARPU_NCPUS} environment variable.
  2000. @item @code{ncuda} (default = -1):
  2001. This is the number of CUDA devices that StarPU can use. This can also be
  2002. specified with the @code{STARPU_NCUDA} environment variable.
  2003. @item @code{nopencl} (default = -1):
  2004. This is the number of OpenCL devices that StarPU can use. This can also be
  2005. specified with the @code{STARPU_NOPENCL} environment variable.
  2006. @item @code{nspus} (default = -1):
  2007. This is the number of Cell SPUs that StarPU can use. This can also be
  2008. specified with the @code{STARPU_NGORDON} environment variable.
  2009. @item @code{use_explicit_workers_bindid} (default = 0)
  2010. If this flag is set, the @code{workers_bindid} array indicates where the
  2011. different workers are bound, otherwise StarPU automatically selects where to
  2012. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2013. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2014. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2015. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2016. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2017. where to bind the different workers. The i-th entry of the
  2018. @code{workers_bindid} indicates the logical identifier of the processor which
  2019. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2020. either determined by the OS, or provided by the @code{hwloc} library in case it
  2021. is available.
  2022. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2023. ignored.
  2024. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2025. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2026. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2027. CUDA devices in a round-robin fashion.
  2028. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2029. ignored.
  2030. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2031. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2032. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2033. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2034. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2035. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2036. OpenCL devices in a round-robin fashion.
  2037. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2038. @item @code{calibrate} (default = 0):
  2039. If this flag is set, StarPU will calibrate the performance models when
  2040. executing tasks. If this value is equal to -1, the default value is used. The
  2041. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2042. variable when it is set.
  2043. @end table
  2044. @end table
  2045. @node starpu_conf_init
  2046. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2047. @table @asis
  2048. This function initializes the @code{starpu_conf} structure passed as argument
  2049. with the default values. In case some configuration parameters are already
  2050. specified through environment variables, @code{starpu_conf_init} initializes
  2051. the fields of the structure according to the environment variables. For
  2052. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2053. @code{.ncuda} field of the structure passed as argument.
  2054. @item @emph{Return value}:
  2055. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2056. indicates that the argument was NULL.
  2057. @item @emph{Prototype}:
  2058. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2059. @end table
  2060. @node starpu_shutdown
  2061. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2062. @table @asis
  2063. @item @emph{Description}:
  2064. This is StarPU termination method. It must be called at the end of the
  2065. application: statistics and other post-mortem debugging information are not
  2066. guaranteed to be available until this method has been called.
  2067. @item @emph{Prototype}:
  2068. @code{void starpu_shutdown(void);}
  2069. @end table
  2070. @node Workers' Properties
  2071. @section Workers' Properties
  2072. @menu
  2073. * starpu_worker_get_count:: Get the number of processing units
  2074. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2075. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2076. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2077. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2078. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2079. * starpu_worker_get_id:: Get the identifier of the current worker
  2080. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2081. * starpu_worker_get_devid:: Get the device identifier of a worker
  2082. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2083. * starpu_worker_get_name:: Get the name of a worker
  2084. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2085. @end menu
  2086. @node starpu_worker_get_count
  2087. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2088. @table @asis
  2089. @item @emph{Description}:
  2090. This function returns the number of workers (i.e. processing units executing
  2091. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2092. @item @emph{Prototype}:
  2093. @code{unsigned starpu_worker_get_count(void);}
  2094. @end table
  2095. @node starpu_worker_get_count_by_type
  2096. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2097. @table @asis
  2098. @item @emph{Description}:
  2099. Returns the number of workers of the type indicated by the argument. A positive
  2100. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2101. the type is not valid otherwise.
  2102. @item @emph{Prototype}:
  2103. @code{int starpu_worker_get_count_by_type(enum starpu_archtype type);}
  2104. @end table
  2105. @node starpu_cpu_worker_get_count
  2106. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2107. @table @asis
  2108. @item @emph{Description}:
  2109. This function returns the number of CPUs controlled by StarPU. The returned
  2110. value should be at most @code{STARPU_NMAXCPUS}.
  2111. @item @emph{Prototype}:
  2112. @code{unsigned starpu_cpu_worker_get_count(void);}
  2113. @end table
  2114. @node starpu_cuda_worker_get_count
  2115. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2116. @table @asis
  2117. @item @emph{Description}:
  2118. This function returns the number of CUDA devices controlled by StarPU. The returned
  2119. value should be at most @code{STARPU_MAXCUDADEVS}.
  2120. @item @emph{Prototype}:
  2121. @code{unsigned starpu_cuda_worker_get_count(void);}
  2122. @end table
  2123. @node starpu_opencl_worker_get_count
  2124. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2125. @table @asis
  2126. @item @emph{Description}:
  2127. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2128. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2129. @item @emph{Prototype}:
  2130. @code{unsigned starpu_opencl_worker_get_count(void);}
  2131. @end table
  2132. @node starpu_spu_worker_get_count
  2133. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2134. @table @asis
  2135. @item @emph{Description}:
  2136. This function returns the number of Cell SPUs controlled by StarPU.
  2137. @item @emph{Prototype}:
  2138. @code{unsigned starpu_opencl_worker_get_count(void);}
  2139. @end table
  2140. @node starpu_worker_get_id
  2141. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2142. @table @asis
  2143. @item @emph{Description}:
  2144. This function returns the identifier of the worker associated to the calling
  2145. thread. The returned value is either -1 if the current context is not a StarPU
  2146. worker (i.e. when called from the application outside a task or a callback), or
  2147. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2148. @item @emph{Prototype}:
  2149. @code{int starpu_worker_get_id(void);}
  2150. @end table
  2151. @node starpu_worker_get_ids_by_type
  2152. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2153. @table @asis
  2154. @item @emph{Description}:
  2155. Fill the workerids array with the identifiers of the workers that have the type
  2156. indicated in the first argument. The maxsize argument indicates the size of the
  2157. workids array. The returned value gives the number of identifiers that were put
  2158. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2159. workers with the appropriate type: in that case, the array is filled with the
  2160. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2161. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2162. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2163. @item @emph{Prototype}:
  2164. @code{int starpu_worker_get_ids_by_type(enum starpu_archtype type, int *workerids, int maxsize);}
  2165. @end table
  2166. @node starpu_worker_get_devid
  2167. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2168. @table @asis
  2169. @item @emph{Description}:
  2170. This functions returns the device id of the worker associated to an identifier
  2171. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2172. CUDA worker, this device identifier is the logical device identifier exposed by
  2173. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2174. identifier of a CPU worker is the logical identifier of the core on which the
  2175. worker was bound; this identifier is either provided by the OS or by the
  2176. @code{hwloc} library in case it is available.
  2177. @item @emph{Prototype}:
  2178. @code{int starpu_worker_get_devid(int id);}
  2179. @end table
  2180. @node starpu_worker_get_type
  2181. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2182. @table @asis
  2183. @item @emph{Description}:
  2184. This function returns the type of worker associated to an identifier (as
  2185. returned by the @code{starpu_worker_get_id} function). The returned value
  2186. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2187. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2188. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2189. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2190. identifier is unspecified.
  2191. @item @emph{Prototype}:
  2192. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2193. @end table
  2194. @node starpu_worker_get_name
  2195. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2196. @table @asis
  2197. @item @emph{Description}:
  2198. StarPU associates a unique human readable string to each processing unit. This
  2199. function copies at most the @code{maxlen} first bytes of the unique string
  2200. associated to a worker identified by its identifier @code{id} into the
  2201. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2202. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2203. function on an invalid identifier results in an unspecified behaviour.
  2204. @item @emph{Prototype}:
  2205. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2206. @end table
  2207. @node starpu_worker_get_memory_node
  2208. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2209. @table @asis
  2210. @item @emph{Description}:
  2211. This function returns the identifier of the memory node associated to the
  2212. worker identified by @code{workerid}.
  2213. @item @emph{Prototype}:
  2214. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2215. @end table
  2216. @node Data Library
  2217. @section Data Library
  2218. This section describes the data management facilities provided by StarPU.
  2219. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2220. design their own data interfaces if required.
  2221. @menu
  2222. * starpu_malloc:: Allocate data and pin it
  2223. * starpu_access_mode:: Data access mode
  2224. * unsigned memory_node:: Memory node
  2225. * starpu_data_handle:: StarPU opaque data handle
  2226. * void *interface:: StarPU data interface
  2227. * starpu_data_register:: Register a piece of data to StarPU
  2228. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2229. * starpu_data_invalidate:: Invalidate all data replicates
  2230. * starpu_data_acquire:: Access registered data from the application
  2231. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2232. * starpu_data_release:: Release registered data from the application
  2233. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2234. @end menu
  2235. @node starpu_malloc
  2236. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2237. @table @asis
  2238. @item @emph{Description}:
  2239. This function allocates data of the given size. It will also try to pin it in
  2240. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2241. thus permit data transfer and computation overlapping. The allocated buffer must
  2242. be freed thanks to the @code{starpu_free} function.
  2243. @item @emph{Prototype}:
  2244. @code{int starpu_malloc(void **A, size_t dim);}
  2245. @end table
  2246. @node starpu_access_mode
  2247. @subsection @code{starpu_access_mode} -- Data access mode
  2248. This datatype describes a data access mode. The different available modes are:
  2249. @table @asis
  2250. @table @asis
  2251. @item @code{STARPU_R} read-only mode.
  2252. @item @code{STARPU_W} write-only mode.
  2253. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2254. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2255. @end table
  2256. @end table
  2257. @node unsigned memory_node
  2258. @subsection @code{unsigned memory_node} -- Memory node
  2259. @table @asis
  2260. @item @emph{Description}:
  2261. Every worker is associated to a memory node which is a logical abstraction of
  2262. the address space from which the processing unit gets its data. For instance,
  2263. the memory node associated to the different CPU workers represents main memory
  2264. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2265. Every memory node is identified by a logical index which is accessible from the
  2266. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2267. to StarPU, the specified memory node indicates where the piece of data
  2268. initially resides (we also call this memory node the home node of a piece of
  2269. data).
  2270. @end table
  2271. @node starpu_data_handle
  2272. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2273. @table @asis
  2274. @item @emph{Description}:
  2275. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2276. data. Once a piece of data has been registered to StarPU, it is associated to a
  2277. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2278. over the entire machine, so that we can maintain data consistency and locate
  2279. data replicates for instance.
  2280. @end table
  2281. @node void *interface
  2282. @subsection @code{void *interface} -- StarPU data interface
  2283. @table @asis
  2284. @item @emph{Description}:
  2285. Data management is done at a high-level in StarPU: rather than accessing a mere
  2286. list of contiguous buffers, the tasks may manipulate data that are described by
  2287. a high-level construct which we call data interface.
  2288. An example of data interface is the "vector" interface which describes a
  2289. contiguous data array on a spefic memory node. This interface is a simple
  2290. structure containing the number of elements in the array, the size of the
  2291. elements, and the address of the array in the appropriate address space (this
  2292. address may be invalid if there is no valid copy of the array in the memory
  2293. node). More informations on the data interfaces provided by StarPU are
  2294. given in @ref{Data Interfaces}.
  2295. When a piece of data managed by StarPU is used by a task, the task
  2296. implementation is given a pointer to an interface describing a valid copy of
  2297. the data that is accessible from the current processing unit.
  2298. @end table
  2299. @node starpu_data_register
  2300. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2301. @table @asis
  2302. @item @emph{Description}:
  2303. Register a piece of data into the handle located at the @code{handleptr}
  2304. address. The @code{interface} buffer contains the initial description of the
  2305. data in the home node. The @code{ops} argument is a pointer to a structure
  2306. describing the different methods used to manipulate this type of interface. See
  2307. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2308. If @code{home_node} is -1, StarPU will automatically
  2309. allocate the memory when it is used for the
  2310. first time in write-only mode. Once such data handle has been automatically
  2311. allocated, it is possible to access it using any access mode.
  2312. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2313. matrix) which can be registered by the means of helper functions (e.g.
  2314. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2315. @item @emph{Prototype}:
  2316. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2317. uint32_t home_node,
  2318. void *interface,
  2319. struct starpu_data_interface_ops_t *ops);}
  2320. @end table
  2321. @node starpu_data_unregister
  2322. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2323. @table @asis
  2324. @item @emph{Description}:
  2325. This function unregisters a data handle from StarPU. If the data was
  2326. automatically allocated by StarPU because the home node was -1, all
  2327. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2328. is put back into the home node in the buffer that was initially registered.
  2329. Using a data handle that has been unregistered from StarPU results in an
  2330. undefined behaviour.
  2331. @item @emph{Prototype}:
  2332. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2333. @end table
  2334. @node starpu_data_invalidate
  2335. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2336. @table @asis
  2337. @item @emph{Description}:
  2338. Destroy all replicates of the data handle. After data invalidation, the first
  2339. access to the handle must be performed in write-only mode. Accessing an
  2340. invalidated data in read-mode results in undefined behaviour.
  2341. @item @emph{Prototype}:
  2342. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2343. @end table
  2344. @c TODO create a specific sections about user interaction with the DSM ?
  2345. @node starpu_data_acquire
  2346. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2347. @table @asis
  2348. @item @emph{Description}:
  2349. The application must call this function prior to accessing registered data from
  2350. main memory outside tasks. StarPU ensures that the application will get an
  2351. up-to-date copy of the data in main memory located where the data was
  2352. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2353. be consistent with the access mode specified in the @code{mode} argument.
  2354. @code{starpu_data_release} must be called once the application does not need to
  2355. access the piece of data anymore. Note that implicit data
  2356. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2357. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2358. the data, unless that they have not been disabled explictly by calling
  2359. @code{starpu_data_set_default_sequential_consistency_flag} or
  2360. @code{starpu_data_set_sequential_consistency_flag}.
  2361. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2362. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2363. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2364. @item @emph{Prototype}:
  2365. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2366. @end table
  2367. @node starpu_data_acquire_cb
  2368. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2369. @table @asis
  2370. @item @emph{Description}:
  2371. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2372. @code{starpu_data_release}. When the data specified in the first argument is
  2373. available in the appropriate access mode, the callback function is executed.
  2374. The application may access the requested data during the execution of this
  2375. callback. The callback function must call @code{starpu_data_release} once the
  2376. application does not need to access the piece of data anymore.
  2377. Note that implicit data dependencies are also enforced by
  2378. @code{starpu_data_acquire_cb} in case they are enabled.
  2379. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2380. be called from task callbacks. Upon successful completion, this function
  2381. returns 0.
  2382. @item @emph{Prototype}:
  2383. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2384. @end table
  2385. @node starpu_data_release
  2386. @subsection @code{starpu_data_release} -- Release registered data from the application
  2387. @table @asis
  2388. @item @emph{Description}:
  2389. This function releases the piece of data acquired by the application either by
  2390. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2391. @item @emph{Prototype}:
  2392. @code{void starpu_data_release(starpu_data_handle handle);}
  2393. @end table
  2394. @node starpu_data_set_wt_mask
  2395. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2396. @table @asis
  2397. @item @emph{Description}:
  2398. This function sets the write-through mask of a given data, i.e. a bitmask of
  2399. nodes where the data should be always replicated after modification.
  2400. @item @emph{Prototype}:
  2401. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2402. @end table
  2403. @node Data Interfaces
  2404. @section Data Interfaces
  2405. @menu
  2406. * Variable Interface::
  2407. * Vector Interface::
  2408. * Matrix Interface::
  2409. * 3D Matrix Interface::
  2410. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2411. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2412. @end menu
  2413. @node Variable Interface
  2414. @subsection Variable Interface
  2415. @table @asis
  2416. @item @emph{Description}:
  2417. This variant of @code{starpu_data_register} uses the variable interface,
  2418. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2419. and @code{elemsize} is the size of the variable.
  2420. @item @emph{Prototype}:
  2421. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2422. uint32_t home_node,
  2423. uintptr_t ptr, size_t elemsize);}
  2424. @item @emph{Example}:
  2425. @cartouche
  2426. @smallexample
  2427. float var;
  2428. starpu_data_handle var_handle;
  2429. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2430. @end smallexample
  2431. @end cartouche
  2432. @end table
  2433. @node Vector Interface
  2434. @subsection Vector Interface
  2435. @table @asis
  2436. @item @emph{Description}:
  2437. This variant of @code{starpu_data_register} uses the vector interface,
  2438. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2439. element in the home node. @code{nx} is the number of elements in the vector.
  2440. @code{elemsize} is the size of each element.
  2441. @item @emph{Prototype}:
  2442. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2443. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2444. @item @emph{Example}:
  2445. @cartouche
  2446. @smallexample
  2447. float vector[NX];
  2448. starpu_data_handle vector_handle;
  2449. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2450. sizeof(vector[0]));
  2451. @end smallexample
  2452. @end cartouche
  2453. @end table
  2454. @node Matrix Interface
  2455. @subsection Matrix Interface
  2456. @table @asis
  2457. @item @emph{Description}:
  2458. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2459. matrices of elements. @code{ptr} is the address of the first element in the home
  2460. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2461. of elements in a row (this can be different from @code{ld} if there are extra
  2462. elements for alignment for instance). @code{ny} is the number of rows.
  2463. @code{elemsize} is the size of each element.
  2464. @item @emph{Prototype}:
  2465. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2466. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2467. uint32_t ny, size_t elemsize);}
  2468. @item @emph{Example}:
  2469. @cartouche
  2470. @smallexample
  2471. float *matrix;
  2472. starpu_data_handle matrix_handle;
  2473. matrix = (float*)malloc(width * height * sizeof(float));
  2474. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2475. width, width, height, sizeof(float));
  2476. @end smallexample
  2477. @end cartouche
  2478. @end table
  2479. @node 3D Matrix Interface
  2480. @subsection 3D Matrix Interface
  2481. @table @asis
  2482. @item @emph{Description}:
  2483. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2484. @code{ptr} is the address of the array of first element in the home node.
  2485. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2486. of rows between z planes. @code{nx} is the number of elements in a row (this
  2487. can be different from @code{ldy} if there are extra elements for alignment
  2488. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2489. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2490. each element.
  2491. @item @emph{Prototype}:
  2492. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2493. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2494. uint32_t ny, uint32_t nz, size_t elemsize);}
  2495. @item @emph{Example}:
  2496. @cartouche
  2497. @smallexample
  2498. float *block;
  2499. starpu_data_handle block_handle;
  2500. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2501. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2502. nx, nx*ny, nx, ny, nz, sizeof(float));
  2503. @end smallexample
  2504. @end cartouche
  2505. @end table
  2506. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2507. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2508. @table @asis
  2509. @item @emph{Description}:
  2510. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2511. TODO
  2512. @item @emph{Prototype}:
  2513. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2514. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2515. @item @emph{Example}:
  2516. @cartouche
  2517. @smallexample
  2518. @end smallexample
  2519. @end cartouche
  2520. @end table
  2521. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2522. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2523. @table @asis
  2524. @item @emph{Description}:
  2525. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2526. TODO
  2527. @item @emph{Prototype}:
  2528. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2529. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2530. @item @emph{Example}:
  2531. @cartouche
  2532. @smallexample
  2533. @end smallexample
  2534. @end cartouche
  2535. @end table
  2536. @node Data Partition
  2537. @section Data Partition
  2538. @menu
  2539. * struct starpu_data_filter:: StarPU filter structure
  2540. * starpu_data_partition:: Partition Data
  2541. * starpu_data_unpartition:: Unpartition Data
  2542. * starpu_data_get_nb_children::
  2543. * starpu_data_get_sub_data::
  2544. * Predefined filter functions::
  2545. @end menu
  2546. @node struct starpu_data_filter
  2547. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2548. @table @asis
  2549. @item @emph{Description}:
  2550. The filter structure describes a data partitioning operation, to be given to the
  2551. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2552. @item @emph{Fields}:
  2553. @table @asis
  2554. @item @code{filter_func}:
  2555. This function fills the @code{child_interface} structure with interface
  2556. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2557. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2558. @item @code{nchildren}:
  2559. This is the number of parts to partition the data into.
  2560. @item @code{get_nchildren}:
  2561. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2562. children depends on the actual data (e.g. the number of blocks in a sparse
  2563. matrix).
  2564. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2565. @item @code{get_child_ops}:
  2566. In case the resulting children use a different data interface, this function
  2567. returns which interface is used by child number @code{id}.
  2568. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2569. @item @code{filter_arg}:
  2570. Some filters take an addition parameter, but this is usually unused.
  2571. @item @code{filter_arg_ptr}:
  2572. Some filters take an additional array parameter like the sizes of the parts, but
  2573. this is usually unused.
  2574. @end table
  2575. @end table
  2576. @node starpu_data_partition
  2577. @subsection starpu_data_partition -- Partition Data
  2578. @table @asis
  2579. @item @emph{Description}:
  2580. This requests partitioning one StarPU data @code{initial_handle} into several
  2581. subdata according to the filter @code{f}
  2582. @item @emph{Prototype}:
  2583. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2584. @item @emph{Example}:
  2585. @cartouche
  2586. @smallexample
  2587. struct starpu_data_filter f = @{
  2588. .filter_func = starpu_vertical_block_filter_func,
  2589. .nchildren = nslicesx,
  2590. .get_nchildren = NULL,
  2591. .get_child_ops = NULL
  2592. @};
  2593. starpu_data_partition(A_handle, &f);
  2594. @end smallexample
  2595. @end cartouche
  2596. @end table
  2597. @node starpu_data_unpartition
  2598. @subsection starpu_data_unpartition -- Unpartition data
  2599. @table @asis
  2600. @item @emph{Description}:
  2601. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2602. collected back into one big piece in the @code{gathering_node} (usually 0).
  2603. @item @emph{Prototype}:
  2604. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2605. @item @emph{Example}:
  2606. @cartouche
  2607. @smallexample
  2608. starpu_data_unpartition(A_handle, 0);
  2609. @end smallexample
  2610. @end cartouche
  2611. @end table
  2612. @node starpu_data_get_nb_children
  2613. @subsection starpu_data_get_nb_children
  2614. @table @asis
  2615. @item @emph{Description}:
  2616. This function returns the number of children.
  2617. @item @emph{Return value}:
  2618. The number of children.
  2619. @item @emph{Prototype}:
  2620. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2621. @end table
  2622. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2623. @node starpu_data_get_sub_data
  2624. @subsection starpu_data_get_sub_data
  2625. @table @asis
  2626. @item @emph{Description}:
  2627. After partitioning a StarPU data by applying a filter,
  2628. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2629. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2630. is the number of filters to traverse (in case several filters have been applied,
  2631. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2632. parameters are the indexes.
  2633. @item @emph{Return value}:
  2634. A handle to the subdata.
  2635. @item @emph{Prototype}:
  2636. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2637. @item @emph{Example}:
  2638. @cartouche
  2639. @smallexample
  2640. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2641. @end smallexample
  2642. @end cartouche
  2643. @end table
  2644. @node Predefined filter functions
  2645. @subsection Predefined filter functions
  2646. @menu
  2647. * Partitioning BCSR Data::
  2648. * Partitioning BLAS interface::
  2649. * Partitioning Vector Data::
  2650. * Partitioning Block Data::
  2651. @end menu
  2652. This section gives a partial list of the predefined partitioning functions.
  2653. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2654. list can be found in @code{starpu_data_filters.h} .
  2655. @node Partitioning BCSR Data
  2656. @subsubsection Partitioning BCSR Data
  2657. @table @asis
  2658. @item @emph{Description}:
  2659. TODO
  2660. @item @emph{Prototype}:
  2661. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2662. @end table
  2663. @table @asis
  2664. @item @emph{Description}:
  2665. TODO
  2666. @item @emph{Prototype}:
  2667. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2668. @end table
  2669. @node Partitioning BLAS interface
  2670. @subsubsection Partitioning BLAS interface
  2671. @table @asis
  2672. @item @emph{Description}:
  2673. This partitions a dense Matrix into horizontal blocks.
  2674. @item @emph{Prototype}:
  2675. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2676. @end table
  2677. @table @asis
  2678. @item @emph{Description}:
  2679. This partitions a dense Matrix into vertical blocks.
  2680. @item @emph{Prototype}:
  2681. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2682. @end table
  2683. @node Partitioning Vector Data
  2684. @subsubsection Partitioning Vector Data
  2685. @table @asis
  2686. @item @emph{Description}:
  2687. This partitions a vector into blocks of the same size.
  2688. @item @emph{Prototype}:
  2689. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2690. @end table
  2691. @table @asis
  2692. @item @emph{Description}:
  2693. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2694. @item @emph{Prototype}:
  2695. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2696. @end table
  2697. @table @asis
  2698. @item @emph{Description}:
  2699. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2700. @item @emph{Prototype}:
  2701. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2702. @end table
  2703. @node Partitioning Block Data
  2704. @subsubsection Partitioning Block Data
  2705. @table @asis
  2706. @item @emph{Description}:
  2707. This partitions a 3D matrix along the X axis.
  2708. @item @emph{Prototype}:
  2709. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2710. @end table
  2711. @node Codelets and Tasks
  2712. @section Codelets and Tasks
  2713. @menu
  2714. * struct starpu_codelet:: StarPU codelet structure
  2715. * struct starpu_task:: StarPU task structure
  2716. * starpu_task_init:: Initialize a Task
  2717. * starpu_task_create:: Allocate and Initialize a Task
  2718. * starpu_task_deinit:: Release all the resources used by a Task
  2719. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2720. * starpu_task_wait:: Wait for the termination of a Task
  2721. * starpu_task_submit:: Submit a Task
  2722. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2723. * starpu_get_current_task:: Return the task currently executed by the worker
  2724. * starpu_display_codelet_stats:: Display statistics
  2725. @end menu
  2726. @node struct starpu_codelet
  2727. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2728. @table @asis
  2729. @item @emph{Description}:
  2730. The codelet structure describes a kernel that is possibly implemented on various
  2731. targets. For compatibility, make sure to initialize the whole structure to zero.
  2732. @item @emph{Fields}:
  2733. @table @asis
  2734. @item @code{where}:
  2735. Indicates which types of processing units are able to execute the codelet.
  2736. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2737. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2738. indicates that it is only available on Cell SPUs.
  2739. @item @code{cpu_func} (optional):
  2740. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2741. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2742. argument being the array of data managed by the data management library, and
  2743. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2744. field of the @code{starpu_task} structure.
  2745. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2746. the @code{where} field, it must be non-null otherwise.
  2747. @item @code{cuda_func} (optional):
  2748. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2749. must be a host-function written in the CUDA runtime API}. Its prototype must
  2750. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2751. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2752. field, it must be non-null otherwise.
  2753. @item @code{opencl_func} (optional):
  2754. Is a function pointer to the OpenCL implementation of the codelet. Its
  2755. prototype must be:
  2756. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2757. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2758. @code{where} field, it must be non-null otherwise.
  2759. @item @code{gordon_func} (optional):
  2760. This is the index of the Cell SPU implementation within the Gordon library.
  2761. See Gordon documentation for more details on how to register a kernel and
  2762. retrieve its index.
  2763. @item @code{nbuffers}:
  2764. Specifies the number of arguments taken by the codelet. These arguments are
  2765. managed by the DSM and are accessed from the @code{void *buffers[]}
  2766. array. The constant argument passed with the @code{cl_arg} field of the
  2767. @code{starpu_task} structure is not counted in this number. This value should
  2768. not be above @code{STARPU_NMAXBUFS}.
  2769. @item @code{model} (optional):
  2770. This is a pointer to the task duration performance model associated to this
  2771. codelet. This optional field is ignored when set to @code{NULL}.
  2772. TODO
  2773. @item @code{power_model} (optional):
  2774. This is a pointer to the task power consumption performance model associated
  2775. to this codelet. This optional field is ignored when set to @code{NULL}.
  2776. In the case of parallel codelets, this has to account for all processing units
  2777. involved in the parallel execution.
  2778. TODO
  2779. @end table
  2780. @end table
  2781. @node struct starpu_task
  2782. @subsection @code{struct starpu_task} -- StarPU task structure
  2783. @table @asis
  2784. @item @emph{Description}:
  2785. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2786. processing units managed by StarPU. It instantiates a codelet. It can either be
  2787. allocated dynamically with the @code{starpu_task_create} method, or declared
  2788. statically. In the latter case, the programmer has to zero the
  2789. @code{starpu_task} structure and to fill the different fields properly. The
  2790. indicated default values correspond to the configuration of a task allocated
  2791. with @code{starpu_task_create}.
  2792. @item @emph{Fields}:
  2793. @table @asis
  2794. @item @code{cl}:
  2795. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2796. describes where the kernel should be executed, and supplies the appropriate
  2797. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2798. such empty tasks can be useful for synchronization purposes.
  2799. @item @code{buffers}:
  2800. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2801. different pieces of data accessed by the task, and how they should be accessed.
  2802. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2803. @code{handle} field specifies the handle of the piece of data, and the
  2804. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2805. of entries in this array must be specified in the @code{nbuffers} field of the
  2806. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2807. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2808. option when configuring StarPU.
  2809. @item @code{cl_arg} (optional) (default = NULL):
  2810. This pointer is passed to the codelet through the second argument
  2811. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2812. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2813. argument.
  2814. @item @code{cl_arg_size} (optional, Cell specific):
  2815. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2816. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2817. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2818. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2819. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2820. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2821. codelets.
  2822. @item @code{callback_func} (optional) (default = @code{NULL}):
  2823. This is a function pointer of prototype @code{void (*f)(void *)} which
  2824. specifies a possible callback. If this pointer is non-null, the callback
  2825. function is executed @emph{on the host} after the execution of the task. The
  2826. callback is passed the value contained in the @code{callback_arg} field. No
  2827. callback is executed if the field is set to @code{NULL}.
  2828. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2829. This is the pointer passed to the callback function. This field is ignored if
  2830. the @code{callback_func} is set to @code{NULL}.
  2831. @item @code{use_tag} (optional) (default = 0):
  2832. If set, this flag indicates that the task should be associated with the tag
  2833. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2834. with the task and to express task dependencies easily.
  2835. @item @code{tag_id}:
  2836. This fields contains the tag associated to the task if the @code{use_tag} field
  2837. was set, it is ignored otherwise.
  2838. @item @code{synchronous}:
  2839. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2840. returns only when the task has been executed (or if no worker is able to
  2841. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2842. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2843. This field indicates a level of priority for the task. This is an integer value
  2844. that must be set between the return values of the
  2845. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2846. and that of the @code{starpu_sched_get_max_priority} for the most important
  2847. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2848. are provided for convenience and respectively returns value of
  2849. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2850. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2851. order to allow static task initialization. Scheduling strategies that take
  2852. priorities into account can use this parameter to take better scheduling
  2853. decisions, but the scheduling policy may also ignore it.
  2854. @item @code{execute_on_a_specific_worker} (default = 0):
  2855. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2856. task to the worker specified by the @code{workerid} field.
  2857. @item @code{workerid} (optional):
  2858. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2859. which is the identifier of the worker that should process this task (as
  2860. returned by @code{starpu_worker_get_id}). This field is ignored if
  2861. @code{execute_on_a_specific_worker} field is set to 0.
  2862. @item @code{detach} (optional) (default = 1):
  2863. If this flag is set, it is not possible to synchronize with the task
  2864. by the means of @code{starpu_task_wait} later on. Internal data structures
  2865. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2866. flag is not set.
  2867. @item @code{destroy} (optional) (default = 1):
  2868. If this flag is set, the task structure will automatically be freed, either
  2869. after the execution of the callback if the task is detached, or during
  2870. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2871. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2872. called explicitly. Setting this flag for a statically allocated task structure
  2873. will result in undefined behaviour.
  2874. @item @code{predicted} (output field):
  2875. Predicted duration of the task. This field is only set if the scheduling
  2876. strategy used performance models.
  2877. @end table
  2878. @end table
  2879. @node starpu_task_init
  2880. @subsection @code{starpu_task_init} -- Initialize a Task
  2881. @table @asis
  2882. @item @emph{Description}:
  2883. Initialize a task structure with default values. This function is implicitly
  2884. called by @code{starpu_task_create}. By default, tasks initialized with
  2885. @code{starpu_task_init} must be deinitialized explicitly with
  2886. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2887. constant @code{STARPU_TASK_INITIALIZER}.
  2888. @item @emph{Prototype}:
  2889. @code{void starpu_task_init(struct starpu_task *task);}
  2890. @end table
  2891. @node starpu_task_create
  2892. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2893. @table @asis
  2894. @item @emph{Description}:
  2895. Allocate a task structure and initialize it with default values. Tasks
  2896. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2897. task is terminated. If the destroy flag is explicitly unset, the resources used
  2898. by the task are freed by calling
  2899. @code{starpu_task_destroy}.
  2900. @item @emph{Prototype}:
  2901. @code{struct starpu_task *starpu_task_create(void);}
  2902. @end table
  2903. @node starpu_task_deinit
  2904. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2905. @table @asis
  2906. @item @emph{Description}:
  2907. Release all the structures automatically allocated to execute the task. This is
  2908. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2909. freed. This should be used for statically allocated tasks for instance.
  2910. @item @emph{Prototype}:
  2911. @code{void starpu_task_deinit(struct starpu_task *task);}
  2912. @end table
  2913. @node starpu_task_destroy
  2914. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2915. @table @asis
  2916. @item @emph{Description}:
  2917. Free the resource allocated during @code{starpu_task_create}. This function can be
  2918. called automatically after the execution of a task by setting the
  2919. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2920. Calling this function on a statically allocated task results in an undefined
  2921. behaviour.
  2922. @item @emph{Prototype}:
  2923. @code{void starpu_task_destroy(struct starpu_task *task);}
  2924. @end table
  2925. @node starpu_task_wait
  2926. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2927. @table @asis
  2928. @item @emph{Description}:
  2929. This function blocks until the task has been executed. It is not possible to
  2930. synchronize with a task more than once. It is not possible to wait for
  2931. synchronous or detached tasks.
  2932. @item @emph{Return value}:
  2933. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2934. indicates that the specified task was either synchronous or detached.
  2935. @item @emph{Prototype}:
  2936. @code{int starpu_task_wait(struct starpu_task *task);}
  2937. @end table
  2938. @node starpu_task_submit
  2939. @subsection @code{starpu_task_submit} -- Submit a Task
  2940. @table @asis
  2941. @item @emph{Description}:
  2942. This function submits a task to StarPU. Calling this function does
  2943. not mean that the task will be executed immediately as there can be data or task
  2944. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2945. scheduling this task with respect to such dependencies.
  2946. This function returns immediately if the @code{synchronous} field of the
  2947. @code{starpu_task} structure was set to 0, and block until the termination of
  2948. the task otherwise. It is also possible to synchronize the application with
  2949. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2950. function for instance.
  2951. @item @emph{Return value}:
  2952. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2953. means that there is no worker able to process this task (e.g. there is no GPU
  2954. available and this task is only implemented for CUDA devices).
  2955. @item @emph{Prototype}:
  2956. @code{int starpu_task_submit(struct starpu_task *task);}
  2957. @end table
  2958. @node starpu_task_wait_for_all
  2959. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2960. @table @asis
  2961. @item @emph{Description}:
  2962. This function blocks until all the tasks that were submitted are terminated.
  2963. @item @emph{Prototype}:
  2964. @code{void starpu_task_wait_for_all(void);}
  2965. @end table
  2966. @node starpu_get_current_task
  2967. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2968. @table @asis
  2969. @item @emph{Description}:
  2970. This function returns the task currently executed by the worker, or
  2971. NULL if it is called either from a thread that is not a task or simply
  2972. because there is no task being executed at the moment.
  2973. @item @emph{Prototype}:
  2974. @code{struct starpu_task *starpu_get_current_task(void);}
  2975. @end table
  2976. @node starpu_display_codelet_stats
  2977. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2978. @table @asis
  2979. @item @emph{Description}:
  2980. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2981. @item @emph{Prototype}:
  2982. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2983. @end table
  2984. @c Callbacks : what can we put in callbacks ?
  2985. @node Explicit Dependencies
  2986. @section Explicit Dependencies
  2987. @menu
  2988. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2989. * starpu_tag_t:: Task logical identifier
  2990. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2991. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2992. * starpu_tag_wait:: Block until a Tag is terminated
  2993. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2994. * starpu_tag_remove:: Destroy a Tag
  2995. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2996. @end menu
  2997. @node starpu_task_declare_deps_array
  2998. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2999. @table @asis
  3000. @item @emph{Description}:
  3001. Declare task dependencies between a @code{task} and an array of tasks of length
  3002. @code{ndeps}. This function must be called prior to the submission of the task,
  3003. but it may called after the submission or the execution of the tasks in the
  3004. array provided the tasks are still valid (ie. they were not automatically
  3005. destroyed). Calling this function on a task that was already submitted or with
  3006. an entry of @code{task_array} that is not a valid task anymore results in an
  3007. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  3008. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3009. same task, in this case, the dependencies are added. It is possible to have
  3010. redundancy in the task dependencies.
  3011. @item @emph{Prototype}:
  3012. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  3013. @end table
  3014. @node starpu_tag_t
  3015. @subsection @code{starpu_tag_t} -- Task logical identifier
  3016. @table @asis
  3017. @item @emph{Description}:
  3018. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3019. dependencies between tasks by the means of those tags. To do so, fill the
  3020. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3021. be arbitrary) and set the @code{use_tag} field to 1.
  3022. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3023. not be started until the tasks which holds the declared dependency tags are
  3024. completed.
  3025. @end table
  3026. @node starpu_tag_declare_deps
  3027. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3028. @table @asis
  3029. @item @emph{Description}:
  3030. Specify the dependencies of the task identified by tag @code{id}. The first
  3031. argument specifies the tag which is configured, the second argument gives the
  3032. number of tag(s) on which @code{id} depends. The following arguments are the
  3033. tags which have to be terminated to unlock the task.
  3034. This function must be called before the associated task is submitted to StarPU
  3035. with @code{starpu_task_submit}.
  3036. @item @emph{Remark}
  3037. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3038. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3039. typically need to be explicitly casted. Using the
  3040. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3041. @item @emph{Prototype}:
  3042. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3043. @item @emph{Example}:
  3044. @cartouche
  3045. @example
  3046. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3047. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3048. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3049. @end example
  3050. @end cartouche
  3051. @end table
  3052. @node starpu_tag_declare_deps_array
  3053. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3054. @table @asis
  3055. @item @emph{Description}:
  3056. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3057. does not take a variable number of arguments but an array of tags of size
  3058. @code{ndeps}.
  3059. @item @emph{Prototype}:
  3060. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3061. @item @emph{Example}:
  3062. @cartouche
  3063. @example
  3064. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3065. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3066. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3067. @end example
  3068. @end cartouche
  3069. @end table
  3070. @node starpu_tag_wait
  3071. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3072. @table @asis
  3073. @item @emph{Description}:
  3074. This function blocks until the task associated to tag @code{id} has been
  3075. executed. This is a blocking call which must therefore not be called within
  3076. tasks or callbacks, but only from the application directly. It is possible to
  3077. synchronize with the same tag multiple times, as long as the
  3078. @code{starpu_tag_remove} function is not called. Note that it is still
  3079. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3080. data structure was freed (e.g. if the @code{destroy} flag of the
  3081. @code{starpu_task} was enabled).
  3082. @item @emph{Prototype}:
  3083. @code{void starpu_tag_wait(starpu_tag_t id);}
  3084. @end table
  3085. @node starpu_tag_wait_array
  3086. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3087. @table @asis
  3088. @item @emph{Description}:
  3089. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3090. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3091. terminated.
  3092. @item @emph{Prototype}:
  3093. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3094. @end table
  3095. @node starpu_tag_remove
  3096. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3097. @table @asis
  3098. @item @emph{Description}:
  3099. This function releases the resources associated to tag @code{id}. It can be
  3100. called once the corresponding task has been executed and when there is
  3101. no other tag that depend on this tag anymore.
  3102. @item @emph{Prototype}:
  3103. @code{void starpu_tag_remove(starpu_tag_t id);}
  3104. @end table
  3105. @node starpu_tag_notify_from_apps
  3106. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3107. @table @asis
  3108. @item @emph{Description}:
  3109. This function explicitly unlocks tag @code{id}. It may be useful in the
  3110. case of applications which execute part of their computation outside StarPU
  3111. tasks (e.g. third-party libraries). It is also provided as a
  3112. convenient tool for the programmer, for instance to entirely construct the task
  3113. DAG before actually giving StarPU the opportunity to execute the tasks.
  3114. @item @emph{Prototype}:
  3115. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3116. @end table
  3117. @node Implicit Data Dependencies
  3118. @section Implicit Data Dependencies
  3119. @menu
  3120. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3121. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3122. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3123. @end menu
  3124. In this section, we describe how StarPU makes it possible to insert implicit
  3125. task dependencies in order to enforce sequential data consistency. When this
  3126. data consistency is enabled on a specific data handle, any data access will
  3127. appear as sequentially consistent from the application. For instance, if the
  3128. application submits two tasks that access the same piece of data in read-only
  3129. mode, and then a third task that access it in write mode, dependencies will be
  3130. added between the two first tasks and the third one. Implicit data dependencies
  3131. are also inserted in the case of data accesses from the application.
  3132. @node starpu_data_set_default_sequential_consistency_flag
  3133. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3134. @table @asis
  3135. @item @emph{Description}:
  3136. Set the default sequential consistency flag. If a non-zero value is passed, a
  3137. sequential data consistency will be enforced for all handles registered after
  3138. this function call, otherwise it is disabled. By default, StarPU enables
  3139. sequential data consistency. It is also possible to select the data consistency
  3140. mode of a specific data handle with the
  3141. @code{starpu_data_set_sequential_consistency_flag} function.
  3142. @item @emph{Prototype}:
  3143. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3144. @end table
  3145. @node starpu_data_get_default_sequential_consistency_flag
  3146. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3147. @table @asis
  3148. @item @emph{Description}:
  3149. This function returns the current default sequential consistency flag.
  3150. @item @emph{Prototype}:
  3151. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3152. @end table
  3153. @node starpu_data_set_sequential_consistency_flag
  3154. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3155. @table @asis
  3156. @item @emph{Description}:
  3157. Select the data consistency mode associated to a data handle. The consistency
  3158. mode set using this function has the priority over the default mode which can
  3159. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3160. @item @emph{Prototype}:
  3161. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3162. @end table
  3163. @node Performance Model API
  3164. @section Performance Model API
  3165. @menu
  3166. * starpu_load_history_debug::
  3167. * starpu_perfmodel_debugfilepath::
  3168. * starpu_perfmodel_get_arch_name::
  3169. * starpu_force_bus_sampling::
  3170. @end menu
  3171. @node starpu_load_history_debug
  3172. @subsection @code{starpu_load_history_debug}
  3173. @table @asis
  3174. @item @emph{Description}:
  3175. TODO
  3176. @item @emph{Prototype}:
  3177. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3178. @end table
  3179. @node starpu_perfmodel_debugfilepath
  3180. @subsection @code{starpu_perfmodel_debugfilepath}
  3181. @table @asis
  3182. @item @emph{Description}:
  3183. TODO
  3184. @item @emph{Prototype}:
  3185. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3186. @end table
  3187. @node starpu_perfmodel_get_arch_name
  3188. @subsection @code{starpu_perfmodel_get_arch_name}
  3189. @table @asis
  3190. @item @emph{Description}:
  3191. TODO
  3192. @item @emph{Prototype}:
  3193. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3194. @end table
  3195. @node starpu_force_bus_sampling
  3196. @subsection @code{starpu_force_bus_sampling}
  3197. @table @asis
  3198. @item @emph{Description}:
  3199. This forces sampling the bus performance model again.
  3200. @item @emph{Prototype}:
  3201. @code{void starpu_force_bus_sampling(void);}
  3202. @end table
  3203. @node Profiling API
  3204. @section Profiling API
  3205. @menu
  3206. * starpu_profiling_status_set:: starpu_profiling_status_set
  3207. * starpu_profiling_status_get:: starpu_profiling_status_get
  3208. * struct starpu_task_profiling_info:: task profiling information
  3209. * struct starpu_worker_profiling_info:: worker profiling information
  3210. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3211. * struct starpu_bus_profiling_info:: bus profiling information
  3212. * starpu_bus_get_count::
  3213. * starpu_bus_get_id::
  3214. * starpu_bus_get_src::
  3215. * starpu_bus_get_dst::
  3216. * starpu_timing_timespec_delay_us::
  3217. * starpu_timing_timespec_to_us::
  3218. * starpu_bus_profiling_helper_display_summary::
  3219. * starpu_worker_profiling_helper_display_summary::
  3220. @end menu
  3221. @node starpu_profiling_status_set
  3222. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3223. @table @asis
  3224. @item @emph{Description}:
  3225. Thie function sets the profiling status. Profiling is activated by passing
  3226. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3227. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3228. resets all profiling measurements. When profiling is enabled, the
  3229. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3230. to a valid @code{struct starpu_task_profiling_info} structure containing
  3231. information about the execution of the task.
  3232. @item @emph{Return value}:
  3233. Negative return values indicate an error, otherwise the previous status is
  3234. returned.
  3235. @item @emph{Prototype}:
  3236. @code{int starpu_profiling_status_set(int status);}
  3237. @end table
  3238. @node starpu_profiling_status_get
  3239. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3240. @table @asis
  3241. @item @emph{Description}:
  3242. Return the current profiling status or a negative value in case there was an error.
  3243. @item @emph{Prototype}:
  3244. @code{int starpu_profiling_status_get(void);}
  3245. @end table
  3246. @node struct starpu_task_profiling_info
  3247. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3248. @table @asis
  3249. @item @emph{Description}:
  3250. This structure contains information about the execution of a task. It is
  3251. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3252. structure if profiling was enabled.
  3253. @item @emph{Fields}:
  3254. @table @asis
  3255. @item @code{submit_time}:
  3256. Date of task submission (relative to the initialization of StarPU).
  3257. @item @code{start_time}:
  3258. Date of task execution beginning (relative to the initialization of StarPU).
  3259. @item @code{end_time}:
  3260. Date of task execution termination (relative to the initialization of StarPU).
  3261. @item @code{workerid}:
  3262. Identifier of the worker which has executed the task.
  3263. @end table
  3264. @end table
  3265. @node struct starpu_worker_profiling_info
  3266. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3267. @table @asis
  3268. @item @emph{Description}:
  3269. This structure contains the profiling information associated to a worker.
  3270. @item @emph{Fields}:
  3271. @table @asis
  3272. @item @code{start_time}:
  3273. Starting date for the reported profiling measurements.
  3274. @item @code{total_time}:
  3275. Duration of the profiling measurement interval.
  3276. @item @code{executing_time}:
  3277. Time spent by the worker to execute tasks during the profiling measurement interval.
  3278. @item @code{sleeping_time}:
  3279. Time spent idling by the worker during the profiling measurement interval.
  3280. @item @code{executed_tasks}:
  3281. Number of tasks executed by the worker during the profiling measurement interval.
  3282. @end table
  3283. @end table
  3284. @node starpu_worker_get_profiling_info
  3285. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3286. @table @asis
  3287. @item @emph{Description}:
  3288. Get the profiling info associated to the worker identified by @code{workerid},
  3289. and reset the profiling measurements. If the @code{worker_info} argument is
  3290. NULL, only reset the counters associated to worker @code{workerid}.
  3291. @item @emph{Return value}:
  3292. Upon successful completion, this function returns 0. Otherwise, a negative
  3293. value is returned.
  3294. @item @emph{Prototype}:
  3295. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3296. @end table
  3297. @node struct starpu_bus_profiling_info
  3298. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3299. @table @asis
  3300. @item @emph{Description}:
  3301. TODO
  3302. @item @emph{Fields}:
  3303. @table @asis
  3304. @item @code{start_time}:
  3305. TODO
  3306. @item @code{total_time}:
  3307. TODO
  3308. @item @code{transferred_bytes}:
  3309. TODO
  3310. @item @code{transfer_count}:
  3311. TODO
  3312. @end table
  3313. @end table
  3314. @node starpu_bus_get_count
  3315. @subsection @code{starpu_bus_get_count}
  3316. @table @asis
  3317. @item @emph{Description}:
  3318. TODO
  3319. @item @emph{Prototype}:
  3320. @code{int starpu_bus_get_count(void);}
  3321. @end table
  3322. @node starpu_bus_get_id
  3323. @subsection @code{starpu_bus_get_id}
  3324. @table @asis
  3325. @item @emph{Description}:
  3326. TODO
  3327. @item @emph{Prototype}:
  3328. @code{int starpu_bus_get_id(int src, int dst);}
  3329. @end table
  3330. @node starpu_bus_get_src
  3331. @subsection @code{starpu_bus_get_src}
  3332. @table @asis
  3333. @item @emph{Description}:
  3334. TODO
  3335. @item @emph{Prototype}:
  3336. @code{int starpu_bus_get_src(int busid);}
  3337. @end table
  3338. @node starpu_bus_get_dst
  3339. @subsection @code{starpu_bus_get_dst}
  3340. @table @asis
  3341. @item @emph{Description}:
  3342. TODO
  3343. @item @emph{Prototype}:
  3344. @code{int starpu_bus_get_dst(int busid);}
  3345. @end table
  3346. @node starpu_timing_timespec_delay_us
  3347. @subsection @code{starpu_timing_timespec_delay_us}
  3348. @table @asis
  3349. @item @emph{Description}:
  3350. TODO
  3351. @item @emph{Prototype}:
  3352. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3353. @end table
  3354. @node starpu_timing_timespec_to_us
  3355. @subsection @code{starpu_timing_timespec_to_us}
  3356. @table @asis
  3357. @item @emph{Description}:
  3358. TODO
  3359. @item @emph{Prototype}:
  3360. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3361. @end table
  3362. @node starpu_bus_profiling_helper_display_summary
  3363. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3364. @table @asis
  3365. @item @emph{Description}:
  3366. TODO
  3367. @item @emph{Prototype}:
  3368. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3369. @end table
  3370. @node starpu_worker_profiling_helper_display_summary
  3371. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3372. @table @asis
  3373. @item @emph{Description}:
  3374. TODO
  3375. @item @emph{Prototype}:
  3376. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3377. @end table
  3378. @node CUDA extensions
  3379. @section CUDA extensions
  3380. @c void starpu_malloc(float **A, size_t dim);
  3381. @menu
  3382. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3383. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3384. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3385. @end menu
  3386. @node starpu_cuda_get_local_stream
  3387. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3388. @table @asis
  3389. @item @emph{Description}:
  3390. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3391. function is only provided for convenience so that programmers can easily use
  3392. asynchronous operations within codelets without having to create a stream by
  3393. hand. Note that the application is not forced to use the stream provided by
  3394. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3395. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3396. the likelihood of having all transfers overlapped.
  3397. @item @emph{Prototype}:
  3398. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3399. @end table
  3400. @node starpu_helper_cublas_init
  3401. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3402. @table @asis
  3403. @item @emph{Description}:
  3404. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3405. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3406. controlled by StarPU. This call blocks until CUBLAS has been properly
  3407. initialized on every device.
  3408. @item @emph{Prototype}:
  3409. @code{void starpu_helper_cublas_init(void);}
  3410. @end table
  3411. @node starpu_helper_cublas_shutdown
  3412. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3413. @table @asis
  3414. @item @emph{Description}:
  3415. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3416. @item @emph{Prototype}:
  3417. @code{void starpu_helper_cublas_shutdown(void);}
  3418. @end table
  3419. @node OpenCL extensions
  3420. @section OpenCL extensions
  3421. @menu
  3422. * Enabling OpenCL:: Enabling OpenCL
  3423. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3424. * Loading OpenCL kernels:: Loading OpenCL kernels
  3425. * OpenCL statistics:: Collecting statistics from OpenCL
  3426. @end menu
  3427. @node Enabling OpenCL
  3428. @subsection Enabling OpenCL
  3429. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3430. enabled by default. To enable OpenCL, you need either to disable CUDA
  3431. when configuring StarPU:
  3432. @example
  3433. % ./configure --disable-cuda
  3434. @end example
  3435. or when running applications:
  3436. @example
  3437. % STARPU_NCUDA=0 ./application
  3438. @end example
  3439. OpenCL will automatically be started on any device not yet used by
  3440. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3441. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3442. so:
  3443. @example
  3444. % STARPU_NCUDA=2 ./application
  3445. @end example
  3446. @node Compiling OpenCL kernels
  3447. @subsection Compiling OpenCL kernels
  3448. Source codes for OpenCL kernels can be stored in a file or in a
  3449. string. StarPU provides functions to build the program executable for
  3450. each available OpenCL device as a @code{cl_program} object. This
  3451. program executable can then be loaded within a specific queue as
  3452. explained in the next section. These are only helpers, Applications
  3453. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3454. use (e.g. different programs on the different OpenCL devices, for
  3455. relocation purpose for instance).
  3456. @menu
  3457. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3458. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3459. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3460. @end menu
  3461. @node starpu_opencl_load_opencl_from_file
  3462. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3463. @table @asis
  3464. @item @emph{Description}:
  3465. TODO
  3466. @item @emph{Prototype}:
  3467. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3468. @end table
  3469. @node starpu_opencl_load_opencl_from_string
  3470. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3471. @table @asis
  3472. @item @emph{Description}:
  3473. TODO
  3474. @item @emph{Prototype}:
  3475. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3476. @end table
  3477. @node starpu_opencl_unload_opencl
  3478. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3479. @table @asis
  3480. @item @emph{Description}:
  3481. TODO
  3482. @item @emph{Prototype}:
  3483. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3484. @end table
  3485. @node Loading OpenCL kernels
  3486. @subsection Loading OpenCL kernels
  3487. @menu
  3488. * starpu_opencl_load_kernel:: Loading a kernel
  3489. * starpu_opencl_relase_kernel:: Releasing a kernel
  3490. @end menu
  3491. @node starpu_opencl_load_kernel
  3492. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3493. @table @asis
  3494. @item @emph{Description}:
  3495. TODO
  3496. @item @emph{Prototype}:
  3497. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3498. }
  3499. @end table
  3500. @node starpu_opencl_relase_kernel
  3501. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3502. @table @asis
  3503. @item @emph{Description}:
  3504. TODO
  3505. @item @emph{Prototype}:
  3506. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3507. @end table
  3508. @node OpenCL statistics
  3509. @subsection OpenCL statistics
  3510. @menu
  3511. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3512. @end menu
  3513. @node starpu_opencl_collect_stats
  3514. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3515. @table @asis
  3516. @item @emph{Description}:
  3517. After termination of the kernels, the OpenCL codelet should call this function
  3518. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3519. collect statistics about the kernel execution (used cycles, consumed power).
  3520. @item @emph{Prototype}:
  3521. @code{int starpu_opencl_collect_stats(cl_event event);}
  3522. @end table
  3523. @node Cell extensions
  3524. @section Cell extensions
  3525. nothing yet.
  3526. @node Miscellaneous helpers
  3527. @section Miscellaneous helpers
  3528. @menu
  3529. * starpu_data_cpy:: Copy a data handle into another data handle
  3530. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3531. @end menu
  3532. @node starpu_data_cpy
  3533. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3534. @table @asis
  3535. @item @emph{Description}:
  3536. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3537. The @code{asynchronous} parameter indicates whether the function should
  3538. block or not. In the case of an asynchronous call, it is possible to
  3539. synchronize with the termination of this operation either by the means of
  3540. implicit dependencies (if enabled) or by calling
  3541. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3542. this callback function is executed after the handle has been copied, and it is
  3543. given the @code{callback_arg} pointer as argument.
  3544. @item @emph{Prototype}:
  3545. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3546. @end table
  3547. @node starpu_execute_on_each_worker
  3548. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3549. @table @asis
  3550. @item @emph{Description}:
  3551. When calling this method, the offloaded function specified by the first argument is
  3552. executed by every StarPU worker that may execute the function.
  3553. The second argument is passed to the offloaded function.
  3554. The last argument specifies on which types of processing units the function
  3555. should be executed. Similarly to the @code{where} field of the
  3556. @code{starpu_codelet} structure, it is possible to specify that the function
  3557. should be executed on every CUDA device and every CPU by passing
  3558. @code{STARPU_CPU|STARPU_CUDA}.
  3559. This function blocks until the function has been executed on every appropriate
  3560. processing units, so that it may not be called from a callback function for
  3561. instance.
  3562. @item @emph{Prototype}:
  3563. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3564. @end table
  3565. @c ---------------------------------------------------------------------
  3566. @c Advanced Topics
  3567. @c ---------------------------------------------------------------------
  3568. @node Advanced Topics
  3569. @chapter Advanced Topics
  3570. @menu
  3571. * Defining a new data interface::
  3572. * Defining a new scheduling policy::
  3573. @end menu
  3574. @node Defining a new data interface
  3575. @section Defining a new data interface
  3576. @menu
  3577. * struct starpu_data_interface_ops_t:: Per-interface methods
  3578. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3579. * An example of data interface:: An example of data interface
  3580. @end menu
  3581. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3582. @node struct starpu_data_interface_ops_t
  3583. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3584. @table @asis
  3585. @item @emph{Description}:
  3586. TODO describe all the different fields
  3587. @end table
  3588. @node struct starpu_data_copy_methods
  3589. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3590. @table @asis
  3591. @item @emph{Description}:
  3592. TODO describe all the different fields
  3593. @end table
  3594. @node An example of data interface
  3595. @subsection An example of data interface
  3596. @table @asis
  3597. TODO
  3598. @end table
  3599. @node Defining a new scheduling policy
  3600. @section Defining a new scheduling policy
  3601. TODO
  3602. A full example showing how to define a new scheduling policy is available in
  3603. the StarPU sources in the directory @code{examples/scheduler/}.
  3604. @menu
  3605. * struct starpu_sched_policy_s::
  3606. * starpu_worker_set_sched_condition::
  3607. * starpu_sched_set_min_priority:: Set the minimum priority level
  3608. * starpu_sched_set_max_priority:: Set the maximum priority level
  3609. * starpu_push_local_task:: Assign a task to a worker
  3610. * Source code::
  3611. @end menu
  3612. @node struct starpu_sched_policy_s
  3613. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3614. @table @asis
  3615. @item @emph{Description}:
  3616. This structure contains all the methods that implement a scheduling policy. An
  3617. application may specify which scheduling strategy in the @code{sched_policy}
  3618. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3619. function.
  3620. @item @emph{Fields}:
  3621. @table @asis
  3622. @item @code{init_sched}:
  3623. Initialize the scheduling policy.
  3624. @item @code{deinit_sched}:
  3625. Cleanup the scheduling policy.
  3626. @item @code{push_task}:
  3627. Insert a task into the scheduler.
  3628. @item @code{push_prio_task}:
  3629. Insert a priority task into the scheduler.
  3630. @item @code{push_prio_notify}:
  3631. Notify the scheduler that a task was pushed on the worker. This method is
  3632. called when a task that was explicitely assigned to a worker is scheduled. This
  3633. method therefore permits to keep the state of of the scheduler coherent even
  3634. when StarPU bypasses the scheduling strategy.
  3635. @item @code{pop_task}:
  3636. Get a task from the scheduler. The mutex associated to the worker is already
  3637. taken when this method is called. If this method is defined as @code{NULL}, the
  3638. worker will only execute tasks from its local queue. In this case, the
  3639. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3640. assign tasks to the different workers.
  3641. @item @code{pop_every_task}:
  3642. Remove all available tasks from the scheduler (tasks are chained by the means
  3643. of the prev and next fields of the starpu_task structure). The mutex associated
  3644. to the worker is already taken when this method is called.
  3645. @item @code{post_exec_hook} (optionnal):
  3646. This method is called every time a task has been executed.
  3647. @item @code{policy_name}:
  3648. Name of the policy (optionnal).
  3649. @item @code{policy_description}:
  3650. Description of the policy (optionnal).
  3651. @end table
  3652. @end table
  3653. @node starpu_worker_set_sched_condition
  3654. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3655. @table @asis
  3656. @item @emph{Description}:
  3657. When there is no available task for a worker, StarPU blocks this worker on a
  3658. condition variable. This function specifies which condition variable (and the
  3659. associated mutex) should be used to block (and to wake up) a worker. Note that
  3660. multiple workers may use the same condition variable. For instance, in the case
  3661. of a scheduling strategy with a single task queue, the same condition variable
  3662. would be used to block and wake up all workers.
  3663. The initialization method of a scheduling strategy (@code{init_sched}) must
  3664. call this function once per worker.
  3665. @item @emph{Prototype}:
  3666. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3667. @end table
  3668. @node starpu_sched_set_min_priority
  3669. @subsection @code{starpu_sched_set_min_priority}
  3670. @table @asis
  3671. @item @emph{Description}:
  3672. Defines the minimum priority level supported by the scheduling policy. The
  3673. default minimum priority level is the same as the default priority level which
  3674. is 0 by convention. The application may access that value by calling the
  3675. @code{starpu_sched_get_min_priority} function. This function should only be
  3676. called from the initialization method of the scheduling policy, and should not
  3677. be used directly from the application.
  3678. @item @emph{Prototype}:
  3679. @code{void starpu_sched_set_min_priority(int min_prio);}
  3680. @end table
  3681. @node starpu_sched_set_max_priority
  3682. @subsection @code{starpu_sched_set_max_priority}
  3683. @table @asis
  3684. @item @emph{Description}:
  3685. Defines the maximum priority level supported by the scheduling policy. The
  3686. default maximum priority level is 1. The application may access that value by
  3687. calling the @code{starpu_sched_get_max_priority} function. This function should
  3688. only be called from the initialization method of the scheduling policy, and
  3689. should not be used directly from the application.
  3690. @item @emph{Prototype}:
  3691. @code{void starpu_sched_set_min_priority(int max_prio);}
  3692. @end table
  3693. @node starpu_push_local_task
  3694. @subsection @code{starpu_push_local_task}
  3695. @table @asis
  3696. @item @emph{Description}:
  3697. The scheduling policy may put tasks directly into a worker's local queue so
  3698. that it is not always necessary to create its own queue when the local queue
  3699. is sufficient. If "back" not null, the task is put at the back of the queue
  3700. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3701. a FIFO ordering.
  3702. @item @emph{Prototype}:
  3703. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3704. @end table
  3705. @node Source code
  3706. @subsection Source code
  3707. @cartouche
  3708. @smallexample
  3709. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3710. .init_sched = init_dummy_sched,
  3711. .deinit_sched = deinit_dummy_sched,
  3712. .push_task = push_task_dummy,
  3713. .push_prio_task = NULL,
  3714. .pop_task = pop_task_dummy,
  3715. .post_exec_hook = NULL,
  3716. .pop_every_task = NULL,
  3717. .policy_name = "dummy",
  3718. .policy_description = "dummy scheduling strategy"
  3719. @};
  3720. @end smallexample
  3721. @end cartouche
  3722. @c ---------------------------------------------------------------------
  3723. @c Appendices
  3724. @c ---------------------------------------------------------------------
  3725. @c ---------------------------------------------------------------------
  3726. @c Full source code for the 'Scaling a Vector' example
  3727. @c ---------------------------------------------------------------------
  3728. @node Full source code for the 'Scaling a Vector' example
  3729. @appendix Full source code for the 'Scaling a Vector' example
  3730. @menu
  3731. * Main application::
  3732. * CPU Kernel::
  3733. * CUDA Kernel::
  3734. * OpenCL Kernel::
  3735. @end menu
  3736. @node Main application
  3737. @section Main application
  3738. @smallexample
  3739. @include vector_scal_c.texi
  3740. @end smallexample
  3741. @node CPU Kernel
  3742. @section CPU Kernel
  3743. @smallexample
  3744. @include vector_scal_cpu.texi
  3745. @end smallexample
  3746. @node CUDA Kernel
  3747. @section CUDA Kernel
  3748. @smallexample
  3749. @include vector_scal_cuda.texi
  3750. @end smallexample
  3751. @node OpenCL Kernel
  3752. @section OpenCL Kernel
  3753. @menu
  3754. * Invoking the kernel::
  3755. * Source of the kernel::
  3756. @end menu
  3757. @node Invoking the kernel
  3758. @subsection Invoking the kernel
  3759. @smallexample
  3760. @include vector_scal_opencl.texi
  3761. @end smallexample
  3762. @node Source of the kernel
  3763. @subsection Source of the kernel
  3764. @smallexample
  3765. @include vector_scal_opencl_codelet.texi
  3766. @end smallexample
  3767. @c
  3768. @c Indices.
  3769. @c
  3770. @node Function Index
  3771. @unnumbered Function Index
  3772. @printindex fn
  3773. @bye