123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- /* dgeqrf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dgeqrf_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- /* Local variables */
- integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
- extern /* Subroutine */ int _starpu_dgeqr2_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *), _starpu_dlarfb_(char *,
- char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *), _starpu_dlarft_(char *, char *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer ldwork, lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGEQRF computes a QR factorization of a real M-by-N matrix A: */
- /* A = Q * R. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, the elements on and above the diagonal of the array */
- /* contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
- /* upper triangular if m >= n); the elements below the diagonal, */
- /* with the array TAU, represent the orthogonal matrix Q as a */
- /* product of min(m,n) elementary reflectors (see Further */
- /* Details). */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
- /* The scalar factors of the elementary reflectors (see Further */
- /* Details). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,N). */
- /* For optimum performance LWORK >= N*NB, where NB is */
- /* the optimal blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The matrix Q is represented as a product of elementary reflectors */
- /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
- /* and tau in TAU(i). */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- nb = _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
- lwkopt = *n * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else if (*lwork < max(1,*n) && ! lquery) {
- *info = -7;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEQRF", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- k = min(*m,*n);
- if (k == 0) {
- work[1] = 1.;
- return 0;
- }
- nbmin = 2;
- nx = 0;
- iws = *n;
- if (nb > 1 && nb < k) {
- /* Determine when to cross over from blocked to unblocked code. */
- /* Computing MAX */
- i__1 = 0, i__2 = _starpu_ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1);
- nx = max(i__1,i__2);
- if (nx < k) {
- /* Determine if workspace is large enough for blocked code. */
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
- /* Not enough workspace to use optimal NB: reduce NB and */
- /* determine the minimum value of NB. */
- nb = *lwork / ldwork;
- /* Computing MAX */
- i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &
- c_n1);
- nbmin = max(i__1,i__2);
- }
- }
- }
- if (nb >= nbmin && nb < k && nx < k) {
- /* Use blocked code initially */
- i__1 = k - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- /* Computing MIN */
- i__3 = k - i__ + 1;
- ib = min(i__3,nb);
- /* Compute the QR factorization of the current block */
- /* A(i:m,i:i+ib-1) */
- i__3 = *m - i__ + 1;
- _starpu_dgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
- 1], &iinfo);
- if (i__ + ib <= *n) {
- /* Form the triangular factor of the block reflector */
- /* H = H(i) H(i+1) . . . H(i+ib-1) */
- i__3 = *m - i__ + 1;
- _starpu_dlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ *
- a_dim1], lda, &tau[i__], &work[1], &ldwork);
- /* Apply H' to A(i:m,i+ib:n) from the left */
- i__3 = *m - i__ + 1;
- i__4 = *n - i__ - ib + 1;
- _starpu_dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
- i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
- ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib
- + 1], &ldwork);
- }
- /* L10: */
- }
- } else {
- i__ = 1;
- }
- /* Use unblocked code to factor the last or only block. */
- if (i__ <= k) {
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- _starpu_dgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
- , &iinfo);
- }
- work[1] = (doublereal) iws;
- return 0;
- /* End of DGEQRF */
- } /* _starpu_dgeqrf_ */
|