api.texi 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Standard memory library::
  11. * Workers' Properties::
  12. * Data Management::
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Multiformat Data Interface::
  16. * Codelets and Tasks::
  17. * Insert Task::
  18. * Explicit Dependencies::
  19. * Implicit Data Dependencies::
  20. * Performance Model API::
  21. * Profiling API::
  22. * Theoretical lower bound on execution time API::
  23. * CUDA extensions::
  24. * OpenCL extensions::
  25. * Miscellaneous helpers::
  26. * FXT Support::
  27. * FFT Support::
  28. * MPI::
  29. * Task Bundles::
  30. * Task Lists::
  31. * Using Parallel Tasks::
  32. * Scheduling Contexts::
  33. * Scheduling Policy::
  34. * Running drivers::
  35. * Expert mode::
  36. @end menu
  37. @node Versioning
  38. @section Versioning
  39. @defmac STARPU_MAJOR_VERSION
  40. Define the major version of StarPU
  41. @end defmac
  42. @defmac STARPU_MINOR_VERSION
  43. Define the minor version of StarPU
  44. @end defmac
  45. @defmac STARPU_RELEASE_VERSION
  46. Define the release version of StarPU
  47. @end defmac
  48. @deftypefun void starpu_get_version (int *@var{major}, int *@var{minor}, int *@var{release})
  49. Return as 3 integers the release version of StarPU.
  50. @end deftypefun
  51. @node Initialization and Termination
  52. @section Initialization and Termination
  53. @deftp {Data Type} {struct starpu_driver}
  54. @table @asis
  55. @item @code{enum starpu_worker_archtype type}
  56. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  57. STARPU_OPENCL_DRIVER are currently supported.
  58. @item @code{union id} Anonymous union
  59. @table @asis
  60. @item @code{unsigned cpu_id}
  61. Should only be used if type is STARPU_CPU_WORKER.
  62. @item @code{unsigned cuda_id}
  63. Should only be used if type is STARPU_CUDA_WORKER.
  64. @item @code{cl_device_id opencl_id}
  65. Should only be used if type is STARPU_OPENCL_WORKER.
  66. @end table
  67. @end table
  68. @end deftp
  69. @deftp {Data Type} {struct starpu_conf}
  70. This structure is passed to the @code{starpu_init} function in order
  71. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  72. When the default value is used, StarPU automatically selects the number of
  73. processing units and takes the default scheduling policy. The environment
  74. variables overwrite the equivalent parameters.
  75. @table @asis
  76. @item @code{const char *sched_policy_name} (default = NULL)
  77. This is the name of the scheduling policy. This can also be specified
  78. with the @code{STARPU_SCHED} environment variable.
  79. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  80. This is the definition of the scheduling policy. This field is ignored
  81. if @code{sched_policy_name} is set.
  82. @item @code{int ncpus} (default = -1)
  83. This is the number of CPU cores that StarPU can use. This can also be
  84. specified with the @code{STARPU_NCPU} environment variable.
  85. @item @code{int ncuda} (default = -1)
  86. This is the number of CUDA devices that StarPU can use. This can also
  87. be specified with the @code{STARPU_NCUDA} environment variable.
  88. @item @code{int nopencl} (default = -1)
  89. This is the number of OpenCL devices that StarPU can use. This can
  90. also be specified with the @code{STARPU_NOPENCL} environment variable.
  91. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  92. If this flag is set, the @code{workers_bindid} array indicates where the
  93. different workers are bound, otherwise StarPU automatically selects where to
  94. bind the different workers. This can also be specified with the
  95. @code{STARPU_WORKERS_CPUID} environment variable.
  96. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  97. If the @code{use_explicit_workers_bindid} flag is set, this array
  98. indicates where to bind the different workers. The i-th entry of the
  99. @code{workers_bindid} indicates the logical identifier of the
  100. processor which should execute the i-th worker. Note that the logical
  101. ordering of the CPUs is either determined by the OS, or provided by
  102. the @code{hwloc} library in case it is available.
  103. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  104. If this flag is set, the CUDA workers will be attached to the CUDA devices
  105. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  106. CUDA devices in a round-robin fashion. This can also be specified with the
  107. @code{STARPU_WORKERS_CUDAID} environment variable.
  108. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  109. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  110. contains the logical identifiers of the CUDA devices (as used by
  111. @code{cudaGetDevice}).
  112. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  113. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  114. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  115. the OpenCL devices in a round-robin fashion. This can also be specified with
  116. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  117. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  118. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  119. contains the logical identifiers of the OpenCL devices to be used.
  120. @item @code{int calibrate} (default = 0)
  121. If this flag is set, StarPU will calibrate the performance models when
  122. executing tasks. If this value is equal to @code{-1}, the default value is
  123. used. If the value is equal to @code{1}, it will force continuing
  124. calibration. If the value is equal to @code{2}, the existing performance
  125. models will be overwritten. This can also be specified with the
  126. @code{STARPU_CALIBRATE} environment variable.
  127. @item @code{int bus_calibrate} (default = 0)
  128. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  129. to @code{-1}, the default value is used. This can also be specified with the
  130. @code{STARPU_BUS_CALIBRATE} environment variable.
  131. @item @code{int single_combined_worker} (default = 0)
  132. By default, StarPU executes parallel tasks concurrently.
  133. Some parallel libraries (e.g. most OpenMP implementations) however do
  134. not support concurrent calls to parallel code. In such case, setting this flag
  135. makes StarPU only start one parallel task at a time (but other
  136. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  137. task scheduler will however still however still try varying combined worker
  138. sizes to look for the most efficient ones.
  139. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  140. @item @code{int disable_asynchronous_copy} (default = 0)
  141. This flag should be set to 1 to disable asynchronous copies between
  142. CPUs and all accelerators. This can also be specified with the
  143. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  144. The AMD implementation of OpenCL is known to
  145. fail when copying data asynchronously. When using this implementation,
  146. it is therefore necessary to disable asynchronous data transfers.
  147. This can also be specified at compilation time by giving to the
  148. configure script the option @code{--disable-asynchronous-copy}.
  149. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  150. This flag should be set to 1 to disable asynchronous copies between
  151. CPUs and CUDA accelerators. This can also be specified with the
  152. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  153. This can also be specified at compilation time by giving to the
  154. configure script the option @code{--disable-asynchronous-cuda-copy}.
  155. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  156. This flag should be set to 1 to disable asynchronous copies between
  157. CPUs and OpenCL accelerators. This can also be specified with the
  158. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  159. The AMD implementation of OpenCL is known to
  160. fail when copying data asynchronously. When using this implementation,
  161. it is therefore necessary to disable asynchronous data transfers.
  162. This can also be specified at compilation time by giving to the
  163. configure script the option @code{--disable-asynchronous-opencl-copy}.
  164. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  165. This can be set to an array of CUDA device identifiers for which
  166. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  167. size is specified by the @code{n_cuda_opengl_interoperability} field below
  168. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  169. This has to be set to the size of the array pointed to by the
  170. @code{cuda_opengl_interoperability} field.
  171. @item @code{struct starpu_driver *not_launched_drivers}
  172. The drivers that should not be launched by StarPU.
  173. @item @code{unsigned n_not_launched_drivers}
  174. The number of StarPU drivers that should not be launched by StarPU.
  175. @item @code{trace_buffer_size}
  176. Specifies the buffer size used for FxT tracing. Starting from FxT version
  177. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  178. still be interesting to specify a bigger value to avoid any flushing (which
  179. would disturb the trace).
  180. @end table
  181. @end deftp
  182. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  183. This is StarPU initialization method, which must be called prior to any other
  184. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  185. policy, number of cores, ...) by passing a non-null argument. Default
  186. configuration is used if the passed argument is @code{NULL}.
  187. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  188. indicates that no worker was available (so that StarPU was not initialized).
  189. @end deftypefun
  190. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  191. This function initializes the @var{conf} structure passed as argument
  192. with the default values. In case some configuration parameters are already
  193. specified through environment variables, @code{starpu_conf_init} initializes
  194. the fields of the structure according to the environment variables. For
  195. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  196. @code{.calibrate} field of the structure passed as argument.
  197. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  198. indicates that the argument was NULL.
  199. @end deftypefun
  200. @deftypefun void starpu_shutdown (void)
  201. This is StarPU termination method. It must be called at the end of the
  202. application: statistics and other post-mortem debugging information are not
  203. guaranteed to be available until this method has been called.
  204. @end deftypefun
  205. @deftypefun int starpu_asynchronous_copy_disabled (void)
  206. Return 1 if asynchronous data transfers between CPU and accelerators
  207. are disabled.
  208. @end deftypefun
  209. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  210. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  211. are disabled.
  212. @end deftypefun
  213. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  214. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  215. are disabled.
  216. @end deftypefun
  217. @node Standard memory library
  218. @section Standard memory library
  219. @defmac STARPU_MALLOC_PINNED
  220. Value passed to the function @code{starpu_malloc_flags} to
  221. indicate the memory allocation should be pinned.
  222. @end defmac
  223. @defmac STARPU_MALLOC_COUNT
  224. Value passed to the function @code{starpu_malloc_flags} to
  225. indicate the memory allocation should be in the limit defined by
  226. the environment variables @code{STARPU_LIMIT_CUDA_devid_MEM},
  227. @code{STARPU_LIMIT_CUDA_MEM}, @code{STARPU_LIMIT_OPENCL_devid_MEM},
  228. @code{STARPU_LIMIT_OPENCL_MEM} and @code{STARPU_LIMIT_CPU_MEM}
  229. (@pxref{Limit memory}). If no memory is available, it tries to reclaim
  230. memory from StarPU. Memory allocated this way needs to be freed by
  231. calling the @code{starpu_free_flags} function with the same flag.
  232. @end defmac
  233. @deftypefun int starpu_malloc_flags (void **@var{A}, size_t @var{dim}, int @var{flags})
  234. Performs a memory allocation based on the constraints defined by the
  235. given @var{flag}.
  236. @end deftypefun
  237. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  238. This functions sets an alignment constraints for @code{starpu_malloc}
  239. allocations. @var{align} must be a power of two. This is for instance called
  240. automatically by the OpenCL driver to specify its own alignment constraints.
  241. @end deftypefun
  242. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  243. This function allocates data of the given size in main memory. It will also try to pin it in
  244. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  245. thus permit data transfer and computation overlapping. The allocated buffer must
  246. be freed thanks to the @code{starpu_free} function.
  247. @end deftypefun
  248. @deftypefun int starpu_free (void *@var{A})
  249. This function frees memory which has previously been allocated with
  250. @code{starpu_malloc}.
  251. @end deftypefun
  252. @deftypefun int starpu_free_flags (void *@var{A}, size_t @var{dim}, int @var{flags})
  253. This function frees memory by specifying its size. The given
  254. @var{flags} should be consistent with the ones given to
  255. @code{starpu_malloc_flags} when allocating the memory.
  256. @end deftypefun
  257. @deftypefun ssize_t starpu_memory_get_available (unsigned @var{node})
  258. If a memory limit is defined on the given node (@pxref{Limit memory}),
  259. return the amount of available memory on the node. Otherwise return
  260. @code{-1}.
  261. @end deftypefun
  262. @node Workers' Properties
  263. @section Workers' Properties
  264. @deftp {Data Type} {enum starpu_worker_archtype}
  265. The different values are:
  266. @table @asis
  267. @item @code{STARPU_CPU_WORKER}
  268. @item @code{STARPU_CUDA_WORKER}
  269. @item @code{STARPU_OPENCL_WORKER}
  270. @end table
  271. @end deftp
  272. @deftypefun unsigned starpu_worker_get_count (void)
  273. This function returns the number of workers (i.e. processing units executing
  274. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  275. @end deftypefun
  276. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_worker_archtype} @var{type})
  277. Returns the number of workers of the given @var{type}. A positive
  278. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  279. the type is not valid otherwise.
  280. @end deftypefun
  281. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  282. This function returns the number of CPUs controlled by StarPU. The returned
  283. value should be at most @code{STARPU_MAXCPUS}.
  284. @end deftypefun
  285. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  286. This function returns the number of CUDA devices controlled by StarPU. The returned
  287. value should be at most @code{STARPU_MAXCUDADEVS}.
  288. @end deftypefun
  289. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  290. This function returns the number of OpenCL devices controlled by StarPU. The returned
  291. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  292. @end deftypefun
  293. @deftypefun int starpu_worker_get_id (void)
  294. This function returns the identifier of the current worker, i.e the one associated to the calling
  295. thread. The returned value is either -1 if the current context is not a StarPU
  296. worker (i.e. when called from the application outside a task or a callback), or
  297. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  298. @end deftypefun
  299. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_worker_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  300. This function gets the list of identifiers of workers with the given
  301. type. It fills the workerids array with the identifiers of the workers that have the type
  302. indicated in the first argument. The maxsize argument indicates the size of the
  303. workids array. The returned value gives the number of identifiers that were put
  304. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  305. workers with the appropriate type: in that case, the array is filled with the
  306. maxsize first elements. To avoid such overflows, the value of maxsize can be
  307. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  308. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  309. @end deftypefun
  310. @deftypefun int starpu_worker_get_by_type ({enum starpu_worker_archtype} @var{type}, int @var{num})
  311. This returns the identifier of the @var{num}-th worker that has the specified type
  312. @var{type}. If there are no such worker, -1 is returned.
  313. @end deftypefun
  314. @deftypefun int starpu_worker_get_by_devid ({enum starpu_worker_archtype} @var{type}, int @var{devid})
  315. This returns the identifier of the worker that has the specified type
  316. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  317. skipped for instance). If there are no such worker, -1 is returned.
  318. @end deftypefun
  319. @deftypefun int starpu_worker_get_devid (int @var{id})
  320. This functions returns the device id of the given worker. The worker
  321. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  322. CUDA worker, this device identifier is the logical device identifier exposed by
  323. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  324. identifier of a CPU worker is the logical identifier of the core on which the
  325. worker was bound; this identifier is either provided by the OS or by the
  326. @code{hwloc} library in case it is available.
  327. @end deftypefun
  328. @deftypefun {enum starpu_worker_archtype} starpu_worker_get_type (int @var{id})
  329. This function returns the type of processing unit associated to a
  330. worker. The worker identifier is a value returned by the
  331. @code{starpu_worker_get_id} function). The returned value
  332. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  333. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  334. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  335. identifier is unspecified.
  336. @end deftypefun
  337. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  338. This function allows to get the name of a given worker.
  339. StarPU associates a unique human readable string to each processing unit. This
  340. function copies at most the @var{maxlen} first bytes of the unique string
  341. associated to a worker identified by its identifier @var{id} into the
  342. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  343. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  344. function on an invalid identifier results in an unspecified behaviour.
  345. @end deftypefun
  346. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  347. This function returns the identifier of the memory node associated to the
  348. worker identified by @var{workerid}.
  349. @end deftypefun
  350. @deftp {Data Type} {enum starpu_node_kind}
  351. todo
  352. @table @asis
  353. @item @code{STARPU_UNUSED}
  354. @item @code{STARPU_CPU_RAM}
  355. @item @code{STARPU_CUDA_RAM}
  356. @item @code{STARPU_OPENCL_RAM}
  357. @end table
  358. @end deftp
  359. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  360. Returns the type of the given node as defined by @code{enum
  361. starpu_node_kind}. For example, when defining a new data interface,
  362. this function should be used in the allocation function to determine
  363. on which device the memory needs to be allocated.
  364. @end deftypefun
  365. @node Data Management
  366. @section Data Management
  367. @menu
  368. * Introduction to Data Management::
  369. * Basic Data Management API::
  370. * Access registered data from the application::
  371. @end menu
  372. This section describes the data management facilities provided by StarPU.
  373. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  374. design their own data interfaces if required.
  375. @node Introduction to Data Management
  376. @subsection Introduction
  377. Data management is done at a high-level in StarPU: rather than accessing a mere
  378. list of contiguous buffers, the tasks may manipulate data that are described by
  379. a high-level construct which we call data interface.
  380. An example of data interface is the "vector" interface which describes a
  381. contiguous data array on a spefic memory node. This interface is a simple
  382. structure containing the number of elements in the array, the size of the
  383. elements, and the address of the array in the appropriate address space (this
  384. address may be invalid if there is no valid copy of the array in the memory
  385. node). More informations on the data interfaces provided by StarPU are
  386. given in @ref{Data Interfaces}.
  387. When a piece of data managed by StarPU is used by a task, the task
  388. implementation is given a pointer to an interface describing a valid copy of
  389. the data that is accessible from the current processing unit.
  390. Every worker is associated to a memory node which is a logical abstraction of
  391. the address space from which the processing unit gets its data. For instance,
  392. the memory node associated to the different CPU workers represents main memory
  393. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  394. Every memory node is identified by a logical index which is accessible from the
  395. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  396. to StarPU, the specified memory node indicates where the piece of data
  397. initially resides (we also call this memory node the home node of a piece of
  398. data).
  399. @node Basic Data Management API
  400. @subsection Basic Data Management API
  401. @deftp {Data Type} {enum starpu_data_access_mode}
  402. This datatype describes a data access mode. The different available modes are:
  403. @table @asis
  404. @item @code{STARPU_R}: read-only mode.
  405. @item @code{STARPU_W}: write-only mode.
  406. @item @code{STARPU_RW}: read-write mode.
  407. This is equivalent to @code{STARPU_R|STARPU_W}.
  408. @item @code{STARPU_SCRATCH}: scratch memory.
  409. A temporary buffer is allocated for the task, but StarPU does not
  410. enforce data consistency---i.e. each device has its own buffer,
  411. independently from each other (even for CPUs), and no data transfer is
  412. ever performed. This is useful for temporary variables to avoid
  413. allocating/freeing buffers inside each task.
  414. Currently, no behavior is defined concerning the relation with the
  415. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  416. registration---i.e., the value of the scratch buffer is undefined at
  417. entry of the codelet function. It is being considered for future
  418. extensions at least to define the initial value. For now, data to be
  419. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  420. a @code{NULL} pointer, since the value of the provided buffer is simply
  421. ignored for now.
  422. @item @code{STARPU_REDUX}: reduction mode. TODO!
  423. @end table
  424. @end deftp
  425. @deftp {Data Type} {starpu_data_handle_t}
  426. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  427. data. Once a piece of data has been registered to StarPU, it is associated to a
  428. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  429. over the entire machine, so that we can maintain data consistency and locate
  430. data replicates for instance.
  431. @end deftp
  432. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  433. Register a piece of data into the handle located at the @var{handleptr}
  434. address. The @var{data_interface} buffer contains the initial description of the
  435. data in the home node. The @var{ops} argument is a pointer to a structure
  436. describing the different methods used to manipulate this type of interface. See
  437. @ref{struct starpu_data_interface_ops} for more details on this structure.
  438. If @code{home_node} is -1, StarPU will automatically
  439. allocate the memory when it is used for the
  440. first time in write-only mode. Once such data handle has been automatically
  441. allocated, it is possible to access it using any access mode.
  442. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  443. matrix) which can be registered by the means of helper functions (e.g.
  444. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  445. @end deftypefun
  446. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  447. Register a new piece of data into the handle @var{handledst} with the
  448. same interface as the handle @var{handlesrc}.
  449. @end deftypefun
  450. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  451. This function unregisters a data handle from StarPU. If the data was
  452. automatically allocated by StarPU because the home node was -1, all
  453. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  454. is put back into the home node in the buffer that was initially registered.
  455. Using a data handle that has been unregistered from StarPU results in an
  456. undefined behaviour.
  457. @end deftypefun
  458. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  459. This is the same as starpu_data_unregister, except that StarPU does not put back
  460. a valid copy into the home node, in the buffer that was initially registered.
  461. @end deftypefun
  462. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  463. Destroy the data handle once it is not needed anymore by any submitted
  464. task. No coherency is assumed.
  465. @end deftypefun
  466. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  467. Destroy all replicates of the data handle immediately. After data invalidation,
  468. the first access to the handle must be performed in write-only mode.
  469. Accessing an invalidated data in read-mode results in undefined
  470. behaviour.
  471. @end deftypefun
  472. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  473. Submits invalidation of the data handle after completion of previously submitted tasks.
  474. @end deftypefun
  475. @c TODO create a specific sections about user interaction with the DSM ?
  476. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  477. This function sets the write-through mask of a given data, i.e. a bitmask of
  478. nodes where the data should be always replicated after modification. It also
  479. prevents the data from being evicted from these nodes when memory gets scarse.
  480. @end deftypefun
  481. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  482. Issue a prefetch request for a given data to a given node, i.e.
  483. requests that the data be replicated to the given node, so that it is available
  484. there for tasks. If the @var{async} parameter is 0, the call will block until
  485. the transfer is achieved, else the call will return as soon as the request is
  486. scheduled (which may however have to wait for a task completion).
  487. @end deftypefun
  488. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  489. Return the handle corresponding to the data pointed to by the @var{ptr}
  490. host pointer.
  491. @end deftypefun
  492. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  493. Explicitly ask StarPU to allocate room for a piece of data on the specified
  494. memory node.
  495. @end deftypefun
  496. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  497. Query the status of the handle on the specified memory node.
  498. @end deftypefun
  499. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  500. This function allows to specify that a piece of data can be discarded
  501. without impacting the application.
  502. @end deftypefun
  503. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  504. This sets the codelets to be used for the @var{handle} when it is accessed in
  505. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  506. codelet, and reduction between per-worker buffers will be done with the
  507. @var{redux_cl} codelet.
  508. @end deftypefun
  509. @deftypefun struct starpu_data_interface_ops* starpu_data_get_interface_ops (starpu_data_handle_t @var{handle})
  510. Get a pointer to the structure describing the different methods used
  511. to manipulate the given data. See @ref{struct starpu_data_interface_ops} for more details on this structure.
  512. @end deftypefun
  513. @deftypefun unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t @var{handle})
  514. Return the sequential consistency flag of the given data.
  515. @end deftypefun
  516. @node Access registered data from the application
  517. @subsection Access registered data from the application
  518. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode})
  519. The application must call this function prior to accessing registered data from
  520. main memory outside tasks. StarPU ensures that the application will get an
  521. up-to-date copy of the data in main memory located where the data was
  522. originally registered, and that all concurrent accesses (e.g. from tasks) will
  523. be consistent with the access mode specified in the @var{mode} argument.
  524. @code{starpu_data_release} must be called once the application does not need to
  525. access the piece of data anymore. Note that implicit data
  526. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  527. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  528. the data, unless they have been disabled explictly by calling
  529. @code{starpu_data_set_default_sequential_consistency_flag} or
  530. @code{starpu_data_set_sequential_consistency_flag}.
  531. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  532. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  533. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  534. @end deftypefun
  535. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  536. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  537. @code{starpu_data_acquire}. When the data specified in the first argument is
  538. available in the appropriate access mode, the callback function is executed.
  539. The application may access the requested data during the execution of this
  540. callback. The callback function must call @code{starpu_data_release} once the
  541. application does not need to access the piece of data anymore.
  542. Note that implicit data dependencies are also enforced by
  543. @code{starpu_data_acquire_cb} in case they are not disabled.
  544. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  545. be called from task callbacks. Upon successful completion, this function
  546. returns 0.
  547. @end deftypefun
  548. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_data_access_mode} @var{mode})
  549. This is the same as @code{starpu_data_acquire}, except that the data will be
  550. available on the given memory node instead of main memory.
  551. @end deftypefun
  552. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_data_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  553. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  554. available on the given memory node instead of main memory.
  555. @end deftypefun
  556. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode}, code)
  557. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  558. except that the code to be executed in a callback is directly provided as a
  559. macro parameter, and the data handle is automatically released after it. This
  560. permits to easily execute code which depends on the value of some registered
  561. data. This is non-blocking too and may be called from task callbacks.
  562. @end defmac
  563. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  564. This function releases the piece of data acquired by the application either by
  565. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  566. @end deftypefun
  567. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  568. This is the same as @code{starpu_data_release}, except that the data will be
  569. available on the given memory node instead of main memory.
  570. @end deftypefun
  571. @node Data Interfaces
  572. @section Data Interfaces
  573. @menu
  574. * Registering Data::
  575. * Accessing Data Interfaces::
  576. * Defining Interface::
  577. @end menu
  578. @node Registering Data
  579. @subsection Registering Data
  580. There are several ways to register a memory region so that it can be managed by
  581. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  582. matrices as well as BCSR and CSR sparse matrices.
  583. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  584. Register a void interface. There is no data really associated to that
  585. interface, but it may be used as a synchronization mechanism. It also
  586. permits to express an abstract piece of data that is managed by the
  587. application internally: this makes it possible to forbid the
  588. concurrent execution of different tasks accessing the same "void" data
  589. in read-write concurrently.
  590. @end deftypefun
  591. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  592. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  593. typically a scalar, and initialize @var{handle} to represent this data
  594. item.
  595. @cartouche
  596. @smallexample
  597. float var;
  598. starpu_data_handle_t var_handle;
  599. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  600. @end smallexample
  601. @end cartouche
  602. @end deftypefun
  603. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  604. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  605. @var{ptr} and initialize @var{handle} to represent it.
  606. @cartouche
  607. @smallexample
  608. float vector[NX];
  609. starpu_data_handle_t vector_handle;
  610. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  611. sizeof(vector[0]));
  612. @end smallexample
  613. @end cartouche
  614. @end deftypefun
  615. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  616. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  617. pointed by @var{ptr} and initialize @var{handle} to represent it.
  618. @var{ld} specifies the number of elements between rows.
  619. a value greater than @var{nx} adds padding, which can be useful for
  620. alignment purposes.
  621. @cartouche
  622. @smallexample
  623. float *matrix;
  624. starpu_data_handle_t matrix_handle;
  625. matrix = (float*)malloc(width * height * sizeof(float));
  626. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  627. width, width, height, sizeof(float));
  628. @end smallexample
  629. @end cartouche
  630. @end deftypefun
  631. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  632. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  633. elements pointed by @var{ptr} and initialize @var{handle} to represent
  634. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  635. between rows and between z planes.
  636. @cartouche
  637. @smallexample
  638. float *block;
  639. starpu_data_handle_t block_handle;
  640. block = (float*)malloc(nx*ny*nz*sizeof(float));
  641. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  642. nx, nx*ny, nx, ny, nz, sizeof(float));
  643. @end smallexample
  644. @end cartouche
  645. @end deftypefun
  646. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  647. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  648. Compressed Sparse Row Representation) sparse matrix interface.
  649. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  650. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  651. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  652. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  653. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  654. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  655. or 1).
  656. @end deftypefun
  657. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  658. This variant of @code{starpu_data_register} uses the CSR (Compressed
  659. Sparse Row Representation) sparse matrix interface.
  660. TODO
  661. @end deftypefun
  662. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  663. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  664. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  665. elements of size @var{elemsize}. Initialize @var{handleptr}.
  666. @end deftypefun
  667. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  668. Return the interface associated with @var{handle} on @var{memory_node}.
  669. @end deftypefun
  670. @node Accessing Data Interfaces
  671. @subsection Accessing Data Interfaces
  672. Each data interface is provided with a set of field access functions.
  673. The ones using a @code{void *} parameter aimed to be used in codelet
  674. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  675. @deftp {Data Type} {enum starpu_data_interface_id}
  676. The different values are:
  677. @table @asis
  678. @item @code{STARPU_MATRIX_INTERFACE_ID}
  679. @item @code{STARPU_BLOCK_INTERFACE_ID}
  680. @item @code{STARPU_VECTOR_INTERFACE_ID}
  681. @item @code{STARPU_CSR_INTERFACE_ID}
  682. @item @code{STARPU_BCSR_INTERFACE_ID}
  683. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  684. @item @code{STARPU_VOID_INTERFACE_ID}
  685. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  686. @item @code{STARPU_COO_INTERCACE_ID}
  687. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  688. @end table
  689. @end deftp
  690. @menu
  691. * Accessing Handle::
  692. * Accessing Variable Data Interfaces::
  693. * Accessing Vector Data Interfaces::
  694. * Accessing Matrix Data Interfaces::
  695. * Accessing Block Data Interfaces::
  696. * Accessing BCSR Data Interfaces::
  697. * Accessing CSR Data Interfaces::
  698. * Accessing COO Data Interfaces::
  699. @end menu
  700. @node Accessing Handle
  701. @subsubsection Handle
  702. @deftypefun {void *} starpu_data_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  703. Return the pointer associated with @var{handle} on node @var{node} or
  704. @code{NULL} if @var{handle}'s interface does not support this
  705. operation or data for this handle is not allocated on that node.
  706. @end deftypefun
  707. @deftypefun {void *} starpu_data_get_local_ptr (starpu_data_handle_t @var{handle})
  708. Return the local pointer associated with @var{handle} or @code{NULL}
  709. if @var{handle}'s interface does not have data allocated locally
  710. @end deftypefun
  711. @deftypefun {enum starpu_data_interface_id} starpu_data_get_interface_id (starpu_data_handle_t @var{handle})
  712. Return the unique identifier of the interface associated with the given @var{handle}.
  713. @end deftypefun
  714. @deftypefun size_t starpu_data_get_size (starpu_data_handle_t @var{handle})
  715. Return the size of the data associated with @var{handle}
  716. @end deftypefun
  717. @deftypefun int starpu_data_pack (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {starpu_ssize_t *}@var{count})
  718. Execute the packing operation of the interface of the data registered
  719. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  720. packing operation must allocate a buffer large enough at @var{ptr} and
  721. copy into the newly allocated buffer the data associated to
  722. @var{handle}. @var{count} will be set to the size of the allocated
  723. buffer.
  724. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  725. buffer but just set @var{count} to the size of the buffer which
  726. would have been allocated. The special value @code{-1} indicates the
  727. size is yet unknown.
  728. @end deftypefun
  729. @deftypefun int starpu_data_unpack (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  730. Unpack in @var{handle} the data located at @var{ptr} of size
  731. @var{count} as described by the interface of the data. The interface
  732. registered at @var{handle} must define a unpacking operation
  733. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  734. is freed after calling the data unpacking operation.
  735. @end deftypefun
  736. @node Accessing Variable Data Interfaces
  737. @subsubsection Variable Data Interfaces
  738. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  739. Return the size of the variable designated by @var{handle}.
  740. @end deftypefun
  741. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  742. Return a pointer to the variable designated by @var{handle}.
  743. @end deftypefun
  744. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  745. Return a pointer to the variable designated by @var{interface}.
  746. @end defmac
  747. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  748. Return the size of the variable designated by @var{interface}.
  749. @end defmac
  750. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  751. Return a device handle for the variable designated by @var{interface}, to be
  752. used on OpenCL. The offset documented below has to be used in addition to this.
  753. @end defmac
  754. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  755. Return the offset in the variable designated by @var{interface}, to be used
  756. with the device handle.
  757. @end defmac
  758. @node Accessing Vector Data Interfaces
  759. @subsubsection Vector Data Interfaces
  760. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  761. Return the number of elements registered into the array designated by @var{handle}.
  762. @end deftypefun
  763. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  764. Return the size of each element of the array designated by @var{handle}.
  765. @end deftypefun
  766. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  767. Return the local pointer associated with @var{handle}.
  768. @end deftypefun
  769. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  770. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  771. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  772. @end defmac
  773. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  774. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  775. documented below has to be used in addition to this.
  776. @end defmac
  777. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  778. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  779. @end defmac
  780. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  781. Return the number of elements registered into the array designated by @var{interface}.
  782. @end defmac
  783. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  784. Return the size of each element of the array designated by @var{interface}.
  785. @end defmac
  786. @node Accessing Matrix Data Interfaces
  787. @subsubsection Matrix Data Interfaces
  788. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  789. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  790. @end deftypefun
  791. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  792. Return the number of elements on the y-axis of the matrix designated by
  793. @var{handle}.
  794. @end deftypefun
  795. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  796. Return the number of elements between each row of the matrix designated by
  797. @var{handle}. Maybe be equal to nx when there is no padding.
  798. @end deftypefun
  799. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  800. Return the local pointer associated with @var{handle}.
  801. @end deftypefun
  802. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  803. Return the size of the elements registered into the matrix designated by
  804. @var{handle}.
  805. @end deftypefun
  806. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  807. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  808. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  809. used instead.
  810. @end defmac
  811. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  812. Return a device handle for the matrix designated by @var{interface}, to be used
  813. on OpenCL. The offset documented below has to be used in addition to this.
  814. @end defmac
  815. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  816. Return the offset in the matrix designated by @var{interface}, to be used with
  817. the device handle.
  818. @end defmac
  819. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  820. Return the number of elements on the x-axis of the matrix designated by
  821. @var{interface}.
  822. @end defmac
  823. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  824. Return the number of elements on the y-axis of the matrix designated by
  825. @var{interface}.
  826. @end defmac
  827. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  828. Return the number of elements between each row of the matrix designated by
  829. @var{interface}. May be equal to nx when there is no padding.
  830. @end defmac
  831. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  832. Return the size of the elements registered into the matrix designated by
  833. @var{interface}.
  834. @end defmac
  835. @node Accessing Block Data Interfaces
  836. @subsubsection Block Data Interfaces
  837. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  838. Return the number of elements on the x-axis of the block designated by @var{handle}.
  839. @end deftypefun
  840. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  841. Return the number of elements on the y-axis of the block designated by @var{handle}.
  842. @end deftypefun
  843. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  844. Return the number of elements on the z-axis of the block designated by @var{handle}.
  845. @end deftypefun
  846. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  847. Return the number of elements between each row of the block designated by
  848. @var{handle}, in the format of the current memory node.
  849. @end deftypefun
  850. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  851. Return the number of elements between each z plane of the block designated by
  852. @var{handle}, in the format of the current memory node.
  853. @end deftypefun
  854. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  855. Return the local pointer associated with @var{handle}.
  856. @end deftypefun
  857. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  858. Return the size of the elements of the block designated by @var{handle}.
  859. @end deftypefun
  860. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  861. Return a pointer to the block designated by @var{interface}.
  862. @end defmac
  863. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  864. Return a device handle for the block designated by @var{interface}, to be used
  865. on OpenCL. The offset document below has to be used in addition to this.
  866. @end defmac
  867. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  868. Return the offset in the block designated by @var{interface}, to be used with
  869. the device handle.
  870. @end defmac
  871. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  872. Return the number of elements on the x-axis of the block designated by @var{handle}.
  873. @end defmac
  874. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  875. Return the number of elements on the y-axis of the block designated by @var{handle}.
  876. @end defmac
  877. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  878. Return the number of elements on the z-axis of the block designated by @var{handle}.
  879. @end defmac
  880. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  881. Return the number of elements between each row of the block designated by
  882. @var{interface}. May be equal to nx when there is no padding.
  883. @end defmac
  884. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  885. Return the number of elements between each z plane of the block designated by
  886. @var{interface}. May be equal to nx*ny when there is no padding.
  887. @end defmac
  888. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  889. Return the size of the elements of the matrix designated by @var{interface}.
  890. @end defmac
  891. @node Accessing BCSR Data Interfaces
  892. @subsubsection BCSR Data Interfaces
  893. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  894. Return the number of non-zero elements in the matrix designated by @var{handle}.
  895. @end deftypefun
  896. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  897. Return the number of rows (in terms of blocks of size r*c) in the matrix
  898. designated by @var{handle}.
  899. @end deftypefun
  900. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  901. Return the index at which all arrays (the column indexes, the row pointers...)
  902. of the matrix desginated by @var{handle} start.
  903. @end deftypefun
  904. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  905. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  906. @end deftypefun
  907. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  908. Return a pointer to the column index, which holds the positions of the non-zero
  909. entries in the matrix designated by @var{handle}.
  910. @end deftypefun
  911. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  912. Return the row pointer array of the matrix designated by @var{handle}.
  913. @end deftypefun
  914. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  915. Return the number of rows in a block.
  916. @end deftypefun
  917. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  918. Return the numberof columns in a block.
  919. @end deftypefun
  920. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  921. Return the size of the elements in the matrix designated by @var{handle}.
  922. @end deftypefun
  923. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  924. Return the number of non-zero values in the matrix designated by @var{interface}.
  925. @end defmac
  926. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  927. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  928. @end defmac
  929. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  930. Return a device handle for the array of non-zero values in the matrix designated
  931. by @var{interface}. The offset documented below has to be used in addition to
  932. this.
  933. @end defmac
  934. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  935. Return a pointer to the column index of the matrix designated by @var{interface}.
  936. @end defmac
  937. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  938. Return a device handle for the column index of the matrix designated by
  939. @var{interface}. The offset documented below has to be used in addition to
  940. this.
  941. @end defmac
  942. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  943. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  944. @end defmac
  945. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  946. Return a device handle for the row pointer array of the matrix designated by
  947. @var{interface}. The offset documented below has to be used in addition to
  948. this.
  949. @end defmac
  950. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  951. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  952. designated by @var{interface}, to be used with the device handles.
  953. @end defmac
  954. @node Accessing CSR Data Interfaces
  955. @subsubsection CSR Data Interfaces
  956. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  957. Return the number of non-zero values in the matrix designated by @var{handle}.
  958. @end deftypefun
  959. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  960. Return the size of the row pointer array of the matrix designated by @var{handle}.
  961. @end deftypefun
  962. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  963. Return the index at which all arrays (the column indexes, the row pointers...)
  964. of the matrix designated by @var{handle} start.
  965. @end deftypefun
  966. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  967. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  968. @end deftypefun
  969. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  970. Return a local pointer to the column index of the matrix designated by @var{handle}.
  971. @end deftypefun
  972. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  973. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  974. @end deftypefun
  975. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  976. Return the size of the elements registered into the matrix designated by @var{handle}.
  977. @end deftypefun
  978. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  979. Return the number of non-zero values in the matrix designated by @var{interface}.
  980. @end defmac
  981. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  982. Return the size of the row pointer array of the matrix designated by @var{interface}.
  983. @end defmac
  984. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  985. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  986. @end defmac
  987. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  988. Return a device handle for the array of non-zero values in the matrix designated
  989. by @var{interface}. The offset documented below has to be used in addition to
  990. this.
  991. @end defmac
  992. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  993. Return a pointer to the column index of the matrix designated by @var{interface}.
  994. @end defmac
  995. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  996. Return a device handle for the column index of the matrix designated by
  997. @var{interface}. The offset documented below has to be used in addition to
  998. this.
  999. @end defmac
  1000. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  1001. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  1002. @end defmac
  1003. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  1004. Return a device handle for the row pointer array of the matrix designated by
  1005. @var{interface}. The offset documented below has to be used in addition to
  1006. this.
  1007. @end defmac
  1008. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  1009. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  1010. designated by @var{interface}, to be used with the device handles.
  1011. @end defmac
  1012. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  1013. Return the index at which all arrays (the column indexes, the row pointers...)
  1014. of the @var{interface} start.
  1015. @end defmac
  1016. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  1017. Return the size of the elements registered into the matrix designated by @var{interface}.
  1018. @end defmac
  1019. @node Accessing COO Data Interfaces
  1020. @subsubsection COO Data Interfaces
  1021. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  1022. Return a pointer to the column array of the matrix designated by
  1023. @var{interface}.
  1024. @end defmac
  1025. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  1026. Return a device handle for the column array of the matrix designated by
  1027. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1028. used in addition to this.
  1029. @end defmac
  1030. @defmac STARPU_COO_GET_ROWS (interface)
  1031. Return a pointer to the rows array of the matrix designated by @var{interface}.
  1032. @end defmac
  1033. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  1034. Return a device handle for the row array of the matrix designated by
  1035. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1036. used in addition to this.
  1037. @end defmac
  1038. @defmac STARPU_COO_GET_VALUES (interface)
  1039. Return a pointer to the values array of the matrix designated by
  1040. @var{interface}.
  1041. @end defmac
  1042. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  1043. Return a device handle for the value array of the matrix designated by
  1044. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1045. used in addition to this.
  1046. @end defmac
  1047. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  1048. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  1049. @end defmac
  1050. @defmac STARPU_COO_GET_NX (interface)
  1051. Return the number of elements on the x-axis of the matrix designated by
  1052. @var{interface}.
  1053. @end defmac
  1054. @defmac STARPU_COO_GET_NY (interface)
  1055. Return the number of elements on the y-axis of the matrix designated by
  1056. @var{interface}.
  1057. @end defmac
  1058. @defmac STARPU_COO_GET_NVALUES (interface)
  1059. Return the number of values registered in the matrix designated by
  1060. @var{interface}.
  1061. @end defmac
  1062. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1063. Return the size of the elements registered into the matrix designated by
  1064. @var{interface}.
  1065. @end defmac
  1066. @node Defining Interface
  1067. @subsection Defining Interface
  1068. Applications can provide their own interface as shown in
  1069. @pxref{Defining a New Data Interface}.
  1070. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1071. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1072. failed, the allocation method should then return -ENOMEM as allocated size.
  1073. @end deftypefun
  1074. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1075. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1076. @end deftypefun
  1077. @deftp {Data Type} {struct starpu_data_interface_ops}
  1078. @anchor{struct starpu_data_interface_ops}
  1079. Per-interface data transfer methods.
  1080. @table @asis
  1081. @item @code{void (*register_data_handle)(starpu_data_handle_t handle, unsigned home_node, void *data_interface)}
  1082. Register an existing interface into a data handle.
  1083. @item @code{starpu_ssize_t (*allocate_data_on_node)(void *data_interface, unsigned node)}
  1084. Allocate data for the interface on a given node.
  1085. @item @code{ void (*free_data_on_node)(void *data_interface, unsigned node)}
  1086. Free data of the interface on a given node.
  1087. @item @code{ const struct starpu_data_copy_methods *copy_methods}
  1088. ram/cuda/opencl synchronous and asynchronous transfer methods.
  1089. @item @code{ void * (*handle_to_pointer)(starpu_data_handle_t handle, unsigned node)}
  1090. Return the current pointer (if any) for the handle on the given node.
  1091. @item @code{ size_t (*get_size)(starpu_data_handle_t handle)}
  1092. Return an estimation of the size of data, for performance models.
  1093. @item @code{ uint32_t (*footprint)(starpu_data_handle_t handle)}
  1094. Return a 32bit footprint which characterizes the data size.
  1095. @item @code{ int (*compare)(void *data_interface_a, void *data_interface_b)}
  1096. Compare the data size of two interfaces.
  1097. @item @code{ void (*display)(starpu_data_handle_t handle, FILE *f)}
  1098. Dump the sizes of a handle to a file.
  1099. @item @code{enum starpu_data_interface_id interfaceid}
  1100. An identifier that is unique to each interface.
  1101. @item @code{size_t interface_size}
  1102. The size of the interface data descriptor.
  1103. @item @code{int is_multiformat}
  1104. todo
  1105. @item @code{struct starpu_multiformat_data_interface_ops* (*get_mf_ops)(void *data_interface)}
  1106. todo
  1107. @item @code{int (*pack_data)(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)}
  1108. Pack the data handle into a contiguous buffer at the address
  1109. @code{ptr} and set the size of the newly created buffer in
  1110. @code{count}. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  1111. buffer but just set @var{count} to the size of the buffer which
  1112. would have been allocated. The special value @code{-1} indicates the
  1113. size is yet unknown.
  1114. @item @code{int (*unpack_data)(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)}
  1115. Unpack the data handle from the contiguous buffer at the address @code{ptr} of size @var{count}
  1116. @end table
  1117. @end deftp
  1118. @deftp {Data Type} {struct starpu_data_copy_methods}
  1119. Defines the per-interface methods. If the @code{any_to_any} method is provided,
  1120. it will be used by default if no more specific method is provided. It can still
  1121. be useful to provide more specific method in case of e.g. available particular
  1122. CUDA or OpenCL support.
  1123. @table @asis
  1124. @item @code{int (*@{ram,cuda,opencl@}_to_@{ram,cuda,opencl@})(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1125. These 12 functions define how to copy data from the @var{src_interface}
  1126. interface on the @var{src_node} node to the @var{dst_interface} interface
  1127. on the @var{dst_node} node. They return 0 on success.
  1128. @item @code{int (*@{ram,cuda@}_to_@{ram,cuda@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  1129. These 3 functions (@code{ram_to_ram} is not among these) define how to copy
  1130. data from the @var{src_interface} interface on the @var{src_node} node to the
  1131. @var{dst_interface} interface on the @var{dst_node} node, using the given
  1132. @var{stream}. Must return 0 if the transfer was actually completed completely
  1133. synchronously, or -EAGAIN if at least some transfers are still ongoing and
  1134. should be awaited for by the core.
  1135. @item @code{int (*@{ram,opencl@}_to_@{ram,opencl@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  1136. These 3 functions (@code{ram_to_ram} is not among them) define how to copy
  1137. data from the @var{src_interface} interface on the @var{src_node} node to the
  1138. @var{dst_interface} interface on the @var{dst_node} node, by recording in
  1139. @var{event}, a pointer to a cl_event, the event of the last submitted transfer.
  1140. Must return 0 if the transfer was actually completed completely synchronously,
  1141. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1142. for by the core.
  1143. @item @code{int (*any_to_any)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, void *async_data)}
  1144. Define how to copy data from the @var{src_interface} interface on the
  1145. @var{src_node} node to the @var{dst_interface} interface on the @var{dst_node}
  1146. node. This is meant to be implemented through the @var{starpu_interface_copy}
  1147. helper, to which @var{async_data} should be passed as such, and will be used to
  1148. manage asynchronicity. This must return -EAGAIN if any of the
  1149. @var{starpu_interface_copy} calls has returned -EAGAIN (i.e. at least some
  1150. transfer is still ongoing), and return 0 otherwise.
  1151. @end table
  1152. @end deftp
  1153. @deftypefun int starpu_interface_copy (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {void *}@var{async_data})
  1154. Copy @var{size} bytes from byte offset @var{src_offset} of @var{src} on
  1155. @var{src_node} to byte offset @var{dst_offset} of @var{dst} on @var{dst_node}.
  1156. This is to be used in the @var{any_to_any} copy method, which is provided with
  1157. the @var{async_data} to be pased to @var{starpu_interface_copy}. this returns
  1158. -EAGAIN if the transfer is still ongoing, or 0 if the transfer is already
  1159. completed.
  1160. @end deftypefun
  1161. @deftypefun uint32_t starpu_hash_crc32c_be_n ({void *}@var{input}, size_t @var{n}, uint32_t @var{inputcrc})
  1162. Compute the CRC of a byte buffer seeded by the inputcrc "current
  1163. state". The return value should be considered as the new "current
  1164. state" for future CRC computation. This is used for computing data size
  1165. footprint.
  1166. @end deftypefun
  1167. @deftypefun uint32_t starpu_hash_crc32c_be (uint32_t @var{input}, uint32_t @var{inputcrc})
  1168. Compute the CRC of a 32bit number seeded by the inputcrc "current
  1169. state". The return value should be considered as the new "current
  1170. state" for future CRC computation. This is used for computing data size
  1171. footprint.
  1172. @end deftypefun
  1173. @deftypefun uint32_t starpu_hash_crc32c_string ({char *}@var{str}, uint32_t @var{inputcrc})
  1174. Compute the CRC of a string seeded by the inputcrc "current state".
  1175. The return value should be considered as the new "current state" for
  1176. future CRC computation. This is used for computing data size footprint.
  1177. @end deftypefun
  1178. @deftypefun int starpu_data_interface_get_next_id (void)
  1179. Returns the next available id for a newly created data interface
  1180. (@pxref{Defining a New Data Interface}).
  1181. @end deftypefun
  1182. @node Data Partition
  1183. @section Data Partition
  1184. @menu
  1185. * Basic API::
  1186. * Predefined filter functions::
  1187. @end menu
  1188. @node Basic API
  1189. @subsection Basic API
  1190. @deftp {Data Type} {struct starpu_data_filter}
  1191. The filter structure describes a data partitioning operation, to be given to the
  1192. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1193. for an example. The different fields are:
  1194. @table @asis
  1195. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1196. This function fills the @code{child_interface} structure with interface
  1197. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1198. @item @code{unsigned nchildren}
  1199. This is the number of parts to partition the data into.
  1200. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1201. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1202. children depends on the actual data (e.g. the number of blocks in a sparse
  1203. matrix).
  1204. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1205. In case the resulting children use a different data interface, this function
  1206. returns which interface is used by child number @code{id}.
  1207. @item @code{unsigned filter_arg}
  1208. Allow to define an additional parameter for the filter function.
  1209. @item @code{void *filter_arg_ptr}
  1210. Allow to define an additional pointer parameter for the filter
  1211. function, such as the sizes of the different parts.
  1212. @end table
  1213. @end deftp
  1214. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1215. @anchor{starpu_data_partition}
  1216. This requests partitioning one StarPU data @var{initial_handle} into several
  1217. subdata according to the filter @var{f}, as shown in the following example:
  1218. @cartouche
  1219. @smallexample
  1220. struct starpu_data_filter f = @{
  1221. .filter_func = starpu_matrix_filter_block,
  1222. .nchildren = nslicesx,
  1223. .get_nchildren = NULL,
  1224. .get_child_ops = NULL
  1225. @};
  1226. starpu_data_partition(A_handle, &f);
  1227. @end smallexample
  1228. @end cartouche
  1229. @end deftypefun
  1230. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1231. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1232. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1233. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1234. @cartouche
  1235. @smallexample
  1236. starpu_data_unpartition(A_handle, 0);
  1237. @end smallexample
  1238. @end cartouche
  1239. @end deftypefun
  1240. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1241. This function returns the number of children.
  1242. @end deftypefun
  1243. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1244. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1245. @end deftypefun
  1246. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1247. After partitioning a StarPU data by applying a filter,
  1248. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1249. the data portions. @var{root_data} is the parent data that was
  1250. partitioned. @var{depth} is the number of filters to traverse (in
  1251. case several filters have been applied, to e.g. partition in row
  1252. blocks, and then in column blocks), and the subsequent
  1253. parameters are the indexes. The function returns a handle to the
  1254. subdata.
  1255. @cartouche
  1256. @smallexample
  1257. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1258. @end smallexample
  1259. @end cartouche
  1260. @end deftypefun
  1261. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1262. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1263. va_list for the parameter list.
  1264. @end deftypefun
  1265. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1266. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1267. recursively. @var{nfilters} pointers to variables of the type
  1268. starpu_data_filter should be given.
  1269. @end deftypefun
  1270. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1271. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1272. recursively. It uses a va_list of pointers to variables of the typer
  1273. starpu_data_filter.
  1274. @end deftypefun
  1275. @node Predefined filter functions
  1276. @subsection Predefined filter functions
  1277. @menu
  1278. * Partitioning Vector Data::
  1279. * Partitioning Matrix Data::
  1280. * Partitioning 3D Matrix Data::
  1281. * Partitioning BCSR Data::
  1282. @end menu
  1283. This section gives a partial list of the predefined partitioning functions.
  1284. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1285. list can be found in @code{starpu_data_filters.h} .
  1286. @node Partitioning Vector Data
  1287. @subsubsection Partitioning Vector Data
  1288. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1289. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1290. vector represented by @var{father_interface} once partitioned in
  1291. @var{nparts} chunks of equal size.
  1292. @end deftypefun
  1293. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1294. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1295. vector represented by @var{father_interface} once partitioned in
  1296. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1297. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1298. IMPORTANT: This can only be used for read-only access, as no coherency is
  1299. enforced for the shadowed parts.
  1300. A usage example is available in examples/filters/shadow.c
  1301. @end deftypefun
  1302. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1303. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1304. vector represented by @var{father_interface} once partitioned into
  1305. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1306. @code{*@var{f}}.
  1307. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1308. @code{uint32_t} elements, each of which specifies the number of elements
  1309. in each chunk of the partition.
  1310. @end deftypefun
  1311. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1312. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1313. vector represented by @var{father_interface} once partitioned in two
  1314. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1315. @code{0} or @code{1}.
  1316. @end deftypefun
  1317. @node Partitioning Matrix Data
  1318. @subsubsection Partitioning Matrix Data
  1319. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1320. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1321. matrices. If nparts does not divide x, the last submatrix contains the
  1322. remainder.
  1323. @end deftypefun
  1324. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1325. This partitions a dense Matrix along the x dimension, with a shadow border
  1326. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1327. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1328. remainder.
  1329. IMPORTANT: This can only be used for read-only access, as no coherency is
  1330. enforced for the shadowed parts.
  1331. A usage example is available in examples/filters/shadow2d.c
  1332. @end deftypefun
  1333. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1334. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1335. matrices. If nparts does not divide y, the last submatrix contains the
  1336. remainder.
  1337. @end deftypefun
  1338. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1339. This partitions a dense Matrix along the y dimension, with a shadow border
  1340. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1341. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1342. remainder.
  1343. IMPORTANT: This can only be used for read-only access, as no coherency is
  1344. enforced for the shadowed parts.
  1345. A usage example is available in examples/filters/shadow2d.c
  1346. @end deftypefun
  1347. @node Partitioning 3D Matrix Data
  1348. @subsubsection Partitioning 3D Matrix Data
  1349. A usage example is available in examples/filters/shadow3d.c
  1350. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1351. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1352. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1353. remainder.
  1354. @end deftypefun
  1355. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1356. This partitions a 3D matrix along the X dimension, with a shadow border
  1357. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1358. matrices. If nparts does not divide x, the last submatrix contains the
  1359. remainder.
  1360. IMPORTANT: This can only be used for read-only access, as no coherency is
  1361. enforced for the shadowed parts.
  1362. @end deftypefun
  1363. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1364. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1365. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1366. remainder.
  1367. @end deftypefun
  1368. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1369. This partitions a 3D matrix along the Y dimension, with a shadow border
  1370. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1371. matrices. If nparts does not divide y, the last submatrix contains the
  1372. remainder.
  1373. IMPORTANT: This can only be used for read-only access, as no coherency is
  1374. enforced for the shadowed parts.
  1375. @end deftypefun
  1376. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1377. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1378. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1379. remainder.
  1380. @end deftypefun
  1381. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1382. This partitions a 3D matrix along the Z dimension, with a shadow border
  1383. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1384. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1385. remainder.
  1386. IMPORTANT: This can only be used for read-only access, as no coherency is
  1387. enforced for the shadowed parts.
  1388. @end deftypefun
  1389. @node Partitioning BCSR Data
  1390. @subsubsection Partitioning BCSR Data
  1391. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1392. This partitions a block-sparse matrix into dense matrices.
  1393. @end deftypefun
  1394. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1395. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1396. @end deftypefun
  1397. @node Multiformat Data Interface
  1398. @section Multiformat Data Interface
  1399. @deftp {Data Type} {struct starpu_multiformat_data_interface_ops}
  1400. The different fields are:
  1401. @table @asis
  1402. @item @code{size_t cpu_elemsize}
  1403. the size of each element on CPUs,
  1404. @item @code{size_t opencl_elemsize}
  1405. the size of each element on OpenCL devices,
  1406. @item @code{struct starpu_codelet *cpu_to_opencl_cl}
  1407. pointer to a codelet which converts from CPU to OpenCL
  1408. @item @code{struct starpu_codelet *opencl_to_cpu_cl}
  1409. pointer to a codelet which converts from OpenCL to CPU
  1410. @item @code{size_t cuda_elemsize}
  1411. the size of each element on CUDA devices,
  1412. @item @code{struct starpu_codelet *cpu_to_cuda_cl}
  1413. pointer to a codelet which converts from CPU to CUDA
  1414. @item @code{struct starpu_codelet *cuda_to_cpu_cl}
  1415. pointer to a codelet which converts from CUDA to CPU
  1416. @end table
  1417. @end deftp
  1418. @deftypefun void starpu_multiformat_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops})
  1419. Register a piece of data that can be represented in different ways, depending upon
  1420. the processing unit that manipulates it. It allows the programmer, for instance, to
  1421. use an array of structures when working on a CPU, and a structure of arrays when
  1422. working on a GPU.
  1423. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  1424. the format.
  1425. @end deftypefun
  1426. @defmac STARPU_MULTIFORMAT_GET_CPU_PTR ({void *}@var{interface})
  1427. returns the local pointer to the data with CPU format.
  1428. @end defmac
  1429. @defmac STARPU_MULTIFORMAT_GET_CUDA_PTR ({void *}@var{interface})
  1430. returns the local pointer to the data with CUDA format.
  1431. @end defmac
  1432. @defmac STARPU_MULTIFORMAT_GET_OPENCL_PTR ({void *}@var{interface})
  1433. returns the local pointer to the data with OpenCL format.
  1434. @end defmac
  1435. @defmac STARPU_MULTIFORMAT_GET_NX ({void *}@var{interface})
  1436. returns the number of elements in the data.
  1437. @end defmac
  1438. @node Codelets and Tasks
  1439. @section Codelets and Tasks
  1440. This section describes the interface to manipulate codelets and tasks.
  1441. @deftp {Data Type} {enum starpu_codelet_type}
  1442. Describes the type of parallel task. The different values are:
  1443. @table @asis
  1444. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1445. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1446. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1447. @code{starpu_combined_worker_get_rank} to distribute the work
  1448. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1449. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1450. determine how many threads should be started.
  1451. @end table
  1452. See @ref{Parallel Tasks} for details.
  1453. @end deftp
  1454. @defmac STARPU_CPU
  1455. This macro is used when setting the field @code{where} of a @code{struct
  1456. starpu_codelet} to specify the codelet may be executed on a CPU
  1457. processing unit.
  1458. @end defmac
  1459. @defmac STARPU_CUDA
  1460. This macro is used when setting the field @code{where} of a @code{struct
  1461. starpu_codelet} to specify the codelet may be executed on a CUDA
  1462. processing unit.
  1463. @end defmac
  1464. @defmac STARPU_OPENCL
  1465. This macro is used when setting the field @code{where} of a @code{struct
  1466. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1467. processing unit.
  1468. @end defmac
  1469. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1470. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1471. with this macro indicates the codelet will have several
  1472. implementations. The use of this macro is deprecated. One should
  1473. always only define the field @code{cpu_funcs}.
  1474. @end defmac
  1475. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1476. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1477. with this macro indicates the codelet will have several
  1478. implementations. The use of this macro is deprecated. One should
  1479. always only define the field @code{cuda_funcs}.
  1480. @end defmac
  1481. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1482. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1483. with this macro indicates the codelet will have several
  1484. implementations. The use of this macro is deprecated. One should
  1485. always only define the field @code{opencl_funcs}.
  1486. @end defmac
  1487. @deftp {Data Type} {struct starpu_codelet}
  1488. The codelet structure describes a kernel that is possibly implemented on various
  1489. targets. For compatibility, make sure to initialize the whole structure to zero,
  1490. either by using explicit memset, or by letting the compiler implicitly do it in
  1491. e.g. static storage case.
  1492. @table @asis
  1493. @item @code{uint32_t where} (optional)
  1494. Indicates which types of processing units are able to execute the
  1495. codelet. The different values
  1496. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1497. @code{STARPU_OPENCL} can be combined to specify
  1498. on which types of processing units the codelet can be executed.
  1499. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1500. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1501. indicates that it is only available on OpenCL devices. If the field is
  1502. unset, its value will be automatically set based on the availability
  1503. of the @code{XXX_funcs} fields defined below.
  1504. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1505. Defines a function which should return 1 if the worker designated by
  1506. @var{workerid} can execute the @var{nimpl}th implementation of the
  1507. given @var{task}, 0 otherwise.
  1508. @item @code{enum starpu_codelet_type type} (optional)
  1509. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1510. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1511. implementation is also available. See @ref{Parallel Tasks} for details.
  1512. @item @code{int max_parallelism} (optional)
  1513. If a parallel implementation is available, this denotes the maximum combined
  1514. worker size that StarPU will use to execute parallel tasks for this codelet.
  1515. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1516. This field has been made deprecated. One should use instead the
  1517. @code{cpu_funcs} field.
  1518. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1519. Is an array of function pointers to the CPU implementations of the codelet.
  1520. It must be terminated by a NULL value.
  1521. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1522. argument being the array of data managed by the data management library, and
  1523. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1524. field of the @code{starpu_task} structure.
  1525. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1526. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1527. field, it must be non-null otherwise.
  1528. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1529. This field has been made deprecated. One should use instead the
  1530. @code{cuda_funcs} field.
  1531. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1532. Is an array of function pointers to the CUDA implementations of the codelet.
  1533. It must be terminated by a NULL value.
  1534. @emph{The functions must be host-functions written in the CUDA runtime
  1535. API}. Their prototype must
  1536. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1537. If the @code{where} field is set, then the @code{cuda_funcs}
  1538. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1539. field, it must be non-null otherwise.
  1540. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1541. This field has been made deprecated. One should use instead the
  1542. @code{opencl_funcs} field.
  1543. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1544. Is an array of function pointers to the OpenCL implementations of the codelet.
  1545. It must be terminated by a NULL value.
  1546. The functions prototype must be:
  1547. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1548. If the @code{where} field is set, then the @code{opencl_funcs} field
  1549. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1550. field, it must be non-null otherwise.
  1551. @item @code{unsigned nbuffers}
  1552. Specifies the number of arguments taken by the codelet. These arguments are
  1553. managed by the DSM and are accessed from the @code{void *buffers[]}
  1554. array. The constant argument passed with the @code{cl_arg} field of the
  1555. @code{starpu_task} structure is not counted in this number. This value should
  1556. not be above @code{STARPU_NMAXBUFS}.
  1557. @item @code{enum starpu_data_access_mode modes[STARPU_NMAXBUFS]}
  1558. Is an array of @code{enum starpu_data_access_mode}. It describes the
  1559. required access modes to the data neeeded by the codelet (e.g.
  1560. @code{STARPU_RW}). The number of entries in this array must be
  1561. specified in the @code{nbuffers} field (defined above), and should not
  1562. exceed @code{STARPU_NMAXBUFS}.
  1563. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1564. option when configuring StarPU.
  1565. @item @code{enum starpu_data_access_mode *dyn_modes}
  1566. Is an array of @code{enum starpu_data_access_mode}. It describes the
  1567. required access modes to the data neeeded by the codelet (e.g.
  1568. @code{STARPU_RW}). The number of entries in this array must be
  1569. specified in the @code{nbuffers} field (defined above).
  1570. This field should be used for codelets having a number of datas
  1571. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1572. for a Task}).
  1573. When defining a codelet, one should either define this field or the
  1574. field @code{modes} defined above.
  1575. @item @code{struct starpu_perfmodel *model} (optional)
  1576. This is a pointer to the task duration performance model associated to this
  1577. codelet. This optional field is ignored when set to @code{NULL} or
  1578. when its @code{symbol} field is not set.
  1579. @item @code{struct starpu_perfmodel *power_model} (optional)
  1580. This is a pointer to the task power consumption performance model associated
  1581. to this codelet. This optional field is ignored when set to
  1582. @code{NULL} or when its @code{symbol} field is not set.
  1583. In the case of parallel codelets, this has to account for all processing units
  1584. involved in the parallel execution.
  1585. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1586. Statistics collected at runtime: this is filled by StarPU and should not be
  1587. accessed directly, but for example by calling the
  1588. @code{starpu_codelet_display_stats} function (See
  1589. @ref{starpu_codelet_display_stats} for details).
  1590. @item @code{const char *name} (optional)
  1591. Define the name of the codelet. This can be useful for debugging purposes.
  1592. @end table
  1593. @end deftp
  1594. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1595. @anchor{starpu_codelet_init}
  1596. Initialize @var{cl} with default values. Codelets should preferably be
  1597. initialized statically as shown in @ref{Defining a Codelet}. However
  1598. such a initialisation is not always possible, e.g. when using C++.
  1599. @end deftypefun
  1600. @deftp {Data Type} {enum starpu_task_status}
  1601. State of a task, can be either of
  1602. @table @asis
  1603. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1604. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1605. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1606. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1607. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1608. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1609. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1610. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1611. @end table
  1612. @end deftp
  1613. @deftp {Data Type} {struct starpu_data_descr}
  1614. This type is used to describe a data handle along with an
  1615. access mode.
  1616. @table @asis
  1617. @item @code{starpu_data_handle_t handle} describes a data,
  1618. @item @code{enum starpu_data_access_mode mode} describes its access mode
  1619. @end table
  1620. @end deftp
  1621. @deftp {Data Type} {struct starpu_task}
  1622. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1623. processing units managed by StarPU. It instantiates a codelet. It can either be
  1624. allocated dynamically with the @code{starpu_task_create} method, or declared
  1625. statically. In the latter case, the programmer has to zero the
  1626. @code{starpu_task} structure and to fill the different fields properly. The
  1627. indicated default values correspond to the configuration of a task allocated
  1628. with @code{starpu_task_create}.
  1629. @table @asis
  1630. @item @code{struct starpu_codelet *cl}
  1631. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1632. describes where the kernel should be executed, and supplies the appropriate
  1633. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1634. such empty tasks can be useful for synchronization purposes.
  1635. @item @code{struct starpu_data_descr buffers[STARPU_NMAXBUFS]}
  1636. This field has been made deprecated. One should use instead the
  1637. @code{handles} field to specify the handles to the data accessed by
  1638. the task. The access modes are now defined in the @code{mode} field of
  1639. the @code{struct starpu_codelet cl} field defined above.
  1640. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1641. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1642. to the different pieces of data accessed by the task. The number
  1643. of entries in this array must be specified in the @code{nbuffers} field of the
  1644. @code{struct starpu_codelet} structure, and should not exceed
  1645. @code{STARPU_NMAXBUFS}.
  1646. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1647. option when configuring StarPU.
  1648. @item @code{starpu_data_handle_t *dyn_handles}
  1649. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1650. to the different pieces of data accessed by the task. The number
  1651. of entries in this array must be specified in the @code{nbuffers} field of the
  1652. @code{struct starpu_codelet} structure.
  1653. This field should be used for tasks having a number of datas
  1654. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1655. for a Task}).
  1656. When defining a task, one should either define this field or the
  1657. field @code{handles} defined above.
  1658. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1659. The actual data pointers to the memory node where execution will happen, managed
  1660. by the DSM.
  1661. @item @code{void **dyn_interfaces}
  1662. The actual data pointers to the memory node where execution will happen, managed
  1663. by the DSM. Is used when the field @code{dyn_handles} is defined.
  1664. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1665. This pointer is passed to the codelet through the second argument
  1666. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1667. @item @code{size_t cl_arg_size} (optional)
  1668. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1669. given to the driver function. A buffer of size @code{cl_arg_size}
  1670. needs to be allocated on the driver. This buffer is then filled with
  1671. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1672. this case, the argument given to the codelet is therefore not the
  1673. @code{cl_arg} pointer, but the address of the buffer in local store
  1674. (LS) instead.
  1675. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1676. @code{cl_arg} pointer is given as such.
  1677. @item @code{unsigned cl_arg_free} (optional)
  1678. In case @code{cl_arg} was allocated by the application through @code{malloc},
  1679. setting @code{cl_arg_free} to 1 makes StarPU automatically call
  1680. @code{free(cl_arg)} when destroying the task. This saves the user from
  1681. defining a callback just for that. This is mostly useful when targetting MIC or
  1682. SCC, where the codelet does not execute in the same memory space as the main
  1683. thread.
  1684. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1685. This is a function pointer of prototype @code{void (*f)(void *)} which
  1686. specifies a possible callback. If this pointer is non-null, the callback
  1687. function is executed @emph{on the host} after the execution of the task. Tasks
  1688. which depend on it might already be executing. The callback is passed the
  1689. value contained in the @code{callback_arg} field. No callback is executed if the
  1690. field is set to @code{NULL}.
  1691. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1692. This is the pointer passed to the callback function. This field is ignored if
  1693. the @code{callback_func} is set to @code{NULL}.
  1694. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1695. If set, this flag indicates that the task should be associated with the tag
  1696. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1697. with the task and to express task dependencies easily.
  1698. @item @code{starpu_tag_t tag_id}
  1699. This field contains the tag associated to the task if the @code{use_tag} field
  1700. was set, it is ignored otherwise.
  1701. @item @code{unsigned sequential_consistency}
  1702. If this flag is set (which is the default), sequential consistency is enforced
  1703. for the data parameters of this task for which sequential consistency is
  1704. enabled. Clearing this flag permits to disable sequential consistency for this
  1705. task, even if data have it enabled.
  1706. @item @code{unsigned synchronous}
  1707. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1708. returns only when the task has been executed (or if no worker is able to
  1709. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1710. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1711. This field indicates a level of priority for the task. This is an integer value
  1712. that must be set between the return values of the
  1713. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1714. and that of the @code{starpu_sched_get_max_priority} for the most important
  1715. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1716. are provided for convenience and respectively returns value of
  1717. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1718. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1719. order to allow static task initialization. Scheduling strategies that take
  1720. priorities into account can use this parameter to take better scheduling
  1721. decisions, but the scheduling policy may also ignore it.
  1722. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1723. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1724. task to the worker specified by the @code{workerid} field.
  1725. @item @code{unsigned workerid} (optional)
  1726. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1727. which is the identifier of the worker that should process this task (as
  1728. returned by @code{starpu_worker_get_id}). This field is ignored if
  1729. @code{execute_on_a_specific_worker} field is set to 0.
  1730. @item @code{starpu_task_bundle_t bundle} (optional)
  1731. The bundle that includes this task. If no bundle is used, this should be NULL.
  1732. @item @code{int detach} (optional) (default: @code{1})
  1733. If this flag is set, it is not possible to synchronize with the task
  1734. by the means of @code{starpu_task_wait} later on. Internal data structures
  1735. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1736. flag is not set.
  1737. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1738. If this flag is set, the task structure will automatically be freed, either
  1739. after the execution of the callback if the task is detached, or during
  1740. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1741. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1742. called explicitly. Setting this flag for a statically allocated task structure
  1743. will result in undefined behaviour. The flag is set to 1 when the task is
  1744. created by calling @code{starpu_task_create()}. Note that
  1745. @code{starpu_task_wait_for_all} will not free any task.
  1746. @item @code{int regenerate} (optional)
  1747. If this flag is set, the task will be re-submitted to StarPU once it has been
  1748. executed. This flag must not be set if the destroy flag is set too.
  1749. @item @code{enum starpu_task_status status} (optional)
  1750. Current state of the task.
  1751. @item @code{struct starpu_profiling_task_info *profiling_info} (optional)
  1752. Profiling information for the task.
  1753. @item @code{double predicted} (output field)
  1754. Predicted duration of the task. This field is only set if the scheduling
  1755. strategy used performance models.
  1756. @item @code{double predicted_transfer} (optional)
  1757. Predicted data transfer duration for the task in microseconds. This field is
  1758. only valid if the scheduling strategy uses performance models.
  1759. @item @code{struct starpu_task *prev}
  1760. A pointer to the previous task. This should only be used by StarPU.
  1761. @item @code{struct starpu_task *next}
  1762. A pointer to the next task. This should only be used by StarPU.
  1763. @item @code{unsigned int mf_skip}
  1764. This is only used for tasks that use multiformat handle. This should only be
  1765. used by StarPU.
  1766. @item @code{double flops}
  1767. This can be set to the number of floating points operations that the task
  1768. will have to achieve. This is useful for easily getting GFlops curves from
  1769. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1770. @item @code{void *starpu_private}
  1771. This is private to StarPU, do not modify. If the task is allocated by hand
  1772. (without starpu_task_create), this field should be set to NULL.
  1773. @item @code{int magic}
  1774. This field is set when initializing a task. It prevents a task from being
  1775. submitted if it has not been properly initialized.
  1776. @end table
  1777. @end deftp
  1778. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1779. Initialize @var{task} with default values. This function is implicitly
  1780. called by @code{starpu_task_create}. By default, tasks initialized with
  1781. @code{starpu_task_init} must be deinitialized explicitly with
  1782. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1783. using @code{STARPU_TASK_INITIALIZER} defined below.
  1784. @end deftypefun
  1785. @defmac STARPU_TASK_INITIALIZER
  1786. It is possible to initialize statically allocated tasks with this
  1787. value. This is equivalent to initializing a starpu_task structure with
  1788. the @code{starpu_task_init} function defined above.
  1789. @end defmac
  1790. @defmac STARPU_TASK_GET_HANDLE ({struct starpu_task} *@var{task}, int @var{i})
  1791. Return the i-th data handle of the given task. If the task is defined
  1792. with a static or dynamic number of handles, will either return the
  1793. i-th element of the field @code{handles} or the i-th element of the field
  1794. @code{dyn_handles} (@pxref{Setting the Data Handles for a Task})
  1795. @end defmac
  1796. @defmac STARPU_TASK_SET_HANDLE ({struct starpu_task} *@var{task}, starpu_data_handle_t @var{handle}, int @var{i})
  1797. Set the i-th data handle of the given task with the given dat handle.
  1798. If the task is defined with a static or dynamic number of handles,
  1799. will either set the i-th element of the field @code{handles} or the
  1800. i-th element of the field @code{dyn_handles} (@pxref{Setting the Data
  1801. Handles for a Task})
  1802. @end defmac
  1803. @defmac STARPU_CODELET_GET_MODE ({struct starpu_codelet *}@var{codelet}, int @var{i})
  1804. Return the access mode of the i-th data handle of the given codelet.
  1805. If the codelet is defined with a static or dynamic number of handles,
  1806. will either return the i-th element of the field @code{modes} or the
  1807. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1808. Handles for a Task})
  1809. @end defmac
  1810. @defmac STARPU_CODELET_SET_MODE ({struct starpu_codelet *}@var{codelet}, {enum starpu_data_access_mode} @var{mode}, int @var{i})
  1811. Set the access mode of the i-th data handle of the given codelet.
  1812. If the codelet is defined with a static or dynamic number of handles,
  1813. will either set the i-th element of the field @code{modes} or the
  1814. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1815. Handles for a Task})
  1816. @end defmac
  1817. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1818. Allocate a task structure and initialize it with default values. Tasks
  1819. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1820. task is terminated. This means that the task pointer can not be used any more
  1821. once the task is submitted, since it can be executed at any time (unless
  1822. dependencies make it wait) and thus freed at any time.
  1823. If the destroy flag is explicitly unset, the resources used
  1824. by the task have to be freed by calling
  1825. @code{starpu_task_destroy}.
  1826. @end deftypefun
  1827. @deftypefun {struct starpu_task *} starpu_task_dup ({struct starpu_task *}@var{task})
  1828. Allocate a task structure which is the exact duplicate of the given task.
  1829. @end deftypefun
  1830. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1831. Release all the structures automatically allocated to execute @var{task}, but
  1832. not the task structure itself and values set by the user remain unchanged.
  1833. It is thus useful for statically allocated tasks for instance.
  1834. It is also useful when the user wants to execute the same operation several
  1835. times with as least overhead as possible.
  1836. It is called automatically by @code{starpu_task_destroy}.
  1837. It has to be called only after explicitly waiting for the task or after
  1838. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1839. still manipulates the task after calling the callback).
  1840. @end deftypefun
  1841. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1842. Free the resource allocated during @code{starpu_task_create} and
  1843. associated with @var{task}. This function is already called automatically
  1844. after the execution of a task when the @code{destroy} flag of the
  1845. @code{starpu_task} structure is set, which is the default for tasks created by
  1846. @code{starpu_task_create}. Calling this function on a statically allocated task
  1847. results in an undefined behaviour.
  1848. @end deftypefun
  1849. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1850. This function blocks until @var{task} has been executed. It is not possible to
  1851. synchronize with a task more than once. It is not possible to wait for
  1852. synchronous or detached tasks.
  1853. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1854. indicates that the specified task was either synchronous or detached.
  1855. @end deftypefun
  1856. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1857. This function submits @var{task} to StarPU. Calling this function does
  1858. not mean that the task will be executed immediately as there can be data or task
  1859. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1860. scheduling this task with respect to such dependencies.
  1861. This function returns immediately if the @code{synchronous} field of the
  1862. @code{starpu_task} structure was set to 0, and block until the termination of
  1863. the task otherwise. It is also possible to synchronize the application with
  1864. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1865. function for instance.
  1866. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1867. means that there is no worker able to process this task (e.g. there is no GPU
  1868. available and this task is only implemented for CUDA devices).
  1869. starpu_task_submit() can be called from anywhere, including codelet
  1870. functions and callbacks, provided that the @code{synchronous} field of the
  1871. @code{starpu_task} structure is left to 0.
  1872. @end deftypefun
  1873. @deftypefun int starpu_task_wait_for_all (void)
  1874. This function blocks until all the tasks that were submitted are terminated. It
  1875. does not destroy these tasks.
  1876. @end deftypefun
  1877. @deftypefun int starpu_task_nready (void)
  1878. @end deftypefun
  1879. @deftypefun int starpu_task_nsubmitted (void)
  1880. Return the number of submitted tasks which have not completed yet.
  1881. @end deftypefun
  1882. @deftypefun int starpu_task_nready (void)
  1883. Return the number of submitted tasks which are ready for execution are already
  1884. executing. It thus does not include tasks waiting for dependencies.
  1885. @end deftypefun
  1886. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1887. This function returns the task currently executed by the worker, or
  1888. NULL if it is called either from a thread that is not a task or simply
  1889. because there is no task being executed at the moment.
  1890. @end deftypefun
  1891. @deftypefun void starpu_codelet_display_stats ({struct starpu_codelet} *@var{cl})
  1892. @anchor{starpu_codelet_display_stats}
  1893. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1894. @end deftypefun
  1895. @deftypefun int starpu_task_wait_for_no_ready (void)
  1896. This function waits until there is no more ready task.
  1897. @end deftypefun
  1898. @deftypefun void starpu_task_set_implementation ({struct starpu_task *}@var{task}, unsigned @var{impl})
  1899. This function should be called by schedulers to specify the codelet
  1900. implementation to be executed when executing the task.
  1901. @end deftypefun
  1902. @deftypefun unsigned starpu_task_get_implementation ({struct starpu_task *}@var{task})
  1903. This function return the codelet implementation to be executed when
  1904. executing the task.
  1905. @end deftypefun
  1906. @c Callbacks: what can we put in callbacks ?
  1907. @node Insert Task
  1908. @section Insert Task
  1909. @deftypefun int starpu_insert_task (struct starpu_codelet *@var{cl}, ...)
  1910. Create and submit a task corresponding to @var{cl} with the following
  1911. arguments. The argument list must be zero-terminated.
  1912. The arguments following the codelets can be of the following types:
  1913. @itemize
  1914. @item
  1915. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1916. @item
  1917. @code{STARPU_DATA_ARRAY} followed by an array of data handles and its number of elements;
  1918. @item
  1919. the specific values @code{STARPU_VALUE}, @code{STARPU_CALLBACK},
  1920. @code{STARPU_CALLBACK_ARG}, @code{STARPU_CALLBACK_WITH_ARG},
  1921. @code{STARPU_PRIORITY}, @code{STARPU_TAG}, @code{STARPU_FLOPS}, @code{STARPU_SCHED_CTX} followed by the appropriated objects
  1922. as defined below.
  1923. @end itemize
  1924. When using @code{STARPU_DATA_ARRAY}, the access mode of the data
  1925. handles is not defined.
  1926. Parameters to be passed to the codelet implementation are defined
  1927. through the type @code{STARPU_VALUE}. The function
  1928. @code{starpu_codelet_unpack_args} must be called within the codelet
  1929. implementation to retrieve them.
  1930. @end deftypefun
  1931. @defmac STARPU_VALUE
  1932. this macro is used when calling @code{starpu_insert_task}, and must be
  1933. followed by a pointer to a constant value and the size of the constant
  1934. @end defmac
  1935. @defmac STARPU_CALLBACK
  1936. this macro is used when calling @code{starpu_insert_task}, and must be
  1937. followed by a pointer to a callback function
  1938. @end defmac
  1939. @defmac STARPU_CALLBACK_ARG
  1940. this macro is used when calling @code{starpu_insert_task}, and must be
  1941. followed by a pointer to be given as an argument to the callback
  1942. function
  1943. @end defmac
  1944. @defmac STARPU_CALLBACK_WITH_ARG
  1945. this macro is used when calling @code{starpu_insert_task}, and must be
  1946. followed by two pointers: one to a callback function, and the other to
  1947. be given as an argument to the callback function; this is equivalent
  1948. to using both @code{STARPU_CALLBACK} and
  1949. @code{STARPU_CALLBACK_WITH_ARG}
  1950. @end defmac
  1951. @defmac STARPU_PRIORITY
  1952. this macro is used when calling @code{starpu_insert_task}, and must be
  1953. followed by a integer defining a priority level
  1954. @end defmac
  1955. @defmac STARPU_TAG
  1956. this macro is used when calling @code{starpu_insert_task}, and must be
  1957. followed by a tag.
  1958. @end defmac
  1959. @defmac STARPU_FLOPS
  1960. this macro is used when calling @code{starpu_insert_task}, and must be followed
  1961. by an amount of floating point operations, as a double. The user may have to
  1962. explicitly cast into double, otherwise parameter passing will not work.
  1963. @end defmac
  1964. @defmac STARPU_SCHED_CTX
  1965. this macro is used when calling @code{starpu_insert_task}, and must be followed
  1966. by the id of the scheduling context to which we want to submit the task.
  1967. @end defmac
  1968. @deftypefun void starpu_codelet_pack_args ({void **}@var{arg_buffer}, {size_t *}@var{arg_buffer_size}, ...)
  1969. Pack arguments of type @code{STARPU_VALUE} into a buffer which can be
  1970. given to a codelet and later unpacked with the function
  1971. @code{starpu_codelet_unpack_args} defined below.
  1972. @end deftypefun
  1973. @deftypefun void starpu_codelet_unpack_args ({void *}@var{cl_arg}, ...)
  1974. Retrieve the arguments of type @code{STARPU_VALUE} associated to a
  1975. task automatically created using the function
  1976. @code{starpu_insert_task} defined above.
  1977. @end deftypefun
  1978. @node Explicit Dependencies
  1979. @section Explicit Dependencies
  1980. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1981. Declare task dependencies between a @var{task} and an array of tasks of length
  1982. @var{ndeps}. This function must be called prior to the submission of the task,
  1983. but it may called after the submission or the execution of the tasks in the
  1984. array, provided the tasks are still valid (ie. they were not automatically
  1985. destroyed). Calling this function on a task that was already submitted or with
  1986. an entry of @var{task_array} that is not a valid task anymore results in an
  1987. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1988. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1989. same task, in this case, the dependencies are added. It is possible to have
  1990. redundancy in the task dependencies.
  1991. @end deftypefun
  1992. @deftp {Data Type} {starpu_tag_t}
  1993. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1994. dependencies between tasks by the means of those tags. To do so, fill the
  1995. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1996. be arbitrary) and set the @code{use_tag} field to 1.
  1997. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1998. not be started until the tasks which holds the declared dependency tags are
  1999. completed.
  2000. @end deftp
  2001. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  2002. Specify the dependencies of the task identified by tag @var{id}. The first
  2003. argument specifies the tag which is configured, the second argument gives the
  2004. number of tag(s) on which @var{id} depends. The following arguments are the
  2005. tags which have to be terminated to unlock the task.
  2006. This function must be called before the associated task is submitted to StarPU
  2007. with @code{starpu_task_submit}.
  2008. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2009. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2010. typically need to be explicitly casted. Using the
  2011. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2012. @cartouche
  2013. @smallexample
  2014. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2015. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2016. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2017. @end smallexample
  2018. @end cartouche
  2019. @end deftypefun
  2020. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  2021. This function is similar to @code{starpu_tag_declare_deps}, except
  2022. that its does not take a variable number of arguments but an array of
  2023. tags of size @var{ndeps}.
  2024. @cartouche
  2025. @smallexample
  2026. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2027. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2028. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2029. @end smallexample
  2030. @end cartouche
  2031. @end deftypefun
  2032. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  2033. This function blocks until the task associated to tag @var{id} has been
  2034. executed. This is a blocking call which must therefore not be called within
  2035. tasks or callbacks, but only from the application directly. It is possible to
  2036. synchronize with the same tag multiple times, as long as the
  2037. @code{starpu_tag_remove} function is not called. Note that it is still
  2038. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2039. data structure was freed (e.g. if the @code{destroy} flag of the
  2040. @code{starpu_task} was enabled).
  2041. @end deftypefun
  2042. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  2043. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2044. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  2045. terminated.
  2046. @end deftypefun
  2047. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  2048. This function can be used to clear the "already notified" status
  2049. of a tag which is not associated with a task. Before that, calling
  2050. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  2051. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  2052. successors.
  2053. @end deftypefun
  2054. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  2055. This function releases the resources associated to tag @var{id}. It can be
  2056. called once the corresponding task has been executed and when there is
  2057. no other tag that depend on this tag anymore.
  2058. @end deftypefun
  2059. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  2060. This function explicitly unlocks tag @var{id}. It may be useful in the
  2061. case of applications which execute part of their computation outside StarPU
  2062. tasks (e.g. third-party libraries). It is also provided as a
  2063. convenient tool for the programmer, for instance to entirely construct the task
  2064. DAG before actually giving StarPU the opportunity to execute the tasks. When
  2065. called several times on the same tag, notification will be done only on first
  2066. call, thus implementing "OR" dependencies, until the tag is restarted using
  2067. @code{starpu_tag_restart}.
  2068. @end deftypefun
  2069. @node Implicit Data Dependencies
  2070. @section Implicit Data Dependencies
  2071. In this section, we describe how StarPU makes it possible to insert implicit
  2072. task dependencies in order to enforce sequential data consistency. When this
  2073. data consistency is enabled on a specific data handle, any data access will
  2074. appear as sequentially consistent from the application. For instance, if the
  2075. application submits two tasks that access the same piece of data in read-only
  2076. mode, and then a third task that access it in write mode, dependencies will be
  2077. added between the two first tasks and the third one. Implicit data dependencies
  2078. are also inserted in the case of data accesses from the application.
  2079. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  2080. Set the default sequential consistency flag. If a non-zero value is passed, a
  2081. sequential data consistency will be enforced for all handles registered after
  2082. this function call, otherwise it is disabled. By default, StarPU enables
  2083. sequential data consistency. It is also possible to select the data consistency
  2084. mode of a specific data handle with the
  2085. @code{starpu_data_set_sequential_consistency_flag} function.
  2086. @end deftypefun
  2087. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  2088. Return the default sequential consistency flag
  2089. @end deftypefun
  2090. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  2091. Sets the data consistency mode associated to a data handle. The consistency
  2092. mode set using this function has the priority over the default mode which can
  2093. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  2094. @end deftypefun
  2095. @node Performance Model API
  2096. @section Performance Model API
  2097. @deftp {Data Type} {enum starpu_perfmodel_archtype}
  2098. Enumerates the various types of architectures.
  2099. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  2100. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  2101. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  2102. @table @asis
  2103. @item @code{STARPU_CPU_DEFAULT}
  2104. @item @code{STARPU_CUDA_DEFAULT}
  2105. @item @code{STARPU_OPENCL_DEFAULT}
  2106. @end table
  2107. @end deftp
  2108. @deftp {Data Type} {enum starpu_perfmodel_type}
  2109. The possible values are:
  2110. @table @asis
  2111. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  2112. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  2113. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  2114. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  2115. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  2116. @end table
  2117. @end deftp
  2118. @deftp {Data Type} {struct starpu_perfmodel}
  2119. @anchor{struct starpu_perfmodel}
  2120. contains all information about a performance model. At least the
  2121. @code{type} and @code{symbol} fields have to be filled when defining a
  2122. performance model for a codelet. For compatibility, make sure to initialize the
  2123. whole structure to zero, either by using explicit memset, or by letting the
  2124. compiler implicitly do it in e.g. static storage case.
  2125. If not provided, other fields have to be zero.
  2126. @table @asis
  2127. @item @code{type}
  2128. is the type of performance model @code{enum starpu_perfmodel_type}:
  2129. @code{STARPU_HISTORY_BASED},
  2130. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  2131. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  2132. @code{per_arch} has to be filled with functions which return the cost in
  2133. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  2134. a function that returns the cost in micro-seconds on a CPU, timing on other
  2135. archs will be determined by multiplying by an arch-specific factor.
  2136. @item @code{const char *symbol}
  2137. is the symbol name for the performance model, which will be used as
  2138. file name to store the model. It must be set otherwise the model will
  2139. be ignored.
  2140. @item @code{double (*cost_model)(struct starpu_data_descr *)}
  2141. This field is deprecated. Use instead the @code{cost_function} field.
  2142. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  2143. Used by @code{STARPU_COMMON}: takes a task and
  2144. implementation number, and must return a task duration estimation in micro-seconds.
  2145. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  2146. Used by @code{STARPU_HISTORY_BASED} and
  2147. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  2148. implementation number, and returns the size to be used as index for
  2149. history and regression.
  2150. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  2151. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  2152. starpu_per_arch_perfmodel} structures.
  2153. @item @code{unsigned is_loaded}
  2154. Whether the performance model is already loaded from the disk.
  2155. @item @code{unsigned benchmarking}
  2156. Whether the performance model is still being calibrated.
  2157. @item @code{pthread_rwlock_t model_rwlock}
  2158. Lock to protect concurrency between loading from disk (W), updating the values
  2159. (W), and making a performance estimation (R).
  2160. @end table
  2161. @end deftp
  2162. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  2163. @table @asis
  2164. @item @code{double sumlny} sum of ln(measured)
  2165. @item @code{double sumlnx} sum of ln(size)
  2166. @item @code{double sumlnx2} sum of ln(size)^2
  2167. @item @code{unsigned long minx} minimum size
  2168. @item @code{unsigned long maxx} maximum size
  2169. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  2170. @item @code{double alpha} estimated = alpha * size ^ beta
  2171. @item @code{double beta}
  2172. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  2173. @item @code{double a, b, c} estimaed = a size ^b + c
  2174. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  2175. @item @code{unsigned nsample} number of sample values for non-linear regression
  2176. @end table
  2177. @end deftp
  2178. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  2179. contains information about the performance model of a given arch.
  2180. @table @asis
  2181. @item @code{double (*cost_model)(struct starpu_data_descr *t)}
  2182. This field is deprecated. Use instead the @code{cost_function} field.
  2183. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perfmodel_archtype arch, unsigned nimpl)}
  2184. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  2185. target arch and implementation number (as mere conveniency, since the array
  2186. is already indexed by these), and must return a task duration estimation in
  2187. micro-seconds.
  2188. @item @code{size_t (*size_base)(struct starpu_task *, enum starpu_perfmodel_archtype arch, unsigned nimpl)}
  2189. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  2190. case it depends on the architecture-specific implementation.
  2191. @item @code{struct starpu_htbl32_node *history}
  2192. The history of performance measurements.
  2193. @item @code{struct starpu_perfmodel_history_list *list}
  2194. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  2195. records all execution history measures.
  2196. @item @code{struct starpu_perfmodel_regression_model regression}
  2197. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  2198. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  2199. regression.
  2200. @end table
  2201. @end deftp
  2202. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  2203. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  2204. @end deftypefun
  2205. @deftypefun int starpu_perfmodel_unload_model ({struct starpu_perfmodel} *@var{model})
  2206. unloads the given model which has been previously loaded through the function @code{starpu_perfmodel_load_symbol}
  2207. @end deftypefun
  2208. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perfmodel_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  2209. returns the path to the debugging information for the performance model.
  2210. @end deftypefun
  2211. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perfmodel_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  2212. returns the architecture name for @var{arch}.
  2213. @end deftypefun
  2214. @deftypefun {enum starpu_perfmodel_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  2215. returns the architecture type of a given worker.
  2216. @end deftypefun
  2217. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  2218. prints a list of all performance models on @var{output}.
  2219. @end deftypefun
  2220. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  2221. todo
  2222. @end deftypefun
  2223. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  2224. todo
  2225. @end deftypefun
  2226. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  2227. prints a matrix of bus bandwidths on @var{f}.
  2228. @end deftypefun
  2229. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  2230. prints the affinity devices on @var{f}.
  2231. @end deftypefun
  2232. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  2233. prints a description of the topology on @var{f}.
  2234. @end deftypefun
  2235. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  2236. This feeds the performance model @var{model} with an explicit measurement
  2237. @var{measured}, in addition to measurements done by StarPU itself. This can be
  2238. useful when the application already has an existing set of measurements done
  2239. in good conditions, that StarPU could benefit from instead of doing on-line
  2240. measurements. And example of use can be see in @ref{Performance model example}.
  2241. @end deftypefun
  2242. @node Profiling API
  2243. @section Profiling API
  2244. @deftypefun int starpu_profiling_status_set (int @var{status})
  2245. Thie function sets the profiling status. Profiling is activated by passing
  2246. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  2247. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2248. resets all profiling measurements. When profiling is enabled, the
  2249. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2250. to a valid @code{struct starpu_profiling_task_info} structure containing
  2251. information about the execution of the task.
  2252. Negative return values indicate an error, otherwise the previous status is
  2253. returned.
  2254. @end deftypefun
  2255. @deftypefun int starpu_profiling_status_get (void)
  2256. Return the current profiling status or a negative value in case there was an error.
  2257. @end deftypefun
  2258. @deftypefun void starpu_profiling_set_id (int @var{new_id})
  2259. This function sets the ID used for profiling trace filename. It needs to be
  2260. called before starpu_init.
  2261. @end deftypefun
  2262. @deftp {Data Type} {struct starpu_profiling_task_info}
  2263. This structure contains information about the execution of a task. It is
  2264. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2265. structure if profiling was enabled. The different fields are:
  2266. @table @asis
  2267. @item @code{struct timespec submit_time}
  2268. Date of task submission (relative to the initialization of StarPU).
  2269. @item @code{struct timespec push_start_time}
  2270. Time when the task was submitted to the scheduler.
  2271. @item @code{struct timespec push_end_time}
  2272. Time when the scheduler finished with the task submission.
  2273. @item @code{struct timespec pop_start_time}
  2274. Time when the scheduler started to be requested for a task, and eventually gave
  2275. that task.
  2276. @item @code{struct timespec pop_end_time}
  2277. Time when the scheduler finished providing the task for execution.
  2278. @item @code{struct timespec acquire_data_start_time}
  2279. Time when the worker started fetching input data.
  2280. @item @code{struct timespec acquire_data_end_time}
  2281. Time when the worker finished fetching input data.
  2282. @item @code{struct timespec start_time}
  2283. Date of task execution beginning (relative to the initialization of StarPU).
  2284. @item @code{struct timespec end_time}
  2285. Date of task execution termination (relative to the initialization of StarPU).
  2286. @item @code{struct timespec release_data_start_time}
  2287. Time when the worker started releasing data.
  2288. @item @code{struct timespec release_data_end_time}
  2289. Time when the worker finished releasing data.
  2290. @item @code{struct timespec callback_start_time}
  2291. Time when the worker started the application callback for the task.
  2292. @item @code{struct timespec callback_end_time}
  2293. Time when the worker finished the application callback for the task.
  2294. @item @code{workerid}
  2295. Identifier of the worker which has executed the task.
  2296. @item @code{uint64_t used_cycles}
  2297. Number of cycles used by the task, only available in the MoviSim
  2298. @item @code{uint64_t stall_cycles}
  2299. Number of cycles stalled within the task, only available in the MoviSim
  2300. @item @code{double power_consumed}
  2301. Power consumed by the task, only available in the MoviSim
  2302. @end table
  2303. @end deftp
  2304. @deftp {Data Type} {struct starpu_profiling_worker_info}
  2305. This structure contains the profiling information associated to a
  2306. worker. The different fields are:
  2307. @table @asis
  2308. @item @code{struct timespec start_time}
  2309. Starting date for the reported profiling measurements.
  2310. @item @code{struct timespec total_time}
  2311. Duration of the profiling measurement interval.
  2312. @item @code{struct timespec executing_time}
  2313. Time spent by the worker to execute tasks during the profiling measurement interval.
  2314. @item @code{struct timespec sleeping_time}
  2315. Time spent idling by the worker during the profiling measurement interval.
  2316. @item @code{int executed_tasks}
  2317. Number of tasks executed by the worker during the profiling measurement interval.
  2318. @item @code{uint64_t used_cycles}
  2319. Number of cycles used by the worker, only available in the MoviSim
  2320. @item @code{uint64_t stall_cycles}
  2321. Number of cycles stalled within the worker, only available in the MoviSim
  2322. @item @code{double power_consumed}
  2323. Power consumed by the worker, only available in the MoviSim
  2324. @end table
  2325. @end deftp
  2326. @deftypefun int starpu_profiling_worker_get_info (int @var{workerid}, {struct starpu_profiling_worker_info *}@var{worker_info})
  2327. Get the profiling info associated to the worker identified by @var{workerid},
  2328. and reset the profiling measurements. If the @var{worker_info} argument is
  2329. NULL, only reset the counters associated to worker @var{workerid}.
  2330. Upon successful completion, this function returns 0. Otherwise, a negative
  2331. value is returned.
  2332. @end deftypefun
  2333. @deftp {Data Type} {struct starpu_profiling_bus_info}
  2334. The different fields are:
  2335. @table @asis
  2336. @item @code{struct timespec start_time}
  2337. Time of bus profiling startup.
  2338. @item @code{struct timespec total_time}
  2339. Total time of bus profiling.
  2340. @item @code{int long long transferred_bytes}
  2341. Number of bytes transferred during profiling.
  2342. @item @code{int transfer_count}
  2343. Number of transfers during profiling.
  2344. @end table
  2345. @end deftp
  2346. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_profiling_bus_info *}@var{bus_info})
  2347. Get the profiling info associated to the worker designated by @var{workerid},
  2348. and reset the profiling measurements. If worker_info is NULL, only reset the
  2349. counters.
  2350. @end deftypefun
  2351. @deftypefun int starpu_bus_get_count (void)
  2352. Return the number of buses in the machine.
  2353. @end deftypefun
  2354. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2355. Return the identifier of the bus between @var{src} and @var{dst}
  2356. @end deftypefun
  2357. @deftypefun int starpu_bus_get_src (int @var{busid})
  2358. Return the source point of bus @var{busid}
  2359. @end deftypefun
  2360. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2361. Return the destination point of bus @var{busid}
  2362. @end deftypefun
  2363. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2364. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2365. @end deftypefun
  2366. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2367. Converts the given timespec @var{ts} into microseconds.
  2368. @end deftypefun
  2369. @deftypefun void starpu_profiling_bus_helper_display_summary (void)
  2370. Displays statistics about the bus on stderr. if the environment
  2371. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2372. automatically by @code{starpu_shutdown()}.
  2373. @end deftypefun
  2374. @deftypefun void starpu_profiling_worker_helper_display_summary (void)
  2375. Displays statistics about the workers on stderr if the environment
  2376. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2377. automatically by @code{starpu_shutdown()}.
  2378. @end deftypefun
  2379. @deftypefun void starpu_data_display_memory_stats ()
  2380. Display statistics about the current data handles registered within
  2381. StarPU. StarPU must have been configured with the option
  2382. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2383. @end deftypefun
  2384. @node Theoretical lower bound on execution time API
  2385. @section Theoretical lower bound on execution time
  2386. @deftypefun void starpu_bound_start (int @var{deps}, int @var{prio})
  2387. Start recording tasks (resets stats). @var{deps} tells whether
  2388. dependencies should be recorded too (this is quite expensive)
  2389. @end deftypefun
  2390. @deftypefun void starpu_bound_stop (void)
  2391. Stop recording tasks
  2392. @end deftypefun
  2393. @deftypefun void starpu_bound_print_dot ({FILE *}@var{output})
  2394. Print the DAG that was recorded
  2395. @end deftypefun
  2396. @deftypefun void starpu_bound_compute ({double *}@var{res}, {double *}@var{integer_res}, int @var{integer})
  2397. Get theoretical upper bound (in ms) (needs glpk support detected by @code{configure} script). It returns 0 if some performance models are not calibrated.
  2398. @end deftypefun
  2399. @deftypefun void starpu_bound_print_lp ({FILE *}@var{output})
  2400. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2401. the lp format
  2402. @end deftypefun
  2403. @deftypefun void starpu_bound_print_mps ({FILE *}@var{output})
  2404. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2405. the mps format
  2406. @end deftypefun
  2407. @deftypefun void starpu_bound_print ({FILE *}@var{output}, int @var{integer})
  2408. Emit statistics of actual execution vs theoretical upper bound. @var{integer}
  2409. permits to choose between integer solving (which takes a long time but is
  2410. correct), and relaxed solving (which provides an approximate solution).
  2411. @end deftypefun
  2412. @node CUDA extensions
  2413. @section CUDA extensions
  2414. @defmac STARPU_USE_CUDA
  2415. This macro is defined when StarPU has been installed with CUDA
  2416. support. It should be used in your code to detect the availability of
  2417. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2418. @end defmac
  2419. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2420. This function gets the current worker's CUDA stream.
  2421. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2422. function is only provided for convenience so that programmers can easily use
  2423. asynchronous operations within codelets without having to create a stream by
  2424. hand. Note that the application is not forced to use the stream provided by
  2425. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2426. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2427. the likelihood of having all transfers overlapped.
  2428. @end deftypefun
  2429. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2430. This function returns a pointer to device properties for worker @var{workerid}
  2431. (assumed to be a CUDA worker).
  2432. @end deftypefun
  2433. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2434. Report a CUDA error.
  2435. @end deftypefun
  2436. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2437. Calls starpu_cuda_report_error, passing the current function, file and line
  2438. position.
  2439. @end defmac
  2440. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2441. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2442. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2443. The function first tries to copy the data asynchronous (unless
  2444. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2445. @var{stream} is @code{NULL}, it copies the data synchronously.
  2446. The function returns @code{-EAGAIN} if the asynchronous launch was
  2447. successfull. It returns 0 if the synchronous copy was successful, or
  2448. fails otherwise.
  2449. @end deftypefun
  2450. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2451. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2452. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2453. the @code{starpu_conf} structure.
  2454. @end deftypefun
  2455. @deftypefun void starpu_cublas_init (void)
  2456. This function initializes CUBLAS on every CUDA device.
  2457. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2458. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2459. controlled by StarPU. This call blocks until CUBLAS has been properly
  2460. initialized on every device.
  2461. @end deftypefun
  2462. @deftypefun void starpu_cublas_shutdown (void)
  2463. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2464. @end deftypefun
  2465. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2466. Report a cublas error.
  2467. @end deftypefun
  2468. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2469. Calls starpu_cublas_report_error, passing the current function, file and line
  2470. position.
  2471. @end defmac
  2472. @node OpenCL extensions
  2473. @section OpenCL extensions
  2474. @menu
  2475. * Writing OpenCL kernels:: Writing OpenCL kernels
  2476. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2477. * Loading OpenCL kernels:: Loading OpenCL kernels
  2478. * OpenCL statistics:: Collecting statistics from OpenCL
  2479. * OpenCL utilities:: Utilities for OpenCL
  2480. @end menu
  2481. @defmac STARPU_USE_OPENCL
  2482. This macro is defined when StarPU has been installed with OpenCL
  2483. support. It should be used in your code to detect the availability of
  2484. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2485. @end defmac
  2486. @node Writing OpenCL kernels
  2487. @subsection Writing OpenCL kernels
  2488. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2489. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2490. @end deftypefun
  2491. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2492. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2493. @end deftypefun
  2494. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2495. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2496. @end deftypefun
  2497. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2498. Return the context of the current worker.
  2499. @end deftypefun
  2500. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2501. Return the computation kernel command queue of the current worker.
  2502. @end deftypefun
  2503. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2504. Sets the arguments of a given kernel. The list of arguments must be given as
  2505. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2506. The last argument must be 0. Returns the number of arguments that were
  2507. successfully set. In case of failure, returns the id of the argument
  2508. that could not be set and @var{err} is set to the error returned by
  2509. OpenCL. Otherwise, returns the number of arguments that were set.
  2510. @cartouche
  2511. @smallexample
  2512. int n;
  2513. cl_int err;
  2514. cl_kernel kernel;
  2515. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2516. sizeof(foo), &foo,
  2517. sizeof(bar), &bar,
  2518. 0);
  2519. if (n != 2)
  2520. fprintf(stderr, "Error : %d\n", err);
  2521. @end smallexample
  2522. @end cartouche
  2523. @end deftypefun
  2524. @node Compiling OpenCL kernels
  2525. @subsection Compiling OpenCL kernels
  2526. Source codes for OpenCL kernels can be stored in a file or in a
  2527. string. StarPU provides functions to build the program executable for
  2528. each available OpenCL device as a @code{cl_program} object. This
  2529. program executable can then be loaded within a specific queue as
  2530. explained in the next section. These are only helpers, Applications
  2531. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2532. use (e.g. different programs on the different OpenCL devices, for
  2533. relocation purpose for instance).
  2534. @deftp {Data Type} {struct starpu_opencl_program}
  2535. Stores the OpenCL programs as compiled for the different OpenCL
  2536. devices. The different fields are:
  2537. @table @asis
  2538. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2539. Stores each program for each OpenCL device.
  2540. @end table
  2541. @end deftp
  2542. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2543. @anchor{starpu_opencl_load_opencl_from_file}
  2544. This function compiles an OpenCL source code stored in a file.
  2545. @end deftypefun
  2546. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2547. This function compiles an OpenCL source code stored in a string.
  2548. @end deftypefun
  2549. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2550. This function unloads an OpenCL compiled code.
  2551. @end deftypefun
  2552. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2553. @anchor{starpu_opencl_load_program_source}
  2554. Store the contents of the file @var{source_file_name} in the buffer
  2555. @var{opencl_program_source}. The file @var{source_file_name} can be
  2556. located in the current directory, or in the directory specified by the
  2557. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2558. directory @code{share/starpu/opencl} of the installation directory of
  2559. StarPU, or in the source directory of StarPU.
  2560. When the file is found, @code{located_file_name} is the full name of
  2561. the file as it has been located on the system, @code{located_dir_name}
  2562. the directory where it has been located. Otherwise, they are both set
  2563. to the empty string.
  2564. @end deftypefun
  2565. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2566. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2567. with the given options @code{build_options} and stores the result in
  2568. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2569. filename as @code{source_file_name}. The compilation is done for every
  2570. OpenCL device, and the filename is suffixed with the vendor id and the
  2571. device id of the OpenCL device.
  2572. @end deftypefun
  2573. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2574. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2575. with the given options @code{build_options} and stores the result in
  2576. the directory @code{$STARPU_HOME/.starpu/opencl}
  2577. with the filename
  2578. @code{file_name}. The compilation is done for every
  2579. OpenCL device, and the filename is suffixed with the vendor id and the
  2580. device id of the OpenCL device.
  2581. @end deftypefun
  2582. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2583. Compile the binary OpenCL kernel identified with @var{id}. For every
  2584. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2585. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2586. @end deftypefun
  2587. @node Loading OpenCL kernels
  2588. @subsection Loading OpenCL kernels
  2589. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2590. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2591. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2592. @var{kernel_name}
  2593. @end deftypefun
  2594. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2595. Release the given @var{kernel}, to be called after kernel execution.
  2596. @end deftypefun
  2597. @node OpenCL statistics
  2598. @subsection OpenCL statistics
  2599. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2600. This function allows to collect statistics on a kernel execution.
  2601. After termination of the kernels, the OpenCL codelet should call this function
  2602. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2603. collect statistics about the kernel execution (used cycles, consumed power).
  2604. @end deftypefun
  2605. @node OpenCL utilities
  2606. @subsection OpenCL utilities
  2607. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2608. Return the error message in English corresponding to @var{status}, an
  2609. OpenCL error code.
  2610. @end deftypefun
  2611. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2612. Given a valid error @var{status}, prints the corresponding error message on
  2613. stdout, along with the given function name @var{func}, the given filename
  2614. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2615. @end deftypefun
  2616. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2617. Call the function @code{starpu_opencl_display_error} with the given
  2618. error @var{status}, the current function name, current file and line
  2619. number, and a empty message.
  2620. @end defmac
  2621. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2622. Call the function @code{starpu_opencl_display_error} and abort.
  2623. @end deftypefun
  2624. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2625. Call the function @code{starpu_opencl_report_error} with the given
  2626. error @var{status}, with the current function name, current file and
  2627. line number, and a empty message.
  2628. @end defmac
  2629. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2630. Call the function @code{starpu_opencl_report_error} with the given
  2631. message and the given error @var{status}, with the current function
  2632. name, current file and line number.
  2633. @end defmac
  2634. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2635. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2636. valid combination of cl_mem_flags values.
  2637. @end deftypefun
  2638. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2639. Copy @var{size} bytes from the given @var{ptr} on
  2640. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2641. @var{offset} is the offset, in bytes, in @var{buffer}.
  2642. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2643. synchronised before returning. If non NULL, @var{event} can be used
  2644. after the call to wait for this particular copy to complete.
  2645. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2646. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2647. was successful, or to 0 if event was NULL.
  2648. @end deftypefun
  2649. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2650. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2651. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2652. @var{offset} is the offset, in bytes, in @var{buffer}.
  2653. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2654. synchronised before returning. If non NULL, @var{event} can be used
  2655. after the call to wait for this particular copy to complete.
  2656. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2657. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2658. was successful, or to 0 if event was NULL.
  2659. @end deftypefun
  2660. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2661. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2662. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2663. OpenCL @var{dst_node}.
  2664. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2665. synchronised before returning. If non NULL, @var{event} can be used
  2666. after the call to wait for this particular copy to complete.
  2667. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2668. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2669. was successful, or to 0 if event was NULL.
  2670. @end deftypefun
  2671. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2672. Copy @var{size} bytes from byte offset @var{src_offset} of
  2673. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2674. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2675. synchronised before returning. If non NULL, @var{event} can be used
  2676. after the call to wait for this particular copy to complete.
  2677. The function returns @code{-EAGAIN} if the asynchronous launch was
  2678. successfull. It returns 0 if the synchronous copy was successful, or
  2679. fails otherwise.
  2680. @end deftypefun
  2681. @node Miscellaneous helpers
  2682. @section Miscellaneous helpers
  2683. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2684. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2685. The @var{asynchronous} parameter indicates whether the function should
  2686. block or not. In the case of an asynchronous call, it is possible to
  2687. synchronize with the termination of this operation either by the means of
  2688. implicit dependencies (if enabled) or by calling
  2689. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2690. this callback function is executed after the handle has been copied, and it is
  2691. given the @var{callback_arg} pointer as argument.
  2692. @end deftypefun
  2693. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2694. This function executes the given function on a subset of workers.
  2695. When calling this method, the offloaded function specified by the first argument is
  2696. executed by every StarPU worker that may execute the function.
  2697. The second argument is passed to the offloaded function.
  2698. The last argument specifies on which types of processing units the function
  2699. should be executed. Similarly to the @var{where} field of the
  2700. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2701. should be executed on every CUDA device and every CPU by passing
  2702. @code{STARPU_CPU|STARPU_CUDA}.
  2703. This function blocks until the function has been executed on every appropriate
  2704. processing units, so that it may not be called from a callback function for
  2705. instance.
  2706. @end deftypefun
  2707. @node FXT Support
  2708. @section FXT Support
  2709. @deftypefun void starpu_fxt_start_profiling (void)
  2710. Start recording the trace. The trace is by default started from
  2711. @code{starpu_init()} call, but can be paused by using
  2712. @code{starpu_fxt_stop_profiling}, in which case
  2713. @code{starpu_fxt_start_profiling} should be called to specify when to resume
  2714. recording events.
  2715. @end deftypefun
  2716. @deftypefun void starpu_fxt_stop_profiling (void)
  2717. Stop recording the trace. The trace is by default stopped at
  2718. @code{starpu_shutdown()} call. @code{starpu_fxt_stop_profiling} can however be
  2719. used to stop it earlier. @code{starpu_fxt_start_profiling} can then be called to
  2720. start recording it again, etc.
  2721. @end deftypefun
  2722. @node FFT Support
  2723. @section FFT Support
  2724. @deftypefun {void *} starpufft_malloc (size_t @var{n})
  2725. Allocates memory for @var{n} bytes. This is preferred over @code{malloc}, since
  2726. it allocates pinned memory, which allows overlapped transfers.
  2727. @end deftypefun
  2728. @deftypefun {void *} starpufft_free (void *@var{p})
  2729. Release memory previously allocated.
  2730. @end deftypefun
  2731. @deftypefun {struct starpufft_plan *} starpufft_plan_dft_1d (int @var{n}, int @var{sign}, unsigned @var{flags})
  2732. Initializes a plan for 1D FFT of size @var{n}. @var{sign} can be
  2733. @code{STARPUFFT_FORWARD} or @code{STARPUFFT_INVERSE}. @var{flags} must be 0.
  2734. @end deftypefun
  2735. @deftypefun {struct starpufft_plan *} starpufft_plan_dft_2d (int @var{n}, int @var{m}, int @var{sign}, unsigned @var{flags})
  2736. Initializes a plan for 2D FFT of size (@var{n}, @var{m}). @var{sign} can be
  2737. @code{STARPUFFT_FORWARD} or @code{STARPUFFT_INVERSE}. @var{flags} must be 0.
  2738. @end deftypefun
  2739. @deftypefun {struct starpu_task *} starpufft_start (starpufft_plan @var{p}, void *@var{in}, void *@var{out})
  2740. Start an FFT previously planned as @var{p}, using @var{in} and @var{out} as
  2741. input and output. This only submits the task and does not wait for it.
  2742. The application should call @code{starpufft_cleanup} to unregister the data.
  2743. @end deftypefun
  2744. @deftypefun {struct starpu_task *} starpufft_start_handle (starpufft_plan @var{p}, starpu_data_handle_t @var{in}, starpu_data_handle_t @var{out})
  2745. Start an FFT previously planned as @var{p}, using data handles @var{in} and
  2746. @var{out} as input and output (assumed to be vectors of elements of the expected
  2747. types). This only submits the task and does not wait for it.
  2748. @end deftypefun
  2749. @deftypefun void starpufft_execute (starpufft_plan @var{p}, void *@var{in}, void *@var{out})
  2750. Execute an FFT previously planned as @var{p}, using @var{in} and @var{out} as
  2751. input and output. This submits and waits for the task.
  2752. @end deftypefun
  2753. @deftypefun void starpufft_execute_handle (starpufft_plan @var{p}, starpu_data_handle_t @var{in}, starpu_data_handle_t @var{out})
  2754. Execute an FFT previously planned as @var{p}, using data handles @var{in} and
  2755. @var{out} as input and output (assumed to be vectors of elements of the expected
  2756. types). This submits and waits for the task.
  2757. @end deftypefun
  2758. @deftypefun void starpufft_cleanup (starpufft_plan @var{p})
  2759. Releases data for plan @var{p}, in the @code{starpufft_start} case.
  2760. @end deftypefun
  2761. @deftypefun void starpufft_destroy_plan (starpufft_plan @var{p})
  2762. Destroys plan @var{p}, i.e. release all CPU (fftw) and GPU (cufft) resources.
  2763. @end deftypefun
  2764. @node MPI
  2765. @section MPI
  2766. @menu
  2767. * Initialisation::
  2768. * Communication::
  2769. * Communication Cache::
  2770. * MPI Insert Task::
  2771. * Collective Operations::
  2772. @end menu
  2773. @node Initialisation
  2774. @subsection Initialisation
  2775. @deftypefun int starpu_mpi_init (int *@var{argc}, char ***@var{argv}, int initialize_mpi)
  2776. Initializes the starpumpi library. @code{initialize_mpi} indicates if
  2777. MPI should be initialized or not by StarPU. If the value is not @code{0},
  2778. MPI will be initialized by calling @code{MPI_Init_Thread(argc, argv,
  2779. MPI_THREAD_SERIALIZED, ...)}.
  2780. @end deftypefun
  2781. @deftypefun int starpu_mpi_initialize (void)
  2782. This function has been made deprecated. One should use instead the
  2783. function @code{starpu_mpi_init()} defined above.
  2784. This function does not call @code{MPI_Init}, it should be called beforehand.
  2785. @end deftypefun
  2786. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  2787. This function has been made deprecated. One should use instead the
  2788. function @code{starpu_mpi_init()} defined above.
  2789. MPI will be initialized by starpumpi by calling @code{MPI_Init_Thread(argc, argv,
  2790. MPI_THREAD_SERIALIZED, ...)}.
  2791. @end deftypefun
  2792. @deftypefun int starpu_mpi_shutdown (void)
  2793. Cleans the starpumpi library. This must be called between calling
  2794. @code{starpu_mpi} functions and @code{starpu_shutdown()}.
  2795. @code{MPI_Finalize()} will be called if StarPU-MPI has been initialized
  2796. by @code{starpu_mpi_init()}.
  2797. @end deftypefun
  2798. @deftypefun void starpu_mpi_comm_amounts_retrieve (size_t *@var{comm_amounts})
  2799. Retrieve the current amount of communications from the current node in
  2800. the array @code{comm_amounts} which must have a size greater or equal
  2801. to the world size. Communications statistics must be enabled
  2802. (@pxref{STARPU_COMM_STATS}).
  2803. @end deftypefun
  2804. @deftypefun void starpu_mpi_set_communication_tag (int @var{tag})
  2805. @anchor{starpu_mpi_set_communication_tag}
  2806. Tell StarPU-MPI which MPI tag to use for all its communications.
  2807. @end deftypefun
  2808. @deftypefun int starpu_mpi_get_communication_tag (void)
  2809. @anchor{starpu_mpi_get_communication_tag}
  2810. Returns the MPI tag which will be used for all StarPU-MPI communications.
  2811. @end deftypefun
  2812. @node Communication
  2813. @subsection Communication
  2814. @deftypefun int starpu_mpi_send (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2815. Performs a standard-mode, blocking send of @var{data_handle} to the
  2816. node @var{dest} using the message tag @code{mpi_tag} within the
  2817. communicator @var{comm}.
  2818. @end deftypefun
  2819. @deftypefun int starpu_mpi_recv (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  2820. Performs a standard-mode, blocking receive in @var{data_handle} from the
  2821. node @var{source} using the message tag @code{mpi_tag} within the
  2822. communicator @var{comm}.
  2823. @end deftypefun
  2824. @deftypefun int starpu_mpi_isend (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2825. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2826. node @var{dest} using the message tag @code{mpi_tag} within the
  2827. communicator @var{comm}. After the call, the pointer to the request
  2828. @var{req} can be used to test or to wait for the completion of the communication.
  2829. @end deftypefun
  2830. @deftypefun int starpu_mpi_irecv (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2831. Posts a nonblocking receive in @var{data_handle} from the
  2832. node @var{source} using the message tag @code{mpi_tag} within the
  2833. communicator @var{comm}. After the call, the pointer to the request
  2834. @var{req} can be used to test or to wait for the completion of the communication.
  2835. @end deftypefun
  2836. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  2837. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2838. node @var{dest} using the message tag @code{mpi_tag} within the
  2839. communicator @var{comm}. On completion, the @var{callback} function is
  2840. called with the argument @var{arg}. Similarly to the pthread detached
  2841. functionality, when a detached communication completes, its resources
  2842. are automatically released back to the system, there is no need to
  2843. test or to wait for the completion of the request.
  2844. @end deftypefun
  2845. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  2846. Posts a nonblocking receive in @var{data_handle} from the
  2847. node @var{source} using the message tag @code{mpi_tag} within the
  2848. communicator @var{comm}. On completion, the @var{callback} function is
  2849. called with the argument @var{arg}. Similarly to the pthread detached
  2850. functionality, when a detached communication completes, its resources
  2851. are automatically released back to the system, there is no need to
  2852. test or to wait for the completion of the request.
  2853. @end deftypefun
  2854. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  2855. Returns when the operation identified by request @var{req} is complete.
  2856. @end deftypefun
  2857. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  2858. If the operation identified by @var{req} is complete, set @var{flag}
  2859. to 1. The @var{status} object is set to contain information on the
  2860. completed operation.
  2861. @end deftypefun
  2862. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  2863. Blocks the caller until all group members of the communicator
  2864. @var{comm} have called it.
  2865. @end deftypefun
  2866. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  2867. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2868. node @var{dest} using the message tag @code{mpi_tag} within the
  2869. communicator @var{comm}. On completion, @var{tag} is unlocked.
  2870. @end deftypefun
  2871. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  2872. Posts a nonblocking receive in @var{data_handle} from the
  2873. node @var{source} using the message tag @code{mpi_tag} within the
  2874. communicator @var{comm}. On completion, @var{tag} is unlocked.
  2875. @end deftypefun
  2876. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  2877. Posts @var{array_size} standard-mode, non blocking send. Each post
  2878. sends the n-th data of the array @var{data_handle} to the n-th node of
  2879. the array @var{dest}
  2880. using the n-th message tag of the array @code{mpi_tag} within the n-th
  2881. communicator of the array
  2882. @var{comm}. On completion of the all the requests, @var{tag} is unlocked.
  2883. @end deftypefun
  2884. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  2885. Posts @var{array_size} nonblocking receive. Each post receives in the
  2886. n-th data of the array @var{data_handle} from the n-th
  2887. node of the array @var{source} using the n-th message tag of the array
  2888. @code{mpi_tag} within the n-th communicator of the array @var{comm}.
  2889. On completion of the all the requests, @var{tag} is unlocked.
  2890. @end deftypefun
  2891. @node Communication Cache
  2892. @subsection Communication Cache
  2893. @deftypefun void starpu_mpi_cache_flush (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  2894. Clear the send and receive communication cache for the data
  2895. @var{data_handle}. The function has to be called synchronously by all
  2896. the MPI nodes.
  2897. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  2898. @end deftypefun
  2899. @deftypefun void starpu_mpi_cache_flush_all_data (MPI_Comm @var{comm})
  2900. Clear the send and receive communication cache for all data. The
  2901. function has to be called synchronously by all the MPI nodes.
  2902. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  2903. @end deftypefun
  2904. @node MPI Insert Task
  2905. @subsection MPI Insert Task
  2906. @deftypefun int starpu_data_set_tag (starpu_data_handle_t @var{handle}, int @var{tag})
  2907. Tell StarPU-MPI which MPI tag to use when exchanging the data.
  2908. @end deftypefun
  2909. @deftypefun int starpu_data_get_tag (starpu_data_handle_t @var{handle})
  2910. Returns the MPI tag to be used when exchanging the data.
  2911. @end deftypefun
  2912. @deftypefun int starpu_data_set_rank (starpu_data_handle_t @var{handle}, int @var{rank})
  2913. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  2914. always keep an up-to-date value, and will by default execute tasks which write
  2915. to it.
  2916. @end deftypefun
  2917. @deftypefun int starpu_data_get_rank (starpu_data_handle_t @var{handle})
  2918. Returns the last value set by @code{starpu_data_set_rank}.
  2919. @end deftypefun
  2920. @deftypefun starpu_data_handle_t starpu_data_get_data_handle_from_tag (int @var{tag})
  2921. Returns the data handle associated to the MPI tag, or NULL if there is not.
  2922. @end deftypefun
  2923. @defmac STARPU_EXECUTE_ON_NODE
  2924. this macro is used when calling @code{starpu_mpi_insert_task}, and
  2925. must be followed by a integer value which specified the node on which
  2926. to execute the codelet.
  2927. @end defmac
  2928. @defmac STARPU_EXECUTE_ON_DATA
  2929. this macro is used when calling @code{starpu_mpi_insert_task}, and
  2930. must be followed by a data handle to specify that the node owning the
  2931. given data will execute the codelet.
  2932. @end defmac
  2933. @deftypefun int starpu_mpi_insert_task (MPI_Comm @var{comm}, struct starpu_codelet *@var{codelet}, ...)
  2934. Create and submit a task corresponding to @var{codelet} with the following
  2935. arguments. The argument list must be zero-terminated.
  2936. The arguments following the codelets are the same types as for the
  2937. function @code{starpu_insert_task} defined in @ref{Insert Task
  2938. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  2939. integer allows to specify the MPI node to execute the codelet. It is also
  2940. possible to specify that the node owning a specific data will execute
  2941. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  2942. handle.
  2943. The internal algorithm is as follows:
  2944. @enumerate
  2945. @item Find out which MPI node is going to execute the codelet.
  2946. @enumerate
  2947. @item If there is only one node owning data in W mode, it will
  2948. be selected;
  2949. @item If there is several nodes owning data in W node, the one
  2950. selected will be the one having the least data in R mode so as
  2951. to minimize the amount of data to be transfered;
  2952. @item The argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  2953. integer can be used to specify the node;
  2954. @item The argument @code{STARPU_EXECUTE_ON_DATA} followed by a
  2955. data handle can be used to specify that the node owing the given
  2956. data will execute the codelet.
  2957. @end enumerate
  2958. @item Send and receive data as requested. Nodes owning data which need to be
  2959. read by the task are sending them to the MPI node which will execute it. The
  2960. latter receives them.
  2961. @item Execute the codelet. This is done by the MPI node selected in the
  2962. 1st step of the algorithm.
  2963. @item If several MPI nodes own data to be written to, send written
  2964. data back to their owners.
  2965. @end enumerate
  2966. The algorithm also includes a communication cache mechanism that
  2967. allows not to send data twice to the same MPI node, unless the data
  2968. has been modified. The cache can be disabled
  2969. (@pxref{STARPU_MPI_CACHE}).
  2970. @c todo parler plus du cache
  2971. @end deftypefun
  2972. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node})
  2973. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  2974. owner if needed. At least the target node and the owner have to call the
  2975. function.
  2976. @end deftypefun
  2977. @deftypefun void starpu_mpi_get_data_on_node_detached (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node}, {void (*}@var{callback})(void*), {void *}@var{arg})
  2978. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  2979. owner if needed. At least the target node and the owner have to call the
  2980. function. On reception, the @var{callback} function is called with the
  2981. argument @var{arg}.
  2982. @end deftypefun
  2983. @node Collective Operations
  2984. @subsection Collective Operations
  2985. @deftypefun void starpu_mpi_redux_data (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  2986. Perform a reduction on the given data. All nodes send the data to its
  2987. owner node which will perform a reduction.
  2988. @end deftypefun
  2989. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  2990. Scatter data among processes of the communicator based on the ownership of
  2991. the data. For each data of the array @var{data_handles}, the
  2992. process @var{root} sends the data to the process owning this data.
  2993. Processes receiving data must have valid data handles to receive them.
  2994. On completion of the collective communication, the @var{scallback} function is
  2995. called with the argument @var{sarg} on the process @var{root}, the @var{rcallback} function is
  2996. called with the argument @var{rarg} on any other process.
  2997. @end deftypefun
  2998. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  2999. Gather data from the different processes of the communicator onto the
  3000. process @var{root}. Each process owning data handle in the array
  3001. @var{data_handles} will send them to the process @var{root}. The
  3002. process @var{root} must have valid data handles to receive the data.
  3003. On completion of the collective communication, the @var{rcallback} function is
  3004. called with the argument @var{rarg} on the process @var{root}, the @var{scallback} function is
  3005. called with the argument @var{sarg} on any other process.
  3006. @end deftypefun
  3007. @node Task Bundles
  3008. @section Task Bundles
  3009. @deftp {Data Type} {starpu_task_bundle_t}
  3010. Opaque structure describing a list of tasks that should be scheduled
  3011. on the same worker whenever it's possible. It must be considered as a
  3012. hint given to the scheduler as there is no guarantee that they will be
  3013. executed on the same worker.
  3014. @end deftp
  3015. @deftypefun void starpu_task_bundle_create ({starpu_task_bundle_t *}@var{bundle})
  3016. Factory function creating and initializing @var{bundle}, when the call returns, memory needed is allocated and @var{bundle} is ready to use.
  3017. @end deftypefun
  3018. @deftypefun int starpu_task_bundle_insert (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  3019. Insert @var{task} in @var{bundle}. Until @var{task} is removed from @var{bundle} its expected length and data transfer time will be considered along those of the other tasks of @var{bundle}.
  3020. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted.
  3021. @end deftypefun
  3022. @deftypefun int starpu_task_bundle_remove (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  3023. Remove @var{task} from @var{bundle}.
  3024. Of course @var{task} must have been previously inserted @var{bundle}.
  3025. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted. Doing so would result in undefined behaviour.
  3026. @end deftypefun
  3027. @deftypefun void starpu_task_bundle_close (starpu_task_bundle_t @var{bundle})
  3028. Inform the runtime that the user won't modify @var{bundle} anymore, it means no more inserting or removing task. Thus the runtime can destroy it when possible.
  3029. @end deftypefun
  3030. @deftypefun double starpu_task_bundle_expected_length (starpu_task_bundle_t @var{bundle}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3031. Return the expected duration of the entire task bundle in µs.
  3032. @end deftypefun
  3033. @deftypefun double starpu_task_bundle_expected_power (starpu_task_bundle_t @var{bundle}, enum starpu_perfmodel_archtype @var{arch}, unsigned @var{nimpl})
  3034. Return the expected power consumption of the entire task bundle in J.
  3035. @end deftypefun
  3036. @deftypefun double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t @var{bundle}, unsigned @var{memory_node})
  3037. Return the time (in µs) expected to transfer all data used within the bundle.
  3038. @end deftypefun
  3039. @node Task Lists
  3040. @section Task Lists
  3041. @deftp {Data Type} {struct starpu_task_list}
  3042. Stores a double-chained list of tasks
  3043. @end deftp
  3044. @deftypefun void starpu_task_list_init ({struct starpu_task_list *}@var{list})
  3045. Initialize a list structure
  3046. @end deftypefun
  3047. @deftypefun void starpu_task_list_push_front ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3048. Push a task at the front of a list
  3049. @end deftypefun
  3050. @deftypefun void starpu_task_list_push_back ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3051. Push a task at the back of a list
  3052. @end deftypefun
  3053. @deftypefun {struct starpu_task *} starpu_task_list_front ({struct starpu_task_list *}@var{list})
  3054. Get the front of the list (without removing it)
  3055. @end deftypefun
  3056. @deftypefun {struct starpu_task *} starpu_task_list_back ({struct starpu_task_list *}@var{list})
  3057. Get the back of the list (without removing it)
  3058. @end deftypefun
  3059. @deftypefun int starpu_task_list_empty ({struct starpu_task_list *}@var{list})
  3060. Test if a list is empty
  3061. @end deftypefun
  3062. @deftypefun void starpu_task_list_erase ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3063. Remove an element from the list
  3064. @end deftypefun
  3065. @deftypefun {struct starpu_task *} starpu_task_list_pop_front ({struct starpu_task_list *}@var{list})
  3066. Remove the element at the front of the list
  3067. @end deftypefun
  3068. @deftypefun {struct starpu_task *} starpu_task_list_pop_back ({struct starpu_task_list *}@var{list})
  3069. Remove the element at the back of the list
  3070. @end deftypefun
  3071. @deftypefun {struct starpu_task *} starpu_task_list_begin ({struct starpu_task_list *}@var{list})
  3072. Get the first task of the list.
  3073. @end deftypefun
  3074. @deftypefun {struct starpu_task *} starpu_task_list_end ({struct starpu_task_list *}@var{list})
  3075. Get the end of the list.
  3076. @end deftypefun
  3077. @deftypefun {struct starpu_task *} starpu_task_list_next ({struct starpu_task *}@var{task})
  3078. Get the next task of the list. This is not erase-safe.
  3079. @end deftypefun
  3080. @node Using Parallel Tasks
  3081. @section Using Parallel Tasks
  3082. These are used by parallel tasks:
  3083. @deftypefun int starpu_combined_worker_get_size (void)
  3084. Return the size of the current combined worker, i.e. the total number of cpus
  3085. running the same task in the case of SPMD parallel tasks, or the total number
  3086. of threads that the task is allowed to start in the case of FORKJOIN parallel
  3087. tasks.
  3088. @end deftypefun
  3089. @deftypefun int starpu_combined_worker_get_rank (void)
  3090. Return the rank of the current thread within the combined worker. Can only be
  3091. used in FORKJOIN parallel tasks, to know which part of the task to work on.
  3092. @end deftypefun
  3093. Most of these are used for schedulers which support parallel tasks.
  3094. @deftypefun unsigned starpu_combined_worker_get_count (void)
  3095. Return the number of different combined workers.
  3096. @end deftypefun
  3097. @deftypefun int starpu_combined_worker_get_id (void)
  3098. Return the identifier of the current combined worker.
  3099. @end deftypefun
  3100. @deftypefun int starpu_combined_worker_assign_workerid (int @var{nworkers}, int @var{workerid_array}[])
  3101. Register a new combined worker and get its identifier
  3102. @end deftypefun
  3103. @deftypefun int starpu_combined_worker_get_description (int @var{workerid}, {int *}@var{worker_size}, {int **}@var{combined_workerid})
  3104. Get the description of a combined worker
  3105. @end deftypefun
  3106. @deftypefun int starpu_combined_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned @var{nimpl})
  3107. Variant of starpu_worker_can_execute_task compatible with combined workers
  3108. @end deftypefun
  3109. @deftypefun void starpu_parallel_task_barrier_init ({struct starpu_task* }@var{task}, int @var{workerid})
  3110. Initialise the barrier for the parallel task, and dispatch the task
  3111. between the different combined workers
  3112. @end deftypefun
  3113. @deftp {Data Type} {struct starpu_machine_topology}
  3114. @table @asis
  3115. @item @code{unsigned nworkers}
  3116. Total number of workers.
  3117. @item @code{unsigned ncombinedworkers}
  3118. Total number of combined workers.
  3119. @item @code{hwloc_topology_t hwtopology}
  3120. Topology as detected by hwloc.
  3121. To maintain ABI compatibility when hwloc is not available, the field
  3122. is replaced with @code{void *dummy}
  3123. @item @code{unsigned nhwcpus}
  3124. Total number of CPUs, as detected by the topology code. May be different from
  3125. the actual number of CPU workers.
  3126. @item @code{unsigned nhwcudagpus}
  3127. Total number of CUDA devices, as detected. May be different from the actual
  3128. number of CUDA workers.
  3129. @item @code{unsigned nhwopenclgpus}
  3130. Total number of OpenCL devices, as detected. May be different from the actual
  3131. number of CUDA workers.
  3132. @item @code{unsigned ncpus}
  3133. Actual number of CPU workers used by StarPU.
  3134. @item @code{unsigned ncudagpus}
  3135. Actual number of CUDA workers used by StarPU.
  3136. @item @code{unsigned nopenclgpus}
  3137. Actual number of OpenCL workers used by StarPU.
  3138. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  3139. Indicates the successive cpu identifier that should be used to bind the
  3140. workers. It is either filled according to the user's explicit
  3141. parameters (from starpu_conf) or according to the STARPU_WORKERS_CPUID env.
  3142. variable. Otherwise, a round-robin policy is used to distributed the workers
  3143. over the cpus.
  3144. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  3145. Indicates the successive cpu identifier that should be used by the CUDA
  3146. driver. It is either filled according to the user's explicit parameters (from
  3147. starpu_conf) or according to the STARPU_WORKERS_CUDAID env. variable. Otherwise,
  3148. they are taken in ID order.
  3149. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  3150. Indicates the successive cpu identifier that should be used by the OpenCL
  3151. driver. It is either filled according to the user's explicit parameters (from
  3152. starpu_conf) or according to the STARPU_WORKERS_OPENCLID env. variable. Otherwise,
  3153. they are taken in ID order.
  3154. @end table
  3155. @end deftp
  3156. @node Scheduling Contexts
  3157. @section Scheduling Contexts
  3158. StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the other hand grouping tasks in bundles that will be executed by a single specified worker.
  3159. In contrast when we group workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to the context.
  3160. Scheduling contexts can be created, deleted and modified dynamically.
  3161. @deftypefun unsigned starpu_sched_ctx_create (const char *@var{policy_name}, int *@var{workerids_ctx}, int @var{nworkers_ctx}, const char *@var{sched_ctx_name})
  3162. This function creates a scheduling context which uses the scheduling policy indicated in the first argument and assigns the workers indicated in the second argument to execute the tasks submitted to it.
  3163. The return value represents the identifier of the context that has just been created. It will be further used to indicate the context the tasks will be submitted to. The return value should be at most @code{STARPU_NMAX_SCHED_CTXS}.
  3164. @end deftypefun
  3165. @deftypefun void starpu_sched_ctx_delete (unsigned @var{sched_ctx_id})
  3166. Delete scheduling context @var{sched_ctx_id} and transfer remaining workers to the inheritor scheduling context.
  3167. @end deftypefun
  3168. @deftypefun void starpu_sched_ctx_add_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3169. This function adds dynamically the workers indicated in the first argument to the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3170. @end deftypefun
  3171. @deftypefun void starpu_sched_ctx_remove_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3172. This function removes the workers indicated in the first argument from the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3173. @end deftypefun
  3174. A scheduling context manages a collection of workers that can be memorized using different data structures. Thus, a generic structure is available in order to simplify the choice of its type.
  3175. Only the list data structure is available but further data structures(like tree) implementations are foreseen.
  3176. @deftp {Data Type} {struct starpu_worker_collection}
  3177. @table @asis
  3178. @item @code{void *workerids}
  3179. The workerids managed by the collection
  3180. @item @code{unsigned nworkers}
  3181. The number of workerids
  3182. @item @code{pthread_key_t cursor_key} (optional)
  3183. The cursor needed to iterate the collection (depending on the data structure)
  3184. @item @code{int type}
  3185. The type of structure (currently STARPU_WORKER_LIST is the only one available)
  3186. @item @code{unsigned (*has_next)(struct starpu_worker_collection *workers)}
  3187. Checks if there is a next worker
  3188. @item @code{int (*get_next)(struct starpu_worker_collection *workers)}
  3189. Gets the next worker
  3190. @item @code{int (*add)(struct starpu_worker_collection *workers, int worker)}
  3191. Adds a worker to the collection
  3192. @item @code{int (*remove)(struct starpu_worker_collection *workers, int worker)}
  3193. Removes a worker from the collection
  3194. @item @code{void* (*init)(struct starpu_worker_collection *workers)}
  3195. Initialize the collection
  3196. @item @code{void (*deinit)(struct starpu_worker_collection *workers)}
  3197. Deinitialize the colection
  3198. @item @code{void (*init_cursor)(struct starpu_worker_collection *workers)} (optional)
  3199. Initialize the cursor if there is one
  3200. @item @code{void (*deinit_cursor)(struct starpu_worker_collection *workers)} (optional)
  3201. Deinitialize the cursor if there is one
  3202. @end table
  3203. @end deftp
  3204. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_create_worker_collection (unsigned @var{sched_ctx_id}, int @var{type})
  3205. Create a worker collection of the type indicated by the last parameter for the context specified through the first parameter.
  3206. @end deftypefun
  3207. @deftypefun void starpu_sched_ctx_delete_worker_collection (unsigned @var{sched_ctx_id})
  3208. Delete the worker collection of the specified scheduling context
  3209. @end deftypefun
  3210. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_get_worker_collection (unsigned @var{sched_ctx_id})
  3211. Return the worker collection managed by the indicated context
  3212. @end deftypefun
  3213. @deftypefun void starpu_sched_ctx_set_context (unsigned *@var{sched_ctx_id})
  3214. Set the scheduling context the subsequent tasks will be submitted to
  3215. @end deftypefun
  3216. @deftypefun unsigned starpu_sched_ctx_get_context (void)
  3217. Return the scheduling context the tasks are currently submitted to
  3218. @end deftypefun
  3219. @deftypefun unsigned starpu_sched_ctx_get_nworkers (unsigned @var{sched_ctx_id})
  3220. Return the number of workers managed by the specified contexts
  3221. (Usually needed to verify if it manages any workers or if it should be blocked)
  3222. @end deftypefun
  3223. @deftypefun unsigned starpu_sched_ctx_get_nshared_workers (unsigned @var{sched_ctx_id}, unsigned @var{sched_ctx_id2})
  3224. Return the number of workers shared by two contexts
  3225. @end deftypefun
  3226. @deftypefun int starpu_sched_ctx_set_min_priority (unsigned @var{sched_ctx_id}, int @var{min_prio})
  3227. Defines the minimum task priority level supported by the scheduling
  3228. policy of the given scheduler context. The
  3229. default minimum priority level is the same as the default priority level which
  3230. is 0 by convention. The application may access that value by calling the
  3231. @code{starpu_sched_ctx_get_min_priority} function. This function should only be
  3232. called from the initialization method of the scheduling policy, and should not
  3233. be used directly from the application.
  3234. @end deftypefun
  3235. @deftypefun int starpu_sched_ctx_set_max_priority (unsigned @var{sched_ctx_id}, int @var{max_prio})
  3236. Defines the maximum priority level supported by the scheduling policy of the given scheduler context. The
  3237. default maximum priority level is 1. The application may access that value by
  3238. calling the @code{starpu_sched_ctx_get_max_priority} function. This function should
  3239. only be called from the initialization method of the scheduling policy, and
  3240. should not be used directly from the application.
  3241. @end deftypefun
  3242. @deftypefun int starpu_sched_ctx_get_min_priority (unsigned @var{sched_ctx_id})
  3243. Returns the current minimum priority level supported by the
  3244. scheduling policy of the given scheduler context.
  3245. @end deftypefun
  3246. @deftypefun int starpu_sched_ctx_get_max_priority (unsigned @var{sched_ctx_id})
  3247. Returns the current maximum priority level supported by the
  3248. scheduling policy of the given scheduler context.
  3249. @end deftypefun
  3250. @node Scheduling Policy
  3251. @section Scheduling Policy
  3252. TODO
  3253. While StarPU comes with a variety of scheduling policies (@pxref{Task
  3254. scheduling policy}), it may sometimes be desirable to implement custom
  3255. policies to address specific problems. The API described below allows
  3256. users to write their own scheduling policy.
  3257. @deftp {Data Type} {struct starpu_sched_policy}
  3258. This structure contains all the methods that implement a scheduling policy. An
  3259. application may specify which scheduling strategy in the @code{sched_policy}
  3260. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3261. function. The different fields are:
  3262. @table @asis
  3263. @item @code{void (*init_sched)(unsigned sched_ctx_id)}
  3264. Initialize the scheduling policy.
  3265. @item @code{void (*deinit_sched)(unsigned sched_ctx_id)}
  3266. Cleanup the scheduling policy.
  3267. @item @code{int (*push_task)(struct starpu_task *)}
  3268. Insert a task into the scheduler.
  3269. @item @code{void (*push_task_notify)(struct starpu_task *, int workerid)}
  3270. Notify the scheduler that a task was pushed on a given worker. This method is
  3271. called when a task that was explicitely assigned to a worker becomes ready and
  3272. is about to be executed by the worker. This method therefore permits to keep
  3273. the state of of the scheduler coherent even when StarPU bypasses the scheduling
  3274. strategy.
  3275. @item @code{struct starpu_task *(*pop_task)(unsigned sched_ctx_id)} (optional)
  3276. Get a task from the scheduler. The mutex associated to the worker is already
  3277. taken when this method is called. If this method is defined as @code{NULL}, the
  3278. worker will only execute tasks from its local queue. In this case, the
  3279. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3280. assign tasks to the different workers.
  3281. @item @code{struct starpu_task *(*pop_every_task)(unsigned sched_ctx_id)}
  3282. Remove all available tasks from the scheduler (tasks are chained by the means
  3283. of the prev and next fields of the starpu_task structure). The mutex associated
  3284. to the worker is already taken when this method is called. This is currently
  3285. not used.
  3286. @item @code{void (*pre_exec_hook)(struct starpu_task *)} (optional)
  3287. This method is called every time a task is starting.
  3288. @item @code{void (*post_exec_hook)(struct starpu_task *)} (optional)
  3289. This method is called every time a task has been executed.
  3290. @item @code{void (*add_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3291. Initialize scheduling structures corresponding to each worker used by the policy.
  3292. @item @code{void (*remove_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3293. Deinitialize scheduling structures corresponding to each worker used by the policy.
  3294. @item @code{const char *policy_name} (optional)
  3295. Name of the policy.
  3296. @item @code{const char *policy_description} (optional)
  3297. Description of the policy.
  3298. @end table
  3299. @end deftp
  3300. @deftypefun {struct starpu_sched_policy **} starpu_sched_get_predefined_policies ()
  3301. Return an NULL-terminated array of all the predefined scheduling policies.
  3302. @end deftypefun
  3303. @deftypefun void starpu_sched_ctx_set_policy_data (unsigned @var{sched_ctx_id}, {void *} @var{policy_data})
  3304. Each scheduling policy uses some specific data (queues, variables, additional condition variables).
  3305. It is memorize through a local structure. This function assigns it to a scheduling context.
  3306. @end deftypefun
  3307. @deftypefun void* starpu_sched_ctx_get_policy_data (unsigned @var{sched_ctx_id})
  3308. Returns the policy data previously assigned to a context
  3309. @end deftypefun
  3310. @deftypefun int starpu_sched_set_min_priority (int @var{min_prio})
  3311. Defines the minimum task priority level supported by the scheduling policy. The
  3312. default minimum priority level is the same as the default priority level which
  3313. is 0 by convention. The application may access that value by calling the
  3314. @code{starpu_sched_get_min_priority} function. This function should only be
  3315. called from the initialization method of the scheduling policy, and should not
  3316. be used directly from the application.
  3317. @end deftypefun
  3318. @deftypefun int starpu_sched_set_max_priority (int @var{max_prio})
  3319. Defines the maximum priority level supported by the scheduling policy. The
  3320. default maximum priority level is 1. The application may access that value by
  3321. calling the @code{starpu_sched_get_max_priority} function. This function should
  3322. only be called from the initialization method of the scheduling policy, and
  3323. should not be used directly from the application.
  3324. @end deftypefun
  3325. @deftypefun int starpu_sched_get_min_priority (void)
  3326. Returns the current minimum priority level supported by the
  3327. scheduling policy
  3328. @end deftypefun
  3329. @deftypefun int starpu_sched_get_max_priority (void)
  3330. Returns the current maximum priority level supported by the
  3331. scheduling policy
  3332. @end deftypefun
  3333. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3334. The scheduling policy may put tasks directly into a worker's local queue so
  3335. that it is not always necessary to create its own queue when the local queue
  3336. is sufficient. If @var{back} not null, @var{task} is put at the back of the queue
  3337. where the worker will pop tasks first. Setting @var{back} to 0 therefore ensures
  3338. a FIFO ordering.
  3339. @end deftypefun
  3340. @deftypefun int starpu_push_task_end ({struct starpu_task} *@var{task})
  3341. This function must be called by a scheduler to notify that the given
  3342. task has just been pushed.
  3343. @end deftypefun
  3344. @deftypefun int starpu_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned {nimpl})
  3345. Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute.
  3346. @end deftypefun
  3347. @deftypefun double starpu_timing_now (void)
  3348. Return the current date in µs
  3349. @end deftypefun
  3350. @deftypefun uint32_t starpu_task_footprint ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *} @var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3351. Returns the footprint for a given task
  3352. @end deftypefun
  3353. @deftypefun double starpu_task_expected_length ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3354. Returns expected task duration in µs
  3355. @end deftypefun
  3356. @deftypefun double starpu_worker_get_relative_speedup ({enum starpu_perfmodel_archtype} @var{perf_archtype})
  3357. Returns an estimated speedup factor relative to CPU speed
  3358. @end deftypefun
  3359. @deftypefun double starpu_task_expected_data_transfer_time (unsigned @var{memory_node}, {struct starpu_task *}@var{task})
  3360. Returns expected data transfer time in µs
  3361. @end deftypefun
  3362. @deftypefun double starpu_data_expected_transfer_time (starpu_data_handle_t @var{handle}, unsigned @var{memory_node}, {enum starpu_data_access_mode} @var{mode})
  3363. Predict the transfer time (in µs) to move a handle to a memory node
  3364. @end deftypefun
  3365. @deftypefun double starpu_task_expected_power ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3366. Returns expected power consumption in J
  3367. @end deftypefun
  3368. @deftypefun double starpu_task_expected_conversion_time ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned {nimpl})
  3369. Returns expected conversion time in ms (multiformat interface only)
  3370. @end deftypefun
  3371. @node Running drivers
  3372. @section Running drivers
  3373. @deftypefun int starpu_driver_run ({struct starpu_driver *}@var{d})
  3374. Initialize the given driver, run it until it receives a request to terminate,
  3375. deinitialize it and return 0 on success. It returns -EINVAL if @code{d->type}
  3376. is not a valid StarPU device type (STARPU_CPU_WORKER, STARPU_CUDA_WORKER or
  3377. STARPU_OPENCL_WORKER). This is the same as using the following
  3378. functions: calling @code{starpu_driver_init()}, then calling
  3379. @code{starpu_driver_run_once()} in a loop, and eventually
  3380. @code{starpu_driver_deinit()}.
  3381. @end deftypefun
  3382. @deftypefun int starpu_driver_init (struct starpu_driver *@var{d})
  3383. Initialize the given driver. Returns 0 on success, -EINVAL if
  3384. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3385. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3386. @end deftypefun
  3387. @deftypefun int starpu_driver_run_once (struct starpu_driver *@var{d})
  3388. Run the driver once, then returns 0 on success, -EINVAL if
  3389. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3390. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3391. @end deftypefun
  3392. @deftypefun int starpu_driver_deinit (struct starpu_driver *@var{d})
  3393. Deinitialize the given driver. Returns 0 on success, -EINVAL if
  3394. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3395. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3396. @end deftypefun
  3397. @deftypefun void starpu_drivers_request_termination (void)
  3398. Notify all running drivers they should terminate.
  3399. @end deftypefun
  3400. @node Expert mode
  3401. @section Expert mode
  3402. @deftypefun void starpu_wake_all_blocked_workers (void)
  3403. Wake all the workers, so they can inspect data requests and task submissions
  3404. again.
  3405. @end deftypefun
  3406. @deftypefun int starpu_progression_hook_register (unsigned (*@var{func})(void *arg), void *@var{arg})
  3407. Register a progression hook, to be called when workers are idle.
  3408. @end deftypefun
  3409. @deftypefun void starpu_progression_hook_deregister (int @var{hook_id})
  3410. Unregister a given progression hook.
  3411. @end deftypefun