| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 | 
							- /* dspr2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dspr2_(char *uplo, integer *n, doublereal *alpha, 
 
- 	doublereal *x, integer *incx, doublereal *y, integer *incy, 
 
- 	doublereal *ap)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
 
-     doublereal temp1, temp2;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPR2  performs the symmetric rank 2 operation */
 
- /*     A := alpha*x*y' + alpha*y*x' + A, */
 
- /*  where alpha is a scalar, x and y are n element vectors and A is an */
 
- /*  n by n symmetric matrix, supplied in packed form. */
 
- /*  Arguments */
 
- /*  ========== */
 
- /*  UPLO   - CHARACTER*1. */
 
- /*           On entry, UPLO specifies whether the upper or lower */
 
- /*           triangular part of the matrix A is supplied in the packed */
 
- /*           array AP as follows: */
 
- /*              UPLO = 'U' or 'u'   The upper triangular part of A is */
 
- /*                                  supplied in AP. */
 
- /*              UPLO = 'L' or 'l'   The lower triangular part of A is */
 
- /*                                  supplied in AP. */
 
- /*           Unchanged on exit. */
 
- /*  N      - INTEGER. */
 
- /*           On entry, N specifies the order of the matrix A. */
 
- /*           N must be at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  ALPHA  - DOUBLE PRECISION. */
 
- /*           On entry, ALPHA specifies the scalar alpha. */
 
- /*           Unchanged on exit. */
 
- /*  X      - DOUBLE PRECISION array of dimension at least */
 
- /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
 
- /*           Before entry, the incremented array X must contain the n */
 
- /*           element vector x. */
 
- /*           Unchanged on exit. */
 
- /*  INCX   - INTEGER. */
 
- /*           On entry, INCX specifies the increment for the elements of */
 
- /*           X. INCX must not be zero. */
 
- /*           Unchanged on exit. */
 
- /*  Y      - DOUBLE PRECISION array of dimension at least */
 
- /*           ( 1 + ( n - 1 )*abs( INCY ) ). */
 
- /*           Before entry, the incremented array Y must contain the n */
 
- /*           element vector y. */
 
- /*           Unchanged on exit. */
 
- /*  INCY   - INTEGER. */
 
- /*           On entry, INCY specifies the increment for the elements of */
 
- /*           Y. INCY must not be zero. */
 
- /*           Unchanged on exit. */
 
- /*  AP     - DOUBLE PRECISION array of DIMENSION at least */
 
- /*           ( ( n*( n + 1 ) )/2 ). */
 
- /*           Before entry with  UPLO = 'U' or 'u', the array AP must */
 
- /*           contain the upper triangular part of the symmetric matrix */
 
- /*           packed sequentially, column by column, so that AP( 1 ) */
 
- /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
 
- /*           and a( 2, 2 ) respectively, and so on. On exit, the array */
 
- /*           AP is overwritten by the upper triangular part of the */
 
- /*           updated matrix. */
 
- /*           Before entry with UPLO = 'L' or 'l', the array AP must */
 
- /*           contain the lower triangular part of the symmetric matrix */
 
- /*           packed sequentially, column by column, so that AP( 1 ) */
 
- /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
 
- /*           and a( 3, 1 ) respectively, and so on. On exit, the array */
 
- /*           AP is overwritten by the lower triangular part of the */
 
- /*           updated matrix. */
 
- /*  Level 2 Blas routine. */
 
- /*  -- Written on 22-October-1986. */
 
- /*     Jack Dongarra, Argonne National Lab. */
 
- /*     Jeremy Du Croz, Nag Central Office. */
 
- /*     Sven Hammarling, Nag Central Office. */
 
- /*     Richard Hanson, Sandia National Labs. */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --y;
 
-     --x;
 
-     /* Function Body */
 
-     info = 0;
 
-     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
 
- 	info = 1;
 
-     } else if (*n < 0) {
 
- 	info = 2;
 
-     } else if (*incx == 0) {
 
- 	info = 5;
 
-     } else if (*incy == 0) {
 
- 	info = 7;
 
-     }
 
-     if (info != 0) {
 
- 	xerbla_("DSPR2 ", &info);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*n == 0 || *alpha == 0.) {
 
- 	return 0;
 
-     }
 
- /*     Set up the start points in X and Y if the increments are not both */
 
- /*     unity. */
 
-     if (*incx != 1 || *incy != 1) {
 
- 	if (*incx > 0) {
 
- 	    kx = 1;
 
- 	} else {
 
- 	    kx = 1 - (*n - 1) * *incx;
 
- 	}
 
- 	if (*incy > 0) {
 
- 	    ky = 1;
 
- 	} else {
 
- 	    ky = 1 - (*n - 1) * *incy;
 
- 	}
 
- 	jx = kx;
 
- 	jy = ky;
 
-     }
 
- /*     Start the operations. In this version the elements of the array AP */
 
- /*     are accessed sequentially with one pass through AP. */
 
-     kk = 1;
 
-     if (lsame_(uplo, "U")) {
 
- /*        Form  A  when upper triangle is stored in AP. */
 
- 	if (*incx == 1 && *incy == 1) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (x[j] != 0. || y[j] != 0.) {
 
- 		    temp1 = *alpha * y[j];
 
- 		    temp2 = *alpha * x[j];
 
- 		    k = kk;
 
- 		    i__2 = j;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2;
 
- 			++k;
 
- /* L10: */
 
- 		    }
 
- 		}
 
- 		kk += j;
 
- /* L20: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (x[jx] != 0. || y[jy] != 0.) {
 
- 		    temp1 = *alpha * y[jy];
 
- 		    temp2 = *alpha * x[jx];
 
- 		    ix = kx;
 
- 		    iy = ky;
 
- 		    i__2 = kk + j - 1;
 
- 		    for (k = kk; k <= i__2; ++k) {
 
- 			ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2;
 
- 			ix += *incx;
 
- 			iy += *incy;
 
- /* L30: */
 
- 		    }
 
- 		}
 
- 		jx += *incx;
 
- 		jy += *incy;
 
- 		kk += j;
 
- /* L40: */
 
- 	    }
 
- 	}
 
-     } else {
 
- /*        Form  A  when lower triangle is stored in AP. */
 
- 	if (*incx == 1 && *incy == 1) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (x[j] != 0. || y[j] != 0.) {
 
- 		    temp1 = *alpha * y[j];
 
- 		    temp2 = *alpha * x[j];
 
- 		    k = kk;
 
- 		    i__2 = *n;
 
- 		    for (i__ = j; i__ <= i__2; ++i__) {
 
- 			ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2;
 
- 			++k;
 
- /* L50: */
 
- 		    }
 
- 		}
 
- 		kk = kk + *n - j + 1;
 
- /* L60: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (x[jx] != 0. || y[jy] != 0.) {
 
- 		    temp1 = *alpha * y[jy];
 
- 		    temp2 = *alpha * x[jx];
 
- 		    ix = jx;
 
- 		    iy = jy;
 
- 		    i__2 = kk + *n - j;
 
- 		    for (k = kk; k <= i__2; ++k) {
 
- 			ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2;
 
- 			ix += *incx;
 
- 			iy += *incy;
 
- /* L70: */
 
- 		    }
 
- 		}
 
- 		jx += *incx;
 
- 		jy += *incy;
 
- 		kk = kk + *n - j + 1;
 
- /* L80: */
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DSPR2 . */
 
- } /* dspr2_ */
 
 
  |