123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- /* dormqr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__2 = 2;
- static integer c__65 = 65;
- /* Subroutine */ int _starpu_dormqr_(char *side, char *trans, integer *m, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
- c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
- i__5;
- char ch__1[2];
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
- /* Local variables */
- integer i__;
- doublereal t[4160] /* was [65][64] */;
- integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
- logical left;
- extern logical _starpu_lsame_(char *, char *);
- integer nbmin, iinfo;
- extern /* Subroutine */ int _starpu_dorm2r_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *), _starpu_dlarfb_(char
- *, char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *), _starpu_dlarft_(char *, char *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- logical notran;
- integer ldwork, lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DORMQR overwrites the general real M-by-N matrix C with */
- /* SIDE = 'L' SIDE = 'R' */
- /* TRANS = 'N': Q * C C * Q */
- /* TRANS = 'T': Q**T * C C * Q**T */
- /* where Q is a real orthogonal matrix defined as the product of k */
- /* elementary reflectors */
- /* Q = H(1) H(2) . . . H(k) */
- /* as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N */
- /* if SIDE = 'R'. */
- /* Arguments */
- /* ========= */
- /* SIDE (input) CHARACTER*1 */
- /* = 'L': apply Q or Q**T from the Left; */
- /* = 'R': apply Q or Q**T from the Right. */
- /* TRANS (input) CHARACTER*1 */
- /* = 'N': No transpose, apply Q; */
- /* = 'T': Transpose, apply Q**T. */
- /* M (input) INTEGER */
- /* The number of rows of the matrix C. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix C. N >= 0. */
- /* K (input) INTEGER */
- /* The number of elementary reflectors whose product defines */
- /* the matrix Q. */
- /* If SIDE = 'L', M >= K >= 0; */
- /* if SIDE = 'R', N >= K >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,K) */
- /* The i-th column must contain the vector which defines the */
- /* elementary reflector H(i), for i = 1,2,...,k, as returned by */
- /* DGEQRF in the first k columns of its array argument A. */
- /* A is modified by the routine but restored on exit. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. */
- /* If SIDE = 'L', LDA >= max(1,M); */
- /* if SIDE = 'R', LDA >= max(1,N). */
- /* TAU (input) DOUBLE PRECISION array, dimension (K) */
- /* TAU(i) must contain the scalar factor of the elementary */
- /* reflector H(i), as returned by DGEQRF. */
- /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
- /* On entry, the M-by-N matrix C. */
- /* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
- /* LDC (input) INTEGER */
- /* The leading dimension of the array C. LDC >= max(1,M). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* If SIDE = 'L', LWORK >= max(1,N); */
- /* if SIDE = 'R', LWORK >= max(1,M). */
- /* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
- /* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
- /* blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- --work;
- /* Function Body */
- *info = 0;
- left = _starpu_lsame_(side, "L");
- notran = _starpu_lsame_(trans, "N");
- lquery = *lwork == -1;
- /* NQ is the order of Q and NW is the minimum dimension of WORK */
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if (! left && ! _starpu_lsame_(side, "R")) {
- *info = -1;
- } else if (! notran && ! _starpu_lsame_(trans, "T")) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*k < 0 || *k > nq) {
- *info = -5;
- } else if (*lda < max(1,nq)) {
- *info = -7;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if (*lwork < max(1,nw) && ! lquery) {
- *info = -12;
- }
- if (*info == 0) {
- /* Determine the block size. NB may be at most NBMAX, where NBMAX */
- /* is used to define the local array T. */
- /* Computing MIN */
- /* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 64, i__2 = _starpu_ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1);
- nb = min(i__1,i__2);
- lwkopt = max(1,nw) * nb;
- work[1] = (doublereal) lwkopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DORMQR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*m == 0 || *n == 0 || *k == 0) {
- work[1] = 1.;
- return 0;
- }
- nbmin = 2;
- ldwork = nw;
- if (nb > 1 && nb < *k) {
- iws = nw * nb;
- if (*lwork < iws) {
- nb = *lwork / ldwork;
- /* Computing MAX */
- /* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = nw;
- }
- if (nb < nbmin || nb >= *k) {
- /* Use unblocked code */
- _starpu_dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], &iinfo);
- } else {
- /* Use blocked code */
- if (left && ! notran || ! left && notran) {
- i1 = 1;
- i2 = *k;
- i3 = nb;
- } else {
- i1 = (*k - 1) / nb * nb + 1;
- i2 = 1;
- i3 = -nb;
- }
- if (left) {
- ni = *n;
- jc = 1;
- } else {
- mi = *m;
- ic = 1;
- }
- i__1 = i2;
- i__2 = i3;
- for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- /* Computing MIN */
- i__4 = nb, i__5 = *k - i__ + 1;
- ib = min(i__4,i__5);
- /* Form the triangular factor of the block reflector */
- /* H = H(i) H(i+1) . . . H(i+ib-1) */
- i__4 = nq - i__ + 1;
- _starpu_dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], t, &c__65)
- ;
- if (left) {
- /* H or H' is applied to C(i:m,1:n) */
- mi = *m - i__ + 1;
- ic = i__;
- } else {
- /* H or H' is applied to C(1:m,i:n) */
- ni = *n - i__ + 1;
- jc = i__;
- }
- /* Apply H or H' */
- _starpu_dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
- i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc *
- c_dim1], ldc, &work[1], &ldwork);
- /* L10: */
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DORMQR */
- } /* _starpu_dormqr_ */
|