dw_sparse_cg.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2008-2011,2014,2015,2017 Université de Bordeaux
  4. * Copyright (C) 2012,2013,2017 Inria
  5. * Copyright (C) 2010-2013,2015-2017 CNRS
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*
  19. * Conjugate gradients for Sparse matrices
  20. * The task graph is declared through tag dependencies
  21. */
  22. #include "dw_sparse_cg.h"
  23. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  24. static struct starpu_task *create_task(starpu_tag_t id)
  25. {
  26. struct starpu_task *task = starpu_task_create();
  27. task->use_tag = 1;
  28. task->tag_id = id;
  29. return task;
  30. }
  31. static void create_data(float **_nzvalA, float **_vecb, float **_vecx, uint32_t *_nnz, uint32_t *_nrow, uint32_t **_colind, uint32_t **_rowptr)
  32. {
  33. /* we need a sparse symetric (definite positive ?) matrix and a "dense" vector */
  34. /* example of 3-band matrix */
  35. float *nzval;
  36. uint32_t nnz;
  37. uint32_t *colind;
  38. uint32_t *rowptr;
  39. nnz = 3*_size-2;
  40. nzval = malloc(nnz*sizeof(float));
  41. colind = malloc(nnz*sizeof(uint32_t));
  42. rowptr = malloc(_size*sizeof(uint32_t));
  43. assert(nzval);
  44. assert(colind);
  45. assert(rowptr);
  46. /* fill the matrix */
  47. unsigned row;
  48. unsigned pos = 0;
  49. for (row = 0; row < _size; row++)
  50. {
  51. rowptr[row] = pos;
  52. if (row > 0)
  53. {
  54. nzval[pos] = 1.0f;
  55. colind[pos] = row-1;
  56. pos++;
  57. }
  58. nzval[pos] = 5.0f;
  59. colind[pos] = row;
  60. pos++;
  61. if (row < _size - 1)
  62. {
  63. nzval[pos] = 1.0f;
  64. colind[pos] = row+1;
  65. pos++;
  66. }
  67. }
  68. *_nnz = nnz;
  69. *_nrow = _size;
  70. *_nzvalA = nzval;
  71. *_colind = colind;
  72. *_rowptr = rowptr;
  73. STARPU_ASSERT(pos == nnz);
  74. /* initiate the 2 vectors */
  75. float *invec, *outvec;
  76. invec = malloc(_size*sizeof(float));
  77. assert(invec);
  78. outvec = malloc(_size*sizeof(float));
  79. assert(outvec);
  80. /* fill those */
  81. unsigned ind;
  82. for (ind = 0; ind < _size; ind++)
  83. {
  84. invec[ind] = 2.0f;
  85. outvec[ind] = 0.0f;
  86. }
  87. *_vecb = invec;
  88. *_vecx = outvec;
  89. }
  90. void init_problem(void)
  91. {
  92. /* create the sparse input matrix */
  93. float *nzval;
  94. float *vecb;
  95. float *vecx;
  96. uint32_t nnz;
  97. uint32_t nrow;
  98. uint32_t *colind;
  99. uint32_t *rowptr;
  100. create_data(&nzval, &vecb, &vecx, &nnz, &nrow, &colind, &rowptr);
  101. conjugate_gradient(nzval, vecb, vecx, nnz, nrow, colind, rowptr);
  102. }
  103. /*
  104. * cg initialization phase
  105. */
  106. static struct starpu_codelet cl1 =
  107. {
  108. .cpu_funcs = { cpu_codelet_func_1 },
  109. .cpu_funcs_name = { "cpu_codelet_func_1" },
  110. .nbuffers = 4,
  111. .modes = { STARPU_R, STARPU_R, STARPU_W, STARPU_R },
  112. };
  113. static struct starpu_codelet cl2 =
  114. {
  115. .cpu_funcs = { cpu_codelet_func_2 },
  116. .cpu_funcs_name = { "cpu_codelet_func_2" },
  117. .nbuffers = 2,
  118. .modes = { STARPU_W, STARPU_R },
  119. };
  120. static struct starpu_codelet cl3 =
  121. {
  122. .cpu_funcs = { cpu_codelet_func_3 },
  123. .cpu_funcs_name = { "cpu_codelet_func_3" },
  124. #ifdef STARPU_USE_CUDA
  125. .cuda_funcs = { cublas_codelet_func_3 },
  126. #endif
  127. .nbuffers = 1,
  128. .modes = { STARPU_R },
  129. };
  130. void init_cg(struct cg_problem *problem)
  131. {
  132. int ret;
  133. problem->i = 0;
  134. /* r = b - A x */
  135. struct starpu_task *task1 = create_task(1UL);
  136. task1->cl = &cl1;
  137. task1->handles[0] = problem->ds_matrixA;
  138. task1->handles[1] = problem->ds_vecx;
  139. task1->handles[2] = problem->ds_vecr;
  140. task1->handles[3] = problem->ds_vecb;
  141. /* d = r */
  142. struct starpu_task *task2 = create_task(2UL);
  143. task2->cl = &cl2;
  144. task2->handles[0] = problem->ds_vecd;
  145. task2->handles[1] = problem->ds_vecr;
  146. starpu_tag_declare_deps((starpu_tag_t)2UL, 1, (starpu_tag_t)1UL);
  147. /* delta_new = trans(r) r */
  148. struct starpu_task *task3 = create_task(3UL);
  149. task3->cl = &cl3;
  150. task3->cl_arg = problem;
  151. task3->cl_arg_size = sizeof(*problem);
  152. task3->handles[0] = problem->ds_vecr;
  153. task3->callback_func = iteration_cg;
  154. task3->callback_arg = problem;
  155. /* XXX 3 should only depend on 1 ... */
  156. starpu_tag_declare_deps((starpu_tag_t)3UL, 1, (starpu_tag_t)2UL);
  157. /* launch the computation now */
  158. ret = starpu_task_submit(task1);
  159. if (STARPU_UNLIKELY(ret == -ENODEV))
  160. {
  161. FPRINTF(stderr, "No worker may execute this task\n");
  162. exit(0);
  163. }
  164. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  165. ret = starpu_task_submit(task2);
  166. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  167. ret = starpu_task_submit(task3);
  168. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  169. }
  170. /*
  171. * the inner iteration of the cg algorithm
  172. * the codelet code launcher is its own callback !
  173. */
  174. static struct starpu_codelet cl4 =
  175. {
  176. .cpu_funcs = { cpu_codelet_func_4 },
  177. .cpu_funcs_name = { "cpu_codelet_func_4" },
  178. .nbuffers = 3,
  179. .modes = { STARPU_R, STARPU_R, STARPU_W },
  180. };
  181. static struct starpu_codelet cl5 =
  182. {
  183. .cpu_funcs = { cpu_codelet_func_5 },
  184. .cpu_funcs_name = { "cpu_codelet_func_5" },
  185. #ifdef STARPU_USE_CUDA
  186. .cuda_funcs = { cublas_codelet_func_5 },
  187. #endif
  188. .nbuffers = 2,
  189. .modes = { STARPU_R, STARPU_R },
  190. };
  191. static struct starpu_codelet cl6 =
  192. {
  193. .cpu_funcs = { cpu_codelet_func_6 },
  194. .cpu_funcs_name = { "cpu_codelet_func_6" },
  195. #ifdef STARPU_USE_CUDA
  196. .cuda_funcs = { cublas_codelet_func_6 },
  197. .cuda_flags = { STARPU_CUDA_ASYNC },
  198. #endif
  199. .nbuffers = 2,
  200. .modes = { STARPU_RW, STARPU_R },
  201. };
  202. static struct starpu_codelet cl7 =
  203. {
  204. .cpu_funcs = { cpu_codelet_func_7 },
  205. .cpu_funcs_name = { "cpu_codelet_func_7" },
  206. #ifdef STARPU_USE_CUDA
  207. .cuda_funcs = { cublas_codelet_func_7 },
  208. .cuda_flags = { STARPU_CUDA_ASYNC },
  209. #endif
  210. .nbuffers = 2,
  211. .modes = { STARPU_RW, STARPU_R },
  212. };
  213. static struct starpu_codelet cl8 =
  214. {
  215. .cpu_funcs = { cpu_codelet_func_8 },
  216. .cpu_funcs_name = { "cpu_codelet_func_8" },
  217. #ifdef STARPU_USE_CUDA
  218. .cuda_funcs = { cublas_codelet_func_8 },
  219. #endif
  220. .nbuffers = 1,
  221. .modes = { STARPU_R },
  222. };
  223. static struct starpu_codelet cl9 =
  224. {
  225. .cpu_funcs = { cpu_codelet_func_9 },
  226. .cpu_funcs_name = { "cpu_codelet_func_9" },
  227. #ifdef STARPU_USE_CUDA
  228. .cuda_funcs = { cublas_codelet_func_9 },
  229. .cuda_flags = { STARPU_CUDA_ASYNC },
  230. #endif
  231. .nbuffers = 2,
  232. .modes = { STARPU_RW, STARPU_R },
  233. };
  234. void launch_new_cg_iteration(struct cg_problem *problem)
  235. {
  236. int ret;
  237. unsigned iter = problem->i;
  238. unsigned long long maskiter = ((unsigned long long)iter*1024);
  239. /* q = A d */
  240. struct starpu_task *task4 = create_task(maskiter | 4UL);
  241. task4->cl = &cl4;
  242. task4->handles[0] = problem->ds_matrixA;
  243. task4->handles[1] = problem->ds_vecd;
  244. task4->handles[2] = problem->ds_vecq;
  245. /* alpha = delta_new / ( trans(d) q )*/
  246. struct starpu_task *task5 = create_task(maskiter | 5UL);
  247. task5->cl = &cl5;
  248. task5->cl_arg = problem;
  249. task5->cl_arg_size = sizeof(*problem);
  250. task5->handles[0] = problem->ds_vecd;
  251. task5->handles[1] = problem->ds_vecq;
  252. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 5UL), 1, (starpu_tag_t)(maskiter | 4UL));
  253. /* x = x + alpha d */
  254. struct starpu_task *task6 = create_task(maskiter | 6UL);
  255. task6->cl = &cl6;
  256. task6->cl_arg = problem;
  257. task6->cl_arg_size = sizeof(*problem);
  258. task6->handles[0] = problem->ds_vecx;
  259. task6->handles[1] = problem->ds_vecd;
  260. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 6UL), 1, (starpu_tag_t)(maskiter | 5UL));
  261. /* r = r - alpha q */
  262. struct starpu_task *task7 = create_task(maskiter | 7UL);
  263. task7->cl = &cl7;
  264. task7->cl_arg = problem;
  265. task7->cl_arg_size = sizeof(*problem);
  266. task7->handles[0] = problem->ds_vecr;
  267. task7->handles[1] = problem->ds_vecq;
  268. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 7UL), 1, (starpu_tag_t)(maskiter | 6UL));
  269. /* update delta_* and compute beta */
  270. struct starpu_task *task8 = create_task(maskiter | 8UL);
  271. task8->cl = &cl8;
  272. task8->cl_arg = problem;
  273. task8->cl_arg_size = sizeof(*problem);
  274. task8->handles[0] = problem->ds_vecr;
  275. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 8UL), 1, (starpu_tag_t)(maskiter | 7UL));
  276. /* d = r + beta d */
  277. struct starpu_task *task9 = create_task(maskiter | 9UL);
  278. task9->cl = &cl9;
  279. task9->cl_arg = problem;
  280. task9->cl_arg_size = sizeof(*problem);
  281. task9->handles[0] = problem->ds_vecd;
  282. task9->handles[1] = problem->ds_vecr;
  283. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 9UL), 1, (starpu_tag_t)(maskiter | 8UL));
  284. task9->callback_func = iteration_cg;
  285. task9->callback_arg = problem;
  286. /* launch the computation now */
  287. ret = starpu_task_submit(task4);
  288. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  289. ret = starpu_task_submit(task5);
  290. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  291. ret = starpu_task_submit(task6);
  292. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  293. ret = starpu_task_submit(task7);
  294. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  295. ret = starpu_task_submit(task8);
  296. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  297. ret = starpu_task_submit(task9);
  298. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  299. }
  300. void iteration_cg(void *problem)
  301. {
  302. struct cg_problem *pb = problem;
  303. FPRINTF(stdout, "i : %d (MAX %d)\n\tdelta_new %f (%f)\n", pb->i, MAXITER, pb->delta_new, sqrt(pb->delta_new / pb->size));
  304. if ((pb->i < MAXITER) &&
  305. (pb->delta_new > pb->epsilon) )
  306. {
  307. if (pb->i % 1000 == 0)
  308. FPRINTF(stdout, "i : %d\n\tdelta_new %f (%f)\n", pb->i, pb->delta_new, sqrt(pb->delta_new / pb->size));
  309. pb->i++;
  310. /* we did not reach the stop condition yet */
  311. launch_new_cg_iteration(problem);
  312. }
  313. else
  314. {
  315. /* we may stop */
  316. FPRINTF(stdout, "We are done ... after %d iterations \n", pb->i - 1);
  317. FPRINTF(stdout, "i : %d\n\tdelta_new %2.5f\n", pb->i, pb->delta_new);
  318. sem_post(pb->sem);
  319. }
  320. }
  321. /*
  322. * initializing the problem
  323. */
  324. void conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  325. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  326. {
  327. /* first register all the data structures to StarPU */
  328. starpu_data_handle_t ds_matrixA;
  329. starpu_data_handle_t ds_vecx, ds_vecb;
  330. starpu_data_handle_t ds_vecr, ds_vecd, ds_vecq;
  331. /* first the user-allocated data */
  332. starpu_csr_data_register(&ds_matrixA, STARPU_MAIN_RAM, nnz, nrow,
  333. (uintptr_t)nzvalA, colind, rowptr, 0, sizeof(float));
  334. starpu_vector_data_register(&ds_vecx, STARPU_MAIN_RAM, (uintptr_t)vecx, nrow, sizeof(float));
  335. starpu_vector_data_register(&ds_vecb, STARPU_MAIN_RAM, (uintptr_t)vecb, nrow, sizeof(float));
  336. /* then allocate the algorithm intern data */
  337. float *ptr_vecr, *ptr_vecd, *ptr_vecq;
  338. unsigned i;
  339. ptr_vecr = malloc(nrow*sizeof(float));
  340. ptr_vecd = malloc(nrow*sizeof(float));
  341. ptr_vecq = malloc(nrow*sizeof(float));
  342. for (i = 0; i < nrow; i++)
  343. {
  344. ptr_vecr[i] = 0.0f;
  345. ptr_vecd[i] = 0.0f;
  346. ptr_vecq[i] = 0.0f;
  347. }
  348. FPRINTF(stdout, "nrow = %u \n", nrow);
  349. /* and register them as well */
  350. starpu_vector_data_register(&ds_vecr, STARPU_MAIN_RAM, (uintptr_t)ptr_vecr, nrow, sizeof(float));
  351. starpu_vector_data_register(&ds_vecd, STARPU_MAIN_RAM, (uintptr_t)ptr_vecd, nrow, sizeof(float));
  352. starpu_vector_data_register(&ds_vecq, STARPU_MAIN_RAM, (uintptr_t)ptr_vecq, nrow, sizeof(float));
  353. /* we now have the complete problem */
  354. struct cg_problem problem;
  355. problem.ds_matrixA = ds_matrixA;
  356. problem.ds_vecx = ds_vecx;
  357. problem.ds_vecb = ds_vecb;
  358. problem.ds_vecr = ds_vecr;
  359. problem.ds_vecd = ds_vecd;
  360. problem.ds_vecq = ds_vecq;
  361. problem.epsilon = EPSILON;
  362. problem.size = nrow;
  363. problem.delta_old = 1.0;
  364. problem.delta_new = 1.0; /* just to make sure we do at least one iteration */
  365. /* we need a semaphore to synchronize with callbacks */
  366. sem_t sem;
  367. sem_init(&sem, 0, 0U);
  368. problem.sem = &sem;
  369. init_cg(&problem);
  370. sem_wait(&sem);
  371. sem_destroy(&sem);
  372. starpu_task_wait_for_all();
  373. print_results(vecx, nrow);
  374. starpu_data_unregister(ds_matrixA);
  375. starpu_data_unregister(ds_vecx);
  376. starpu_data_unregister(ds_vecb);
  377. starpu_data_unregister(ds_vecr);
  378. starpu_data_unregister(ds_vecd);
  379. starpu_data_unregister(ds_vecq);
  380. free(ptr_vecr);
  381. free(ptr_vecd);
  382. free(ptr_vecq);
  383. }
  384. void do_conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  385. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  386. {
  387. /* start the runtime */
  388. int ret;
  389. ret = starpu_init(NULL);
  390. if (ret == -ENODEV)
  391. exit(77);
  392. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  393. starpu_cublas_init();
  394. conjugate_gradient(nzvalA, vecb, vecx, nnz, nrow, colind, rowptr);
  395. starpu_shutdown();
  396. }