basic_examples.doxy 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page BasicExamples Basic Examples
  9. \section HelloWorldUsingTheCExtension Hello World Using The C Extension
  10. This section shows how to implement a simple program that submits a task
  11. to StarPU using the StarPU C extension (\ref cExtensions). The complete example, and additional examples,
  12. is available in the directory <c>gcc-plugin/examples</c> of the StarPU
  13. distribution. A similar example showing how to directly use the StarPU's API is shown
  14. in \ref HelloWorldUsingStarPUAPI.
  15. GCC from version 4.5 permit to use the StarPU GCC plug-in (\ref cExtensions). This makes writing a task both simpler and less error-prone.
  16. In a nutshell, all it takes is to declare a task, declare and define its
  17. implementations (for CPU, OpenCL, and/or CUDA), and invoke the task like
  18. a regular C function. The example below defines <c>my_task</c> which
  19. has a single implementation for CPU:
  20. \snippet hello_pragma.c To be included
  21. The code can then be compiled and linked with GCC and the flag <c>-fplugin</c>:
  22. \verbatim
  23. $ gcc `pkg-config starpu-1.2 --cflags` hello-starpu.c \
  24. -fplugin=`pkg-config starpu-1.2 --variable=gccplugin` \
  25. `pkg-config starpu-1.2 --libs`
  26. \endverbatim
  27. The code can also be compiled without the StarPU C extension and will
  28. behave as a normal sequential code.
  29. \verbatim
  30. $ gcc hello-starpu.c
  31. hello-starpu.c:33:1: warning: ‘task’ attribute directive ignored [-Wattributes]
  32. $ ./a.out
  33. Hello, world! With x = 42
  34. \endverbatim
  35. As can be seen above, the C extensions allows programmers to
  36. use StarPU tasks by essentially annotating ``regular'' C code.
  37. \section HelloWorldUsingStarPUAPI Hello World Using StarPU's API
  38. This section shows how to achieve the same result as in the previous
  39. section using StarPU's standard C API.
  40. \subsection RequiredHeaders Required Headers
  41. The header starpu.h should be included in any code using StarPU.
  42. \code{.c}
  43. #include <starpu.h>
  44. \endcode
  45. \subsection DefiningACodelet Defining A Codelet
  46. A codelet is a structure that represents a computational kernel. Such a codelet
  47. may contain an implementation of the same kernel on different architectures
  48. (e.g. CUDA, x86, ...). For compatibility, make sure that the whole
  49. structure is properly initialized to zero, either by using the
  50. function starpu_codelet_init(), or by letting the
  51. compiler implicitly do it as examplified above.
  52. The field starpu_codelet::nbuffers specifies the number of data buffers that are
  53. manipulated by the codelet: here the codelet does not access or modify any data
  54. that is controlled by our data management library.
  55. We create a codelet which may only be executed on the CPUs. When a CPU
  56. core will execute a codelet, it will call the function
  57. <c>cpu_func</c>, which \em must have the following prototype:
  58. \code{.c}
  59. void (*cpu_func)(void *buffers[], void *cl_arg);
  60. \endcode
  61. In this example, we can ignore the first argument of this function which gives a
  62. description of the input and output buffers (e.g. the size and the location of
  63. the matrices) since there is none. We also ignore the second argument
  64. which is a pointer to optional arguments for the codelet.
  65. \code{.c}
  66. void cpu_func(void *buffers[], void *cl_arg)
  67. {
  68. printf("Hello world\n");
  69. }
  70. struct starpu_codelet cl =
  71. {
  72. .cpu_funcs = { cpu_func, NULL },
  73. .nbuffers = 0
  74. };
  75. \endcode
  76. \subsection SubmittingATask Submitting A Task
  77. Before submitting any tasks to StarPU, starpu_init() must be called. The
  78. <c>NULL</c> argument specifies that we use the default configuration. Tasks cannot
  79. be submitted after the termination of StarPU by a call to
  80. starpu_shutdown().
  81. In the example above, a task structure is allocated by a call to
  82. starpu_task_create(). This function only allocates and fills the
  83. corresponding structure with the default settings, but it does not
  84. submit the task to StarPU.
  85. \internal
  86. not really clear ;)
  87. \endinternal
  88. The field starpu_task::cl is a pointer to the codelet which the task will
  89. execute: in other words, the codelet structure describes which computational
  90. kernel should be offloaded on the different architectures, and the task
  91. structure is a wrapper containing a codelet and the piece of data on which the
  92. codelet should operate.
  93. If the field starpu_task::synchronous is non-zero, task submission
  94. will be synchronous: the function starpu_task_submit() will not return
  95. until the task has been executed. Note that the function starpu_shutdown()
  96. does not guarantee that asynchronous tasks have been executed before
  97. it returns, starpu_task_wait_for_all() can be used to that effect, or
  98. data can be unregistered (starpu_data_unregister()), which will
  99. implicitly wait for all the tasks scheduled to work on it, unless
  100. explicitly disabled thanks to
  101. starpu_data_set_default_sequential_consistency_flag() or
  102. starpu_data_set_sequential_consistency_flag().
  103. \code{.c}
  104. int main(int argc, char **argv)
  105. {
  106. /* initialize StarPU */
  107. starpu_init(NULL);
  108. struct starpu_task *task = starpu_task_create();
  109. task->cl = &cl; /* Pointer to the codelet defined above */
  110. /* starpu_task_submit will be a blocking call. If unset,
  111. starpu_task_wait() needs to be called after submitting the task. */
  112. task->synchronous = 1;
  113. /* submit the task to StarPU */
  114. starpu_task_submit(task);
  115. /* terminate StarPU */
  116. starpu_shutdown();
  117. return 0;
  118. }
  119. \endcode
  120. \subsection ExecutionOfHelloWorld Execution Of Hello World
  121. \verbatim
  122. $ make hello_world
  123. cc $(pkg-config --cflags starpu-1.2) $(pkg-config --libs starpu-1.2) hello_world.c -o hello_world
  124. $ ./hello_world
  125. Hello world
  126. \endverbatim
  127. \subsection PassingArgumentsToTheCodelet Passing Arguments To The Codelet
  128. The optional field starpu_task::cl_arg field is a pointer to a buffer
  129. (of size starpu_task::cl_arg_size) with some parameters for the kernel
  130. described by the codelet. For instance, if a codelet implements a
  131. computational kernel that multiplies its input vector by a constant,
  132. the constant could be specified by the means of this buffer, instead
  133. of registering it as a StarPU data. It must however be noted that
  134. StarPU avoids making copy whenever possible and rather passes the
  135. pointer as such, so the buffer which is pointed at must be kept allocated
  136. until the task terminates, and if several tasks are submitted with
  137. various parameters, each of them must be given a pointer to their
  138. own buffer.
  139. \code{.c}
  140. struct params
  141. {
  142. int i;
  143. float f;
  144. };
  145. void cpu_func(void *buffers[], void *cl_arg)
  146. {
  147. struct params *params = cl_arg;
  148. printf("Hello world (params = {%i, %f} )\n", params->i, params->f);
  149. }
  150. \endcode
  151. As said before, the field starpu_codelet::nbuffers specifies the
  152. number of data buffers that are manipulated by the codelet. It does
  153. not count the argument --- the parameter <c>cl_arg</c> of the function
  154. <c>cpu_func</c> --- since it is not managed by our data management
  155. library, but just contains trivial parameters.
  156. \internal
  157. TODO rewrite so that it is a little clearer ?
  158. \endinternal
  159. Be aware that this may be a pointer to a
  160. \em copy of the actual buffer, and not the pointer given by the programmer:
  161. if the codelet modifies this buffer, there is no guarantee that the initial
  162. buffer will be modified as well: this for instance implies that the buffer
  163. cannot be used as a synchronization medium. If synchronization is needed, data
  164. has to be registered to StarPU, see \ref VectorScalingUsingStarPUAPI.
  165. \code{.c}
  166. int main(int argc, char **argv)
  167. {
  168. /* initialize StarPU */
  169. starpu_init(NULL);
  170. struct starpu_task *task = starpu_task_create();
  171. task->cl = &cl; /* Pointer to the codelet defined above */
  172. struct params params = { 1, 2.0f };
  173. task->cl_arg = &params;
  174. task->cl_arg_size = sizeof(params);
  175. /* starpu_task_submit will be a blocking call */
  176. task->synchronous = 1;
  177. /* submit the task to StarPU */
  178. starpu_task_submit(task);
  179. /* terminate StarPU */
  180. starpu_shutdown();
  181. return 0;
  182. }
  183. \endcode
  184. \verbatim
  185. $ make hello_world
  186. cc $(pkg-config --cflags starpu-1.2) $(pkg-config --libs starpu-1.2) hello_world.c -o hello_world
  187. $ ./hello_world
  188. Hello world (params = {1, 2.000000} )
  189. \endverbatim
  190. \subsection DefiningACallback Defining A Callback
  191. Once a task has been executed, an optional callback function
  192. starpu_task::callback_func is called when defined.
  193. While the computational kernel could be offloaded on various architectures, the
  194. callback function is always executed on a CPU. The pointer
  195. starpu_task::callback_arg is passed as an argument of the callback
  196. function. The prototype of a callback function must be:
  197. \code{.c}
  198. void (*callback_function)(void *);
  199. \endcode
  200. \code{.c}
  201. void callback_func(void *callback_arg)
  202. {
  203. printf("Callback function (arg %x)\n", callback_arg);
  204. }
  205. int main(int argc, char **argv)
  206. {
  207. /* initialize StarPU */
  208. starpu_init(NULL);
  209. struct starpu_task *task = starpu_task_create();
  210. task->cl = &cl; /* Pointer to the codelet defined above */
  211. task->callback_func = callback_func;
  212. task->callback_arg = 0x42;
  213. /* starpu_task_submit will be a blocking call */
  214. task->synchronous = 1;
  215. /* submit the task to StarPU */
  216. starpu_task_submit(task);
  217. /* terminate StarPU */
  218. starpu_shutdown();
  219. return 0;
  220. }
  221. \endcode
  222. \verbatim
  223. $ make hello_world
  224. cc $(pkg-config --cflags starpu-1.2) $(pkg-config --libs starpu-1.2) hello_world.c -o hello_world
  225. $ ./hello_world
  226. Hello world
  227. Callback function (arg 42)
  228. \endverbatim
  229. \subsection WhereToExecuteACodelet Where To Execute A Codelet
  230. \code{.c}
  231. struct starpu_codelet cl =
  232. {
  233. .where = STARPU_CPU,
  234. .cpu_funcs = { cpu_func, NULL },
  235. .cpu_funcs_name = { "cpu_func", NULL },
  236. .nbuffers = 0
  237. };
  238. \endcode
  239. We create a codelet which may only be executed on the CPUs. The
  240. optional field starpu_codelet::where is a bitmask that defines where
  241. the codelet may be executed. Here, the value ::STARPU_CPU means that
  242. only CPUs can execute this codelet. When the optional field
  243. starpu_codelet::where is unset, its value is automatically set based
  244. on the availability of the different fields <c>XXX_funcs</c>.
  245. TODO: explain starpu_codelet::cpu_funcs_name
  246. \section VectorScalingUsingTheCExtension Vector Scaling Using the C Extension
  247. The previous example has shown how to submit tasks. In this section,
  248. we show how StarPU tasks can manipulate data.
  249. We will first show how to use the C language extensions provided by
  250. the GCC plug-in (\ref cExtensions). The complete example, and
  251. additional examples, is available in the directory <c>gcc-plugin/examples</c>
  252. of the StarPU distribution. These extensions map directly
  253. to StarPU's main concepts: tasks, task implementations for CPU,
  254. OpenCL, or CUDA, and registered data buffers. The standard C version
  255. that uses StarPU's standard C programming interface is given in \ref
  256. VectorScalingUsingStarPUAPI.
  257. First of all, the vector-scaling task and its simple CPU implementation
  258. has to be defined:
  259. \code{.c}
  260. /* Declare the `vector_scal' task. */
  261. static void vector_scal (unsigned size, float vector[size],
  262. float factor)
  263. __attribute__ ((task));
  264. /* Define the standard CPU implementation. */
  265. static void
  266. vector_scal (unsigned size, float vector[size], float factor)
  267. {
  268. unsigned i;
  269. for (i = 0; i < size; i++)
  270. vector[i] *= factor;
  271. }
  272. \endcode
  273. Next, the body of the program, which uses the task defined above, can be
  274. implemented:
  275. \snippet hello_pragma2.c To be included
  276. The function <c>main</c> above does several things:
  277. <ul>
  278. <li>
  279. It initializes StarPU.
  280. </li>
  281. <li>
  282. It allocates <c>vector</c> in the heap; it will automatically be freed
  283. when its scope is left. Alternatively, good old <c>malloc</c> and
  284. <c>free</c> could have been used, but they are more error-prone and
  285. require more typing.
  286. </li>
  287. <li>
  288. It registers the memory pointed to by <c>vector</c>. Eventually,
  289. when OpenCL or CUDA task implementations are added, this will allow
  290. StarPU to transfer that memory region between GPUs and the main memory.
  291. Removing this <c>pragma</c> is an error.
  292. </li>
  293. <li>
  294. It invokes the task <c>vector_scal</c>. The invocation looks the same
  295. as a standard C function call. However, it is an asynchronous
  296. invocation, meaning that the actual call is performed in parallel with
  297. the caller's continuation.
  298. </li>
  299. <li>
  300. It waits for the termination of the asynchronous call <c>vector_scal</c>.
  301. </li>
  302. <li>
  303. Finally, StarPU is shut down.
  304. </li>
  305. </ul>
  306. The program can be compiled and linked with GCC and the flag <c>-fplugin</c>:
  307. \verbatim
  308. $ gcc `pkg-config starpu-1.2 --cflags` vector_scal.c \
  309. -fplugin=`pkg-config starpu-1.2 --variable=gccplugin` \
  310. `pkg-config starpu-1.2 --libs`
  311. \endverbatim
  312. And voilà!
  313. \subsection AddingAnOpenCLTaskImplementation Adding an OpenCL Task Implementation
  314. Now, this is all fine and great, but you certainly want to take
  315. advantage of these newfangled GPUs that your lab just bought, don't you?
  316. So, let's add an OpenCL implementation of the task <c>vector_scal</c>.
  317. We assume that the OpenCL kernel is available in a file,
  318. <c>vector_scal_opencl_kernel.cl</c>, not shown here. The OpenCL task
  319. implementation is similar to that used with the standard C API
  320. (\ref DefinitionOfTheOpenCLKernel). It is declared and defined
  321. in our C file like this:
  322. \code{.c}
  323. /* The OpenCL programs, loaded from 'main' (see below). */
  324. static struct starpu_opencl_program cl_programs;
  325. static void vector_scal_opencl (unsigned size, float vector[size],
  326. float factor)
  327. __attribute__ ((task_implementation ("opencl", vector_scal)));
  328. static void
  329. vector_scal_opencl (unsigned size, float vector[size], float factor)
  330. {
  331. int id, devid, err;
  332. cl_kernel kernel;
  333. cl_command_queue queue;
  334. cl_event event;
  335. /* VECTOR is GPU memory pointer, not a main memory pointer. */
  336. cl_mem val = (cl_mem) vector;
  337. id = starpu_worker_get_id ();
  338. devid = starpu_worker_get_devid (id);
  339. /* Prepare to invoke the kernel. In the future, this will be largely automated. */
  340. err = starpu_opencl_load_kernel (&kernel, &queue, &cl_programs,
  341. "vector_mult_opencl", devid);
  342. if (err != CL_SUCCESS)
  343. STARPU_OPENCL_REPORT_ERROR (err);
  344. err = clSetKernelArg (kernel, 0, sizeof (size), &size);
  345. err |= clSetKernelArg (kernel, 1, sizeof (val), &val);
  346. err |= clSetKernelArg (kernel, 2, sizeof (factor), &factor);
  347. if (err)
  348. STARPU_OPENCL_REPORT_ERROR (err);
  349. size_t global = 1, local = 1;
  350. err = clEnqueueNDRangeKernel (queue, kernel, 1, NULL, &global,
  351. &local, 0, NULL, &event);
  352. if (err != CL_SUCCESS)
  353. STARPU_OPENCL_REPORT_ERROR (err);
  354. clFinish (queue);
  355. starpu_opencl_collect_stats (event);
  356. clReleaseEvent (event);
  357. /* Done with KERNEL. */
  358. starpu_opencl_release_kernel (kernel);
  359. }
  360. \endcode
  361. The OpenCL kernel itself must be loaded from <c>main</c>, sometime after
  362. the pragma <c>initialize</c>:
  363. \code{.c}
  364. starpu_opencl_load_opencl_from_file ("vector_scal_opencl_kernel.cl",
  365. &cl_programs, "");
  366. \endcode
  367. And that's it. The task <c>vector_scal</c> now has an additional
  368. implementation, for OpenCL, which StarPU's scheduler may choose to use
  369. at run-time. Unfortunately, the <c>vector_scal_opencl</c> above still
  370. has to go through the common OpenCL boilerplate; in the future,
  371. additional extensions will automate most of it.
  372. \subsection AddingACUDATaskImplementation Adding a CUDA Task Implementation
  373. Adding a CUDA implementation of the task is very similar, except that
  374. the implementation itself is typically written in CUDA, and compiled
  375. with <c>nvcc</c>. Thus, the C file only needs to contain an external
  376. declaration for the task implementation:
  377. \code{.c}
  378. extern void vector_scal_cuda (unsigned size, float vector[size],
  379. float factor)
  380. __attribute__ ((task_implementation ("cuda", vector_scal)));
  381. \endcode
  382. The actual implementation of the CUDA task goes into a separate
  383. compilation unit, in a <c>.cu</c> file. It is very close to the
  384. implementation when using StarPU's standard C API (\ref DefinitionOfTheCUDAKernel).
  385. \snippet scal_pragma.cu To be included
  386. The complete source code, in the directory <c>gcc-plugin/examples/vector_scal</c>
  387. of the StarPU distribution, also shows how an SSE-specialized
  388. CPU task implementation can be added.
  389. For more details on the C extensions provided by StarPU's GCC plug-in, see
  390. \ref cExtensions.
  391. \section VectorScalingUsingStarPUAPI Vector Scaling Using StarPU's API
  392. This section shows how to achieve the same result as explained in the
  393. previous section using StarPU's standard C API.
  394. The full source code for
  395. this example is given in \ref FullSourceCodeVectorScal.
  396. \subsection SourceCodeOfVectorScaling Source Code of Vector Scaling
  397. Programmers can describe the data layout of their application so that StarPU is
  398. responsible for enforcing data coherency and availability across the machine.
  399. Instead of handling complex (and non-portable) mechanisms to perform data
  400. movements, programmers only declare which piece of data is accessed and/or
  401. modified by a task, and StarPU makes sure that when a computational kernel
  402. starts somewhere (e.g. on a GPU), its data are available locally.
  403. Before submitting those tasks, the programmer first needs to declare the
  404. different pieces of data to StarPU using the functions
  405. <c>starpu_*_data_register</c>. To ease the development of applications
  406. for StarPU, it is possible to describe multiple types of data layout.
  407. A type of data layout is called an <b>interface</b>. There are
  408. different predefined interfaces available in StarPU: here we will
  409. consider the <b>vector interface</b>.
  410. The following lines show how to declare an array of <c>NX</c> elements of type
  411. <c>float</c> using the vector interface:
  412. \code{.c}
  413. float vector[NX];
  414. starpu_data_handle_t vector_handle;
  415. starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX,
  416. sizeof(vector[0]));
  417. \endcode
  418. The first argument, called the <b>data handle</b>, is an opaque pointer which
  419. designates the array in StarPU. This is also the structure which is used to
  420. describe which data is used by a task. The second argument is the node number
  421. where the data originally resides. Here it is STARPU_MAIN_RAM since the array <c>vector</c> is in
  422. the main memory. Then comes the pointer <c>vector</c> where the data can be found in main memory,
  423. the number of elements in the vector and the size of each element.
  424. The following shows how to construct a StarPU task that will manipulate the
  425. vector and a constant factor.
  426. \code{.c}
  427. float factor = 3.14;
  428. struct starpu_task *task = starpu_task_create();
  429. task->cl = &cl; /* Pointer to the codelet defined below */
  430. task->handles[0] = vector_handle; /* First parameter of the codelet */
  431. task->cl_arg = &factor;
  432. task->cl_arg_size = sizeof(factor);
  433. task->synchronous = 1;
  434. starpu_task_submit(task);
  435. \endcode
  436. Since the factor is a mere constant float value parameter,
  437. it does not need a preliminary registration, and
  438. can just be passed through the pointer starpu_task::cl_arg like in the previous
  439. example. The vector parameter is described by its handle.
  440. starpu_task::handles should be set with the handles of the data, the
  441. access modes for the data are defined in the field
  442. starpu_codelet::modes (::STARPU_R for read-only, ::STARPU_W for
  443. write-only and ::STARPU_RW for read and write access).
  444. The definition of the codelet can be written as follows:
  445. \code{.c}
  446. void scal_cpu_func(void *buffers[], void *cl_arg)
  447. {
  448. unsigned i;
  449. float *factor = cl_arg;
  450. /* length of the vector */
  451. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  452. /* CPU copy of the vector pointer */
  453. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  454. for (i = 0; i < n; i++)
  455. val[i] *= *factor;
  456. }
  457. struct starpu_codelet cl =
  458. {
  459. .cpu_funcs = { scal_cpu_func, NULL },
  460. .cpu_funcs_name = { "scal_cpu_func", NULL },
  461. .nbuffers = 1,
  462. .modes = { STARPU_RW }
  463. };
  464. \endcode
  465. The first argument is an array that gives
  466. a description of all the buffers passed in the array starpu_task::handles. The
  467. size of this array is given by the field starpu_codelet::nbuffers. For
  468. the sake of genericity, this array contains pointers to the different
  469. interfaces describing each buffer. In the case of the <b>vector
  470. interface</b>, the location of the vector (resp. its length) is
  471. accessible in the starpu_vector_interface::ptr (resp.
  472. starpu_vector_interface::nx) of this interface. Since the vector is
  473. accessed in a read-write fashion, any modification will automatically
  474. affect future accesses to this vector made by other tasks.
  475. The second argument of the function <c>scal_cpu_func</c> contains a
  476. pointer to the parameters of the codelet (given in
  477. starpu_task::cl_arg), so that we read the constant factor from this
  478. pointer.
  479. \subsection ExecutionOfVectorScaling Execution of Vector Scaling
  480. \verbatim
  481. $ make vector_scal
  482. cc $(pkg-config --cflags starpu-1.2) $(pkg-config --libs starpu-1.2) vector_scal.c -o vector_scal
  483. $ ./vector_scal
  484. 0.000000 3.000000 6.000000 9.000000 12.000000
  485. \endverbatim
  486. \section VectorScalingOnAnHybridCPUGPUMachine Vector Scaling on an Hybrid CPU/GPU Machine
  487. Contrary to the previous examples, the task submitted in this example may not
  488. only be executed by the CPUs, but also by a CUDA device.
  489. \subsection DefinitionOfTheCUDAKernel Definition of the CUDA Kernel
  490. The CUDA implementation can be written as follows. It needs to be compiled with
  491. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  492. that the vector pointer returned by ::STARPU_VECTOR_GET_PTR is here a
  493. pointer in GPU memory, so that it can be passed as such to the
  494. kernel call <c>vector_mult_cuda</c>.
  495. \snippet vector_scal_cuda.cu To be included
  496. \subsection DefinitionOfTheOpenCLKernel Definition of the OpenCL Kernel
  497. The OpenCL implementation can be written as follows. StarPU provides
  498. tools to compile a OpenCL kernel stored in a file.
  499. \code{.c}
  500. __kernel void vector_mult_opencl(int nx, __global float* val, float factor)
  501. {
  502. const int i = get_global_id(0);
  503. if (i < nx) {
  504. val[i] *= factor;
  505. }
  506. }
  507. \endcode
  508. Contrary to CUDA and CPU, ::STARPU_VECTOR_GET_DEV_HANDLE has to be used,
  509. which returns a <c>cl_mem</c> (which is not a device pointer, but an OpenCL
  510. handle), which can be passed as such to the OpenCL kernel. The difference is
  511. important when using partitioning, see \ref PartitioningData.
  512. \snippet vector_scal_opencl.c To be included
  513. \subsection DefinitionOfTheMainCode Definition of the Main Code
  514. The CPU implementation is the same as in the previous section.
  515. Here is the source of the main application. You can notice that the fields
  516. starpu_codelet::cuda_funcs and starpu_codelet::opencl_funcs are set to
  517. define the pointers to the CUDA and OpenCL implementations of the
  518. task.
  519. \snippet vector_scal_c.c To be included
  520. \subsection ExecutionOfHybridVectorScaling Execution of Hybrid Vector Scaling
  521. The Makefile given at the beginning of the section must be extended to
  522. give the rules to compile the CUDA source code. Note that the source
  523. file of the OpenCL kernel does not need to be compiled now, it will
  524. be compiled at run-time when calling the function
  525. starpu_opencl_load_opencl_from_file().
  526. \verbatim
  527. CFLAGS += $(shell pkg-config --cflags starpu-1.2)
  528. LDFLAGS += $(shell pkg-config --libs starpu-1.2)
  529. CC = gcc
  530. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  531. %.o: %.cu
  532. nvcc $(CFLAGS) $< -c $@
  533. clean:
  534. rm -f vector_scal *.o
  535. \endverbatim
  536. \verbatim
  537. $ make
  538. \endverbatim
  539. and to execute it, with the default configuration:
  540. \verbatim
  541. $ ./vector_scal
  542. 0.000000 3.000000 6.000000 9.000000 12.000000
  543. \endverbatim
  544. or for example, by disabling CPU devices:
  545. \verbatim
  546. $ STARPU_NCPU=0 ./vector_scal
  547. 0.000000 3.000000 6.000000 9.000000 12.000000
  548. \endverbatim
  549. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  550. see \ref EnablingOpenCL) :
  551. \verbatim
  552. $ STARPU_NCUDA=0 ./vector_scal
  553. 0.000000 3.000000 6.000000 9.000000 12.000000
  554. \endverbatim
  555. */