| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 | /* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2009, 2010, 2011  Université de Bordeaux 1 * Copyright (C) 2010  Mehdi Juhoor <mjuhoor@gmail.com> * Copyright (C) 2010, 2011  Centre National de la Recherche Scientifique * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */#include "cholesky.h"/* *	Create the codelets */static starpu_codelet cl11 ={	.where = STARPU_CPU|STARPU_CUDA,	.type = STARPU_SEQ,	.cpu_func = chol_cpu_codelet_update_u11,#ifdef STARPU_USE_CUDA	.cuda_func = chol_cublas_codelet_update_u11,#endif	.nbuffers = 1,	.model = &chol_model_11};static starpu_codelet cl21 ={	.where = STARPU_CPU|STARPU_CUDA,	.type = STARPU_SEQ,	.cpu_func = chol_cpu_codelet_update_u21,#ifdef STARPU_USE_CUDA	.cuda_func = chol_cublas_codelet_update_u21,#endif	.nbuffers = 2,	.model = &chol_model_21};static starpu_codelet cl22 ={	.where = STARPU_CPU|STARPU_CUDA,	.type = STARPU_SEQ,	.max_parallelism = INT_MAX,	.cpu_func = chol_cpu_codelet_update_u22,#ifdef STARPU_USE_CUDA	.cuda_func = chol_cublas_codelet_update_u22,#endif	.nbuffers = 3,	.model = &chol_model_22};/* *	code to bootstrap the factorization *	and construct the DAG */static void callback_turn_spmd_on(void *arg __attribute__ ((unused))){	cl22.type = STARPU_SPMD;}static void _cholesky(starpu_data_handle dataA, unsigned nblocks){	struct timeval start;	struct timeval end;	unsigned i,j,k;	int prio_level = noprio?STARPU_DEFAULT_PRIO:STARPU_MAX_PRIO;	gettimeofday(&start, NULL);	/* create all the DAG nodes */	for (k = 0; k < nblocks; k++)	{                starpu_data_handle sdatakk = starpu_data_get_sub_data(dataA, 2, k, k);                starpu_insert_task(&cl11,                                   STARPU_PRIORITY, prio_level,                                   STARPU_RW, sdatakk,				   STARPU_CALLBACK, (k == 3*nblocks/4)?callback_turn_spmd_on:NULL,                                   0);		for (j = k+1; j<nblocks; j++)		{                        starpu_data_handle sdatakj = starpu_data_get_sub_data(dataA, 2, k, j);                        starpu_insert_task(&cl21,                                           STARPU_PRIORITY, (j == k+1)?prio_level:STARPU_DEFAULT_PRIO,                                           STARPU_R, sdatakk,                                           STARPU_RW, sdatakj,                                           0);			for (i = k+1; i<nblocks; i++)			{				if (i <= j)                                {					starpu_data_handle sdataki = starpu_data_get_sub_data(dataA, 2, k, i);					starpu_data_handle sdataij = starpu_data_get_sub_data(dataA, 2, i, j);										starpu_insert_task(&cl22,                                                           STARPU_PRIORITY, ((i == k+1) && (j == k+1))?prio_level:STARPU_DEFAULT_PRIO,                                                           STARPU_R, sdataki,                                                           STARPU_R, sdatakj,                                                           STARPU_RW, sdataij,                                                           0);                                }			}		}	}	starpu_task_wait_for_all();	starpu_data_unpartition(dataA, 0);	gettimeofday(&end, NULL);	double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));	FPRINTF(stderr, "Computation took (in ms)\n");	FPRINTF(stdout, "%2.2f\n", timing/1000);	unsigned long n = starpu_matrix_get_nx(dataA);	double flop = (1.0f*n*n*n)/3.0f;	FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));}static void cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks){	starpu_data_handle dataA;	/* monitor and partition the A matrix into blocks :	 * one block is now determined by 2 unsigned (i,j) */	starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(float));	struct starpu_data_filter f = {		.filter_func = starpu_vertical_block_filter_func,		.nchildren = nblocks	};	struct starpu_data_filter f2 = {		.filter_func = starpu_block_filter_func,		.nchildren = nblocks	};	starpu_data_map_filters(dataA, 2, &f, &f2);	_cholesky(dataA, nblocks);}int main(int argc, char **argv){	/* create a simple definite positive symetric matrix example	 *	 *	Hilbert matrix : h(i,j) = 1/(i+j+1)	 * */	parse_args(argc, argv);	starpu_init(NULL);	starpu_helper_cublas_init();	float *mat;	starpu_malloc((void **)&mat, (size_t)size*size*sizeof(float));	unsigned i,j;	for (i = 0; i < size; i++)	{		for (j = 0; j < size; j++)		{			mat[j +i*size] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);			/* mat[j +i*size] = ((i == j)?1.0f*size:0.0f); */		}	}/* #define PRINT_OUTPUT */#ifdef PRINT_OUTPUT	FPRINTF(stdout, "Input :\n");	for (j = 0; j < size; j++)	{		for (i = 0; i < size; i++)		{			if (i <= j) {				FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);			}			else {				FPRINTF(stdout, ".\t");			}		}		FPRINTF(stdout, "\n");	}#endif	cholesky(mat, size, size, nblocks);#ifdef PRINT_OUTPUT	FPRINTF(stdout, "Results :\n");	for (j = 0; j < size; j++)	{		for (i = 0; i < size; i++)		{			if (i <= j) {				FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);			}			else {				FPRINTF(stdout, ".\t");				mat[j+i*size] = 0.0f; /* debug */			}		}		FPRINTF(stdout, "\n");	}#endif	if (check)	{		FPRINTF(stderr, "compute explicit LLt ...\n");		for (j = 0; j < size; j++)		{			for (i = 0; i < size; i++)			{				if (i > j) {					mat[j+i*size] = 0.0f; /* debug */				}			}		}		float *test_mat = malloc(size*size*sizeof(float));		STARPU_ASSERT(test_mat);			SSYRK("L", "N", size, size, 1.0f,					mat, size, 0.0f, test_mat, size);			FPRINTF(stderr, "comparing results ...\n");#ifdef PRINT_OUTPUT		for (j = 0; j < size; j++)		{			for (i = 0; i < size; i++)			{				if (i <= j) {					FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size]);				}				else {					FPRINTF(stdout, ".\t");				}			}			FPRINTF(stdout, "\n");		}#endif			for (j = 0; j < size; j++)		{			for (i = 0; i < size; i++)			{				if (i <= j) {	                                float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);	                                float err = abs(test_mat[j +i*size] - orig);	                                if (err > 0.00001) {	                                        FPRINTF(stderr, "Error[%u, %u] --> %2.2f != %2.2f (err %2.2f)\n", i, j, test_mat[j +i*size], orig, err);	                                        assert(0);	                                }	                        }			}	        }	}	starpu_helper_cublas_shutdown();	starpu_shutdown();	return 0;}
 |