cholesky_tag.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010, 2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include "cholesky.h"
  19. /*
  20. * Some useful functions
  21. */
  22. static struct starpu_task *create_task(starpu_tag_t id)
  23. {
  24. struct starpu_task *task = starpu_task_create();
  25. task->cl_arg = NULL;
  26. task->use_tag = 1;
  27. task->tag_id = id;
  28. return task;
  29. }
  30. /*
  31. * Create the codelets
  32. */
  33. static struct starpu_codelet cl11 =
  34. {
  35. .where = STARPU_CPU|STARPU_CUDA,
  36. .cpu_funcs = {chol_cpu_codelet_update_u11, NULL},
  37. #ifdef STARPU_USE_CUDA
  38. .cuda_funcs = {chol_cublas_codelet_update_u11, NULL},
  39. #endif
  40. .nbuffers = 1,
  41. .model = &chol_model_11
  42. };
  43. static struct starpu_task * create_task_11(starpu_data_handle_t dataA, unsigned k)
  44. {
  45. /* FPRINTF(stdout, "task 11 k = %d TAG = %llx\n", k, (TAG11(k))); */
  46. struct starpu_task *task = create_task(TAG11(k));
  47. task->cl = &cl11;
  48. /* which sub-data is manipulated ? */
  49. task->buffers[0].handle = starpu_data_get_sub_data(dataA, 2, k, k);
  50. task->buffers[0].mode = STARPU_RW;
  51. /* this is an important task */
  52. if (!noprio)
  53. task->priority = STARPU_MAX_PRIO;
  54. /* enforce dependencies ... */
  55. if (k > 0)
  56. {
  57. starpu_tag_declare_deps(TAG11(k), 1, TAG22(k-1, k, k));
  58. }
  59. return task;
  60. }
  61. static struct starpu_codelet cl21 =
  62. {
  63. .where = STARPU_CPU|STARPU_CUDA,
  64. .cpu_funcs = {chol_cpu_codelet_update_u21, NULL},
  65. #ifdef STARPU_USE_CUDA
  66. .cuda_funcs = {chol_cublas_codelet_update_u21, NULL},
  67. #endif
  68. .nbuffers = 2,
  69. .model = &chol_model_21
  70. };
  71. static void create_task_21(starpu_data_handle_t dataA, unsigned k, unsigned j)
  72. {
  73. struct starpu_task *task = create_task(TAG21(k, j));
  74. task->cl = &cl21;
  75. /* which sub-data is manipulated ? */
  76. task->buffers[0].handle = starpu_data_get_sub_data(dataA, 2, k, k);
  77. task->buffers[0].mode = STARPU_R;
  78. task->buffers[1].handle = starpu_data_get_sub_data(dataA, 2, k, j);
  79. task->buffers[1].mode = STARPU_RW;
  80. if (!noprio && (j == k+1))
  81. {
  82. task->priority = STARPU_MAX_PRIO;
  83. }
  84. /* enforce dependencies ... */
  85. if (k > 0)
  86. {
  87. starpu_tag_declare_deps(TAG21(k, j), 2, TAG11(k), TAG22(k-1, k, j));
  88. }
  89. else
  90. {
  91. starpu_tag_declare_deps(TAG21(k, j), 1, TAG11(k));
  92. }
  93. int ret = starpu_task_submit(task);
  94. if (STARPU_UNLIKELY(ret == -ENODEV))
  95. {
  96. FPRINTF(stderr, "No worker may execute this task\n");
  97. exit(0);
  98. }
  99. }
  100. static struct starpu_codelet cl22 =
  101. {
  102. .where = STARPU_CPU|STARPU_CUDA,
  103. .cpu_funcs = {chol_cpu_codelet_update_u22, NULL},
  104. #ifdef STARPU_USE_CUDA
  105. .cuda_funcs = {chol_cublas_codelet_update_u22, NULL},
  106. #endif
  107. .nbuffers = 3,
  108. .model = &chol_model_22
  109. };
  110. static void create_task_22(starpu_data_handle_t dataA, unsigned k, unsigned i, unsigned j)
  111. {
  112. /* FPRINTF(stdout, "task 22 k,i,j = %d,%d,%d TAG = %llx\n", k,i,j, TAG22(k,i,j)); */
  113. struct starpu_task *task = create_task(TAG22(k, i, j));
  114. task->cl = &cl22;
  115. /* which sub-data is manipulated ? */
  116. task->buffers[0].handle = starpu_data_get_sub_data(dataA, 2, k, i);
  117. task->buffers[0].mode = STARPU_R;
  118. task->buffers[1].handle = starpu_data_get_sub_data(dataA, 2, k, j);
  119. task->buffers[1].mode = STARPU_R;
  120. task->buffers[2].handle = starpu_data_get_sub_data(dataA, 2, i, j);
  121. task->buffers[2].mode = STARPU_RW;
  122. if (!noprio && (i == k + 1) && (j == k +1) )
  123. {
  124. task->priority = STARPU_MAX_PRIO;
  125. }
  126. /* enforce dependencies ... */
  127. if (k > 0)
  128. {
  129. starpu_tag_declare_deps(TAG22(k, i, j), 3, TAG22(k-1, i, j), TAG21(k, i), TAG21(k, j));
  130. }
  131. else
  132. {
  133. starpu_tag_declare_deps(TAG22(k, i, j), 2, TAG21(k, i), TAG21(k, j));
  134. }
  135. int ret = starpu_task_submit(task);
  136. if (STARPU_UNLIKELY(ret == -ENODEV))
  137. {
  138. FPRINTF(stderr, "No worker may execute this task\n");
  139. exit(0);
  140. }
  141. }
  142. /*
  143. * code to bootstrap the factorization
  144. * and construct the DAG
  145. */
  146. static void _cholesky(starpu_data_handle_t dataA, unsigned nblocks)
  147. {
  148. struct timeval start;
  149. struct timeval end;
  150. struct starpu_task *entry_task = NULL;
  151. /* create all the DAG nodes */
  152. unsigned i,j,k;
  153. gettimeofday(&start, NULL);
  154. for (k = 0; k < nblocks; k++)
  155. {
  156. struct starpu_task *task = create_task_11(dataA, k);
  157. /* we defer the launch of the first task */
  158. if (k == 0)
  159. {
  160. entry_task = task;
  161. }
  162. else
  163. {
  164. int ret = starpu_task_submit(task);
  165. if (STARPU_UNLIKELY(ret == -ENODEV))
  166. {
  167. FPRINTF(stderr, "No worker may execute this task\n");
  168. exit(0);
  169. }
  170. }
  171. for (j = k+1; j<nblocks; j++)
  172. {
  173. create_task_21(dataA, k, j);
  174. for (i = k+1; i<nblocks; i++)
  175. {
  176. if (i <= j)
  177. create_task_22(dataA, k, i, j);
  178. }
  179. }
  180. }
  181. /* schedule the codelet */
  182. int ret = starpu_task_submit(entry_task);
  183. if (STARPU_UNLIKELY(ret == -ENODEV))
  184. {
  185. FPRINTF(stderr, "No worker may execute this task\n");
  186. exit(0);
  187. }
  188. /* stall the application until the end of computations */
  189. starpu_tag_wait(TAG11(nblocks-1));
  190. starpu_data_unpartition(dataA, 0);
  191. gettimeofday(&end, NULL);
  192. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  193. FPRINTF(stderr, "Computation took (in ms)\n");
  194. FPRINTF(stdout, "%2.2f\n", timing/1000);
  195. unsigned n = starpu_matrix_get_nx(dataA);
  196. double flop = (1.0f*n*n*n)/3.0f;
  197. FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  198. }
  199. static void initialize_system(float **A, unsigned dim, unsigned pinned)
  200. {
  201. starpu_init(NULL);
  202. starpu_helper_cublas_init();
  203. if (pinned)
  204. {
  205. starpu_malloc((void **)A, (size_t)dim*dim*sizeof(float));
  206. }
  207. else
  208. {
  209. *A = malloc(dim*dim*sizeof(float));
  210. }
  211. }
  212. static void cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  213. {
  214. starpu_data_handle_t dataA;
  215. /* monitor and partition the A matrix into blocks :
  216. * one block is now determined by 2 unsigned (i,j) */
  217. starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(float));
  218. starpu_data_set_sequential_consistency_flag(dataA, 0);
  219. struct starpu_data_filter f =
  220. {
  221. .filter_func = starpu_vertical_block_filter_func,
  222. .nchildren = nblocks
  223. };
  224. struct starpu_data_filter f2 =
  225. {
  226. .filter_func = starpu_block_filter_func,
  227. .nchildren = nblocks
  228. };
  229. starpu_data_map_filters(dataA, 2, &f, &f2);
  230. _cholesky(dataA, nblocks);
  231. starpu_data_unregister(dataA);
  232. starpu_helper_cublas_shutdown();
  233. starpu_shutdown();
  234. }
  235. int main(int argc, char **argv)
  236. {
  237. /* create a simple definite positive symetric matrix example
  238. *
  239. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  240. * */
  241. parse_args(argc, argv);
  242. float *mat;
  243. mat = malloc(size*size*sizeof(float));
  244. initialize_system(&mat, size, pinned);
  245. unsigned i,j;
  246. for (i = 0; i < size; i++)
  247. {
  248. for (j = 0; j < size; j++)
  249. {
  250. mat[j +i*size] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  251. /* mat[j +i*size] = ((i == j)?1.0f*size:0.0f); */
  252. }
  253. }
  254. #ifdef CHECK_OUTPUT
  255. FPRINTF(stdout, "Input :\n");
  256. for (j = 0; j < size; j++)
  257. {
  258. for (i = 0; i < size; i++)
  259. {
  260. if (i <= j)
  261. {
  262. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  263. }
  264. else
  265. {
  266. FPRINTF(stdout, ".\t");
  267. }
  268. }
  269. FPRINTF(stdout, "\n");
  270. }
  271. #endif
  272. cholesky(mat, size, size, nblocks);
  273. #ifdef CHECK_OUTPUT
  274. FPRINTF(stdout, "Results :\n");
  275. for (j = 0; j < size; j++)
  276. {
  277. for (i = 0; i < size; i++)
  278. {
  279. if (i <= j)
  280. {
  281. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  282. }
  283. else
  284. {
  285. FPRINTF(stdout, ".\t");
  286. mat[j+i*size] = 0.0f; /* debug */
  287. }
  288. }
  289. FPRINTF(stdout, "\n");
  290. }
  291. FPRINTF(stderr, "compute explicit LLt ...\n");
  292. float *test_mat = malloc(size*size*sizeof(float));
  293. STARPU_ASSERT(test_mat);
  294. SSYRK("L", "N", size, size, 1.0f,
  295. mat, size, 0.0f, test_mat, size);
  296. FPRINTF(stderr, "comparing results ...\n");
  297. for (j = 0; j < size; j++)
  298. {
  299. for (i = 0; i < size; i++)
  300. {
  301. if (i <= j)
  302. {
  303. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size]);
  304. }
  305. else
  306. {
  307. FPRINTF(stdout, ".\t");
  308. }
  309. }
  310. FPRINTF(stdout, "\n");
  311. }
  312. #endif
  313. return 0;
  314. }