basic-api.texi 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_conf}
  34. This structure is passed to the @code{starpu_init} function in order
  35. to configure StarPU.
  36. When the default value is used, StarPU automatically selects the number
  37. of processing units and takes the default scheduling policy. This parameter
  38. overwrites the equivalent environment variables.
  39. @table @asis
  40. @item @code{const char *sched_policy_name} (default = NULL)
  41. This is the name of the scheduling policy. This can also be specified
  42. with the @code{STARPU_SCHED} environment variable.
  43. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  44. This is the definition of the scheduling policy. This field is ignored
  45. if @code{sched_policy_name} is set.
  46. @item @code{int ncpus} (default = -1)
  47. This is the number of CPU cores that StarPU can use. This can also be
  48. specified with the @code{STARPU_NCPUS} environment variable.
  49. @item @code{int ncuda} (default = -1)
  50. This is the number of CUDA devices that StarPU can use. This can also
  51. be specified with the @code{STARPU_NCUDA} environment variable.
  52. @item @code{int nopencl} (default = -1)
  53. This is the number of OpenCL devices that StarPU can use. This can
  54. also be specified with the @code{STARPU_NOPENCL} environment variable.
  55. @item @code{int nspus} (default = -1)
  56. This is the number of Cell SPUs that StarPU can use. This can also be
  57. specified with the @code{STARPU_NGORDON} environment variable.
  58. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  59. If this flag is set, the @code{workers_bindid} array indicates where
  60. the different workers are bound, otherwise StarPU automatically
  61. selects where to bind the different workers unless the
  62. @code{STARPU_WORKERS_CPUID} environment variable is set. The
  63. @code{STARPU_WORKERS_CPUID} environment variable is ignored if the
  64. @code{use_explicit_workers_bindid} flag is set.
  65. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  66. If the @code{use_explicit_workers_bindid} flag is set, this array
  67. indicates where to bind the different workers. The i-th entry of the
  68. @code{workers_bindid} indicates the logical identifier of the
  69. processor which should execute the i-th worker. Note that the logical
  70. ordering of the CPUs is either determined by the OS, or provided by
  71. the @code{hwloc} library in case it is available. When this flag is
  72. set, the @ref{STARPU_WORKERS_CPUID} environment variable is ignored.
  73. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  74. If this flag is set, the CUDA workers will be attached to the CUDA
  75. devices specified in the @code{workers_cuda_gpuid} array. Otherwise,
  76. StarPU affects the CUDA devices in a round-robin fashion. When this
  77. flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  78. ignored.
  79. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  80. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  81. contains the logical identifiers of the CUDA devices (as used by
  82. @code{cudaGetDevice}).
  83. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  84. If this flag is set, the OpenCL workers will be attached to the OpenCL
  85. devices specified in the @code{workers_opencl_gpuid} array. Otherwise,
  86. StarPU affects the OpenCL devices in a round-robin fashion.
  87. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  88. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  89. contains the logical identifiers of the OpenCL devices.
  90. todo
  91. @item @code{int calibrate} (default = 0)
  92. If this flag is set, StarPU will calibrate the performance models when
  93. executing tasks. If this value is equal to -1, the default value is
  94. used. The default value is overwritten by the @code{STARPU_CALIBRATE}
  95. environment variable when it is set.
  96. @item @code{int single_combined_worker} (default = 0)
  97. By default, StarPU creates various combined workers according to the machine
  98. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  99. not support concurrent calls to parallel code. In such case, setting this flag
  100. makes StarPU only create one combined worker, containing all
  101. the CPU workers. The default value is overwritten by the
  102. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  103. @end table
  104. @end deftp
  105. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  106. This function initializes the @var{conf} structure passed as argument
  107. with the default values. In case some configuration parameters are already
  108. specified through environment variables, @code{starpu_conf_init} initializes
  109. the fields of the structure according to the environment variables. For
  110. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  111. @code{.ncuda} field of the structure passed as argument.
  112. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  113. indicates that the argument was NULL.
  114. @end deftypefun
  115. @deftypefun void starpu_shutdown (void)
  116. This is StarPU termination method. It must be called at the end of the
  117. application: statistics and other post-mortem debugging information are not
  118. guaranteed to be available until this method has been called.
  119. @end deftypefun
  120. @node Workers' Properties
  121. @section Workers' Properties
  122. @deftp {Data Type} {enum starpu_archtype}
  123. The different values are:
  124. @table @asis
  125. @item @code{STARPU_CPU_WORKER}
  126. @item @code{STARPU_CUDA_WORKER}
  127. @item @code{STARPU_OPENCL_WORKER}
  128. @item @code{STARPU_GORDON_WORKER}
  129. @end table
  130. @end deftp
  131. @deftypefun unsigned starpu_worker_get_count (void)
  132. This function returns the number of workers (i.e. processing units executing
  133. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  134. @end deftypefun
  135. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  136. Returns the number of workers of the given type indicated by the argument. A positive
  137. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  138. the type is not valid otherwise.
  139. @end deftypefun
  140. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  141. This function returns the number of CPUs controlled by StarPU. The returned
  142. value should be at most @code{STARPU_MAXCPUS}.
  143. @end deftypefun
  144. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  145. This function returns the number of CUDA devices controlled by StarPU. The returned
  146. value should be at most @code{STARPU_MAXCUDADEVS}.
  147. @end deftypefun
  148. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  149. This function returns the number of OpenCL devices controlled by StarPU. The returned
  150. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  151. @end deftypefun
  152. @deftypefun unsigned starpu_spu_worker_get_count (void)
  153. This function returns the number of Cell SPUs controlled by StarPU.
  154. @end deftypefun
  155. @deftypefun int starpu_worker_get_id (void)
  156. This function returns the identifier of the current worker, i.e the one associated to the calling
  157. thread. The returned value is either -1 if the current context is not a StarPU
  158. worker (i.e. when called from the application outside a task or a callback), or
  159. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  160. @end deftypefun
  161. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  162. This function gets the list of identifiers of workers with the given
  163. type. It fills the workerids array with the identifiers of the workers that have the type
  164. indicated in the first argument. The maxsize argument indicates the size of the
  165. workids array. The returned value gives the number of identifiers that were put
  166. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  167. workers with the appropriate type: in that case, the array is filled with the
  168. maxsize first elements. To avoid such overflows, the value of maxsize can be
  169. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  170. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  171. @end deftypefun
  172. @deftypefun int starpu_worker_get_devid (int @var{id})
  173. This functions returns the device id of the given worker. The worker
  174. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  175. CUDA worker, this device identifier is the logical device identifier exposed by
  176. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  177. identifier of a CPU worker is the logical identifier of the core on which the
  178. worker was bound; this identifier is either provided by the OS or by the
  179. @code{hwloc} library in case it is available.
  180. @end deftypefun
  181. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  182. This function returns the type of processing unit associated to a
  183. worker. The worker identifier is a value returned by the
  184. @code{starpu_worker_get_id} function). The returned value
  185. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  186. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  187. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  188. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  189. identifier is unspecified.
  190. @end deftypefun
  191. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  192. This function allows to get the name of a given worker.
  193. StarPU associates a unique human readable string to each processing unit. This
  194. function copies at most the @var{maxlen} first bytes of the unique string
  195. associated to a worker identified by its identifier @var{id} into the
  196. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  197. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  198. function on an invalid identifier results in an unspecified behaviour.
  199. @end deftypefun
  200. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  201. This function returns the identifier of the memory node associated to the
  202. worker identified by @var{workerid}.
  203. @end deftypefun
  204. @node Data Library
  205. @section Data Library
  206. @menu
  207. * Introduction to Data Library::
  208. * Basic Data Library API::
  209. * Access registered data from the application::
  210. @end menu
  211. This section describes the data management facilities provided by StarPU.
  212. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  213. design their own data interfaces if required.
  214. @node Introduction to Data Library
  215. @subsection Introduction
  216. Data management is done at a high-level in StarPU: rather than accessing a mere
  217. list of contiguous buffers, the tasks may manipulate data that are described by
  218. a high-level construct which we call data interface.
  219. An example of data interface is the "vector" interface which describes a
  220. contiguous data array on a spefic memory node. This interface is a simple
  221. structure containing the number of elements in the array, the size of the
  222. elements, and the address of the array in the appropriate address space (this
  223. address may be invalid if there is no valid copy of the array in the memory
  224. node). More informations on the data interfaces provided by StarPU are
  225. given in @ref{Data Interfaces}.
  226. When a piece of data managed by StarPU is used by a task, the task
  227. implementation is given a pointer to an interface describing a valid copy of
  228. the data that is accessible from the current processing unit.
  229. Every worker is associated to a memory node which is a logical abstraction of
  230. the address space from which the processing unit gets its data. For instance,
  231. the memory node associated to the different CPU workers represents main memory
  232. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  233. Every memory node is identified by a logical index which is accessible from the
  234. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  235. to StarPU, the specified memory node indicates where the piece of data
  236. initially resides (we also call this memory node the home node of a piece of
  237. data).
  238. @node Basic Data Library API
  239. @subsection Basic Data Library API
  240. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  241. This function allocates data of the given size in main memory. It will also try to pin it in
  242. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  243. thus permit data transfer and computation overlapping. The allocated buffer must
  244. be freed thanks to the @code{starpu_free} function.
  245. @end deftypefun
  246. @deftypefun int starpu_free (void *@var{A})
  247. This function frees memory which has previously allocated with
  248. @code{starpu_malloc}.
  249. @end deftypefun
  250. @deftp {Data Type} {enum starpu_access_mode}
  251. This datatype describes a data access mode. The different available modes are:
  252. @table @asis
  253. @item @code{STARPU_R}: read-only mode.
  254. @item @code{STARPU_W}: write-only mode.
  255. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  256. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  257. @item @code{STARPU_REDUX} reduction mode.
  258. @end table
  259. @end deftp
  260. @deftp {Data Type} {starpu_data_handle_t}
  261. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  262. data. Once a piece of data has been registered to StarPU, it is associated to a
  263. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  264. over the entire machine, so that we can maintain data consistency and locate
  265. data replicates for instance.
  266. @end deftp
  267. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  268. Register a piece of data into the handle located at the @var{handleptr}
  269. address. The @var{data_interface} buffer contains the initial description of the
  270. data in the home node. The @var{ops} argument is a pointer to a structure
  271. describing the different methods used to manipulate this type of interface. See
  272. @ref{struct starpu_data_interface_ops} for more details on this structure.
  273. If @code{home_node} is -1, StarPU will automatically
  274. allocate the memory when it is used for the
  275. first time in write-only mode. Once such data handle has been automatically
  276. allocated, it is possible to access it using any access mode.
  277. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  278. matrix) which can be registered by the means of helper functions (e.g.
  279. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  280. @end deftypefun
  281. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  282. This function unregisters a data handle from StarPU. If the data was
  283. automatically allocated by StarPU because the home node was -1, all
  284. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  285. is put back into the home node in the buffer that was initially registered.
  286. Using a data handle that has been unregistered from StarPU results in an
  287. undefined behaviour.
  288. @end deftypefun
  289. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  290. This is the same as starpu_data_unregister, except that StarPU does not put back
  291. a valid copy into the home node, in the buffer that was initially registered.
  292. @end deftypefun
  293. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  294. Destroy all replicates of the data handle. After data invalidation, the first
  295. access to the handle must be performed in write-only mode. Accessing an
  296. invalidated data in read-mode results in undefined behaviour.
  297. @end deftypefun
  298. @c TODO create a specific sections about user interaction with the DSM ?
  299. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  300. This function sets the write-through mask of a given data, i.e. a bitmask of
  301. nodes where the data should be always replicated after modification.
  302. @end deftypefun
  303. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  304. Issue a prefetch request for a given data to a given node, i.e.
  305. requests that the data be replicated to the given node, so that it is available
  306. there for tasks. If the @var{async} parameter is 0, the call will block until
  307. the transfer is achieved, else the call will return as soon as the request is
  308. scheduled (which may however have to wait for a task completion).
  309. @end deftypefun
  310. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  311. Return the handle associated to ptr @var{ptr}.
  312. @end deftypefun
  313. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  314. Explicitly ask StarPU to allocate room for a piece of data on the specified
  315. memory node.
  316. @end deftypefun
  317. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  318. Query the status of the handle on the specified memory node.
  319. @end deftypefun
  320. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  321. This function allows to specify that a piece of data can be discarded
  322. without impacting the application.
  323. @end deftypefun
  324. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  325. todo
  326. @end deftypefun
  327. @node Access registered data from the application
  328. @subsection Access registered data from the application
  329. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  330. The application must call this function prior to accessing registered data from
  331. main memory outside tasks. StarPU ensures that the application will get an
  332. up-to-date copy of the data in main memory located where the data was
  333. originally registered, and that all concurrent accesses (e.g. from tasks) will
  334. be consistent with the access mode specified in the @var{mode} argument.
  335. @code{starpu_data_release} must be called once the application does not need to
  336. access the piece of data anymore. Note that implicit data
  337. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  338. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  339. the data, unless that they have not been disabled explictly by calling
  340. @code{starpu_data_set_default_sequential_consistency_flag} or
  341. @code{starpu_data_set_sequential_consistency_flag}.
  342. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  343. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  344. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  345. @end deftypefun
  346. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  347. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  348. @code{starpu_data_release}. When the data specified in the first argument is
  349. available in the appropriate access mode, the callback function is executed.
  350. The application may access the requested data during the execution of this
  351. callback. The callback function must call @code{starpu_data_release} once the
  352. application does not need to access the piece of data anymore.
  353. Note that implicit data dependencies are also enforced by
  354. @code{starpu_data_acquire_cb} in case they are enabled.
  355. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  356. be called from task callbacks. Upon successful completion, this function
  357. returns 0.
  358. @end deftypefun
  359. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  360. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  361. except that the code to be executed in a callback is directly provided as a
  362. macro parameter, and the data handle is automatically released after it. This
  363. permits to easily execute code which depends on the value of some registered
  364. data. This is non-blocking too and may be called from task callbacks.
  365. @end defmac
  366. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  367. This function releases the piece of data acquired by the application either by
  368. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  369. @end deftypefun
  370. @node Data Interfaces
  371. @section Data Interfaces
  372. @menu
  373. * Registering Data::
  374. * Accessing Data Interfaces::
  375. @end menu
  376. @node Registering Data
  377. @subsection Registering Data
  378. There are several ways to register a memory region so that it can be managed by
  379. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  380. matrices as well as BCSR and CSR sparse matrices.
  381. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  382. Register a void interface. There is no data really associated to that
  383. interface, but it may be used as a synchronization mechanism. It also
  384. permits to express an abstract piece of data that is managed by the
  385. application internally: this makes it possible to forbid the
  386. concurrent execution of different tasks accessing the same "void" data
  387. in read-write concurrently.
  388. @end deftypefun
  389. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  390. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  391. typically a scalar, and initialize @var{handle} to represent this data
  392. item.
  393. @cartouche
  394. @smallexample
  395. float var;
  396. starpu_data_handle_t var_handle;
  397. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  398. @end smallexample
  399. @end cartouche
  400. @end deftypefun
  401. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  402. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  403. @var{ptr} and initialize @var{handle} to represent it.
  404. @cartouche
  405. @smallexample
  406. float vector[NX];
  407. starpu_data_handle_t vector_handle;
  408. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  409. sizeof(vector[0]));
  410. @end smallexample
  411. @end cartouche
  412. @end deftypefun
  413. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  414. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  415. pointed by @var{ptr} and initialize @var{handle} to represent it.
  416. @var{ld} specifies the number of elements between rows.
  417. a value greater than @var{nx} adds padding, which can be useful for
  418. alignment purposes.
  419. @cartouche
  420. @smallexample
  421. float *matrix;
  422. starpu_data_handle_t matrix_handle;
  423. matrix = (float*)malloc(width * height * sizeof(float));
  424. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  425. width, width, height, sizeof(float));
  426. @end smallexample
  427. @end cartouche
  428. @end deftypefun
  429. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  430. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  431. elements pointed by @var{ptr} and initialize @var{handle} to represent
  432. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  433. between rows and between z planes.
  434. @cartouche
  435. @smallexample
  436. float *block;
  437. starpu_data_handle_t block_handle;
  438. block = (float*)malloc(nx*ny*nz*sizeof(float));
  439. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  440. nx, nx*ny, nx, ny, nz, sizeof(float));
  441. @end smallexample
  442. @end cartouche
  443. @end deftypefun
  444. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  445. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  446. Compressed Sparse Row Representation) sparse matrix interface.
  447. TODO
  448. @end deftypefun
  449. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  450. This variant of @code{starpu_data_register} uses the CSR (Compressed
  451. Sparse Row Representation) sparse matrix interface.
  452. TODO
  453. @end deftypefun
  454. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  455. Return the interface associated with @var{handle} on @var{memory_node}.
  456. @end deftypefun
  457. @node Accessing Data Interfaces
  458. @subsection Accessing Data Interfaces
  459. Each data interface is provided with a set of field access functions.
  460. The ones using a @code{void *} parameter aimed to be used in codelet
  461. implementations (see for example the code in @ref{Source code of Vector Scaling}).
  462. @deftp {Data Type} {enum starpu_data_interface_id}
  463. The different values are:
  464. @table @asis
  465. @item @code{STARPU_MATRIX_INTERFACE_ID}
  466. @item @code{STARPU_BLOCK_INTERFACE_ID}
  467. @item @code{STARPU_VECTOR_INTERFACE_ID}
  468. @item @code{STARPU_CSR_INTERFACE_ID}
  469. @item @code{STARPU_BCSR_INTERFACE_ID}
  470. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  471. @item @code{STARPU_VOID_INTERFACE_ID}
  472. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  473. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  474. @end table
  475. @end deftp
  476. @menu
  477. * Accessing Handle::
  478. * Accessing Variable Data Interfaces::
  479. * Accessing Vector Data Interfaces::
  480. * Accessing Matrix Data Interfaces::
  481. * Accessing Block Data Interfaces::
  482. * Accessing BCSR Data Interfaces::
  483. * Accessing CSR Data Interfaces::
  484. @end menu
  485. @node Accessing Handle
  486. @subsubsection Handle
  487. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  488. Return the pointer associated with @var{handle} on node @var{node} or
  489. @code{NULL} if @var{handle}'s interface does not support this
  490. operation or data for this handle is not allocated on that node.
  491. @end deftypefun
  492. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  493. Return the local pointer associated with @var{handle} or @code{NULL}
  494. if @var{handle}'s interface does not have data allocated locally
  495. @end deftypefun
  496. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  497. Return the unique identifier of the interface associated with the given @var{handle}.
  498. @end deftypefun
  499. @node Accessing Variable Data Interfaces
  500. @subsubsection Variable Data Interfaces
  501. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  502. Return the size of the variable designated by @var{handle}.
  503. @end deftypefun
  504. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  505. Return a pointer to the variable designated by @var{handle}.
  506. @end deftypefun
  507. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  508. Return a pointer to the variable designated by @var{interface}.
  509. @end defmac
  510. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  511. Return the size of the variable designated by @var{interface}.
  512. @end defmac
  513. @node Accessing Vector Data Interfaces
  514. @subsubsection Vector Data Interfaces
  515. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  516. Return the number of elements registered into the array designated by @var{handle}.
  517. @end deftypefun
  518. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  519. Return the size of each element of the array designated by @var{handle}.
  520. @end deftypefun
  521. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  522. Return the local pointer associated with @var{handle}.
  523. @end deftypefun
  524. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  525. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  526. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  527. @end defmac
  528. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  529. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  530. documented below has to be used in addition to this.
  531. @end defmac
  532. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  533. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  534. @end defmac
  535. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  536. Return the number of elements registered into the array designated by @var{interface}.
  537. @end defmac
  538. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  539. Return the size of each element of the array designated by @var{interface}.
  540. @end defmac
  541. @node Accessing Matrix Data Interfaces
  542. @subsubsection Matrix Data Interfaces
  543. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  544. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  545. @end deftypefun
  546. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  547. Return the number of elements on the y-axis of the matrix designated by
  548. @var{handle}.
  549. @end deftypefun
  550. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  551. Return the number of extra elements present at the end of each row of the
  552. matrix designated by @var{handle}.
  553. @end deftypefun
  554. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  555. Return the local pointer associated with @var{handle}.
  556. @end deftypefun
  557. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  558. Return the size of the elements registered into the matrix designated by
  559. @var{handle}.
  560. @end deftypefun
  561. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  562. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  563. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  564. used instead.
  565. @end defmac
  566. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  567. Return a device handle for the matrix designated by @var{interface}, to be used
  568. on OpenCL. The offset documented below has to be used in addition to this.
  569. @end defmac
  570. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  571. Return the offset in the matrix designated by @var{interface}, to be used with
  572. the device handle.
  573. @end defmac
  574. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  575. Return the number of elements on the x-axis of the matrix designated by
  576. @var{interface}.
  577. @end defmac
  578. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  579. Return the number of elements on the y-axis of the matrix designated by
  580. @var{interface}.
  581. @end defmac
  582. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  583. Return the number of extra elements present at the end of each row of the
  584. matrix designated by @var{interface}.
  585. @end defmac
  586. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  587. Return the size of the elements registered into the matrix designated by
  588. @var{interface}.
  589. @end defmac
  590. @node Accessing Block Data Interfaces
  591. @subsubsection Block Data Interfaces
  592. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  593. Return the number of elements on the x-axis of the block designated by @var{handle}.
  594. @end deftypefun
  595. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  596. Return the number of elements on the y-axis of the block designated by @var{handle}.
  597. @end deftypefun
  598. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  599. Return the number of elements on the z-axis of the block designated by @var{handle}.
  600. @end deftypefun
  601. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  602. todo
  603. @end deftypefun
  604. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  605. todo
  606. @end deftypefun
  607. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  608. Return the local pointer associated with @var{handle}.
  609. @end deftypefun
  610. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  611. Return the size of the elements of the block designated by @var{handle}.
  612. @end deftypefun
  613. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  614. Return a pointer to the block designated by @var{interface}.
  615. @end defmac
  616. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  617. Return a device handle for the block designated by @var{interface}, to be used
  618. on OpenCL. The offset document below has to be used in addition to this.
  619. @end defmac
  620. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  621. Return the offset in the block designated by @var{interface}, to be used with
  622. the device handle.
  623. @end defmac
  624. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  625. Return the number of elements on the x-axis of the block designated by @var{handle}.
  626. @end defmac
  627. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  628. Return the number of elements on the y-axis of the block designated by @var{handle}.
  629. @end defmac
  630. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  631. Return the number of elements on the z-axis of the block designated by @var{handle}.
  632. @end defmac
  633. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  634. todo
  635. @end defmac
  636. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  637. todo
  638. @end defmac
  639. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  640. Return the size of the elements of the matrix designated by @var{interface}.
  641. @end defmac
  642. @node Accessing BCSR Data Interfaces
  643. @subsubsection BCSR Data Interfaces
  644. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  645. Return the number of non-zero elements in the matrix designated by @var{handle}.
  646. @end deftypefun
  647. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  648. Return the number of rows (in terms of blocks of size r*c) in the matrix
  649. designated by @var{handle}.
  650. @end deftypefun
  651. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  652. Return the index at which all arrays (the column indexes, the row pointers...)
  653. of the matrix desginated by @var{handle} start.
  654. @end deftypefun
  655. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  656. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  657. @end deftypefun
  658. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  659. Return a pointer to the column index, which holds the positions of the non-zero
  660. entries in the matrix designated by @var{handle}.
  661. @end deftypefun
  662. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  663. Return the row pointer array of the matrix designated by @var{handle}.
  664. @end deftypefun
  665. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  666. Return the number of rows in a block.
  667. @end deftypefun
  668. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  669. Return the numberof columns in a block.
  670. @end deftypefun
  671. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  672. Return the size of the elements in the matrix designated by @var{handle}.
  673. @end deftypefun
  674. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  675. todo
  676. @end defmac
  677. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  678. todo
  679. @end defmac
  680. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  681. todo
  682. @end defmac
  683. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  684. todo
  685. @end defmac
  686. @node Accessing CSR Data Interfaces
  687. @subsubsection CSR Data Interfaces
  688. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  689. Return the number of non-zero values in the matrix designated by @var{handle}.
  690. @end deftypefun
  691. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  692. Return the size of the row pointer array of the matrix designated by @var{handle}.
  693. @end deftypefun
  694. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  695. Return the index at which all arrays (the column indexes, the row pointers...)
  696. of the matrix designated by @var{handle} start.
  697. @end deftypefun
  698. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  699. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  700. @end deftypefun
  701. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  702. Return a local pointer to the column index of the matrix designated by @var{handle}.
  703. @end deftypefun
  704. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  705. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  706. @end deftypefun
  707. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  708. Return the size of the elements registered into the matrix designated by @var{handle}.
  709. @end deftypefun
  710. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  711. Return the number of non-zero values in the matrix designated by @var{interface}.
  712. @end defmac
  713. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  714. Return the size of the row pointer array of the matrix designated by @var{interface}.
  715. @end defmac
  716. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  717. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  718. @end defmac
  719. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  720. Return a pointer to the column index of the matrix designated by @var{interface}.
  721. @end defmac
  722. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  723. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  724. @end defmac
  725. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  726. Return the index at which all arrays (the column indexes, the row pointers...)
  727. of the @var{interface} start.
  728. @end defmac
  729. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  730. Return the size of the elements registered into the matrix designated by @var{interface}.
  731. @end defmac
  732. @node Data Partition
  733. @section Data Partition
  734. @menu
  735. * Basic API::
  736. * Predefined filter functions::
  737. @end menu
  738. @node Basic API
  739. @subsection Basic API
  740. @deftp {Data Type} {struct starpu_data_filter}
  741. The filter structure describes a data partitioning operation, to be given to the
  742. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  743. for an example. The different fields are:
  744. @table @asis
  745. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  746. This function fills the @code{child_interface} structure with interface
  747. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  748. @item @code{unsigned nchildren}
  749. This is the number of parts to partition the data into.
  750. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  751. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  752. children depends on the actual data (e.g. the number of blocks in a sparse
  753. matrix).
  754. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  755. In case the resulting children use a different data interface, this function
  756. returns which interface is used by child number @code{id}.
  757. @item @code{unsigned filter_arg}
  758. Allow to define an additional parameter for the filter function.
  759. @item @code{void *filter_arg_ptr}
  760. Allow to define an additional pointer parameter for the filter
  761. function, such as the sizes of the different parts.
  762. @end table
  763. @end deftp
  764. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  765. @anchor{starpu_data_partition}
  766. This requests partitioning one StarPU data @var{initial_handle} into several
  767. subdata according to the filter @var{f}, as shown in the following example:
  768. @cartouche
  769. @smallexample
  770. struct starpu_data_filter f = @{
  771. .filter_func = starpu_vertical_block_filter_func,
  772. .nchildren = nslicesx,
  773. .get_nchildren = NULL,
  774. .get_child_ops = NULL
  775. @};
  776. starpu_data_partition(A_handle, &f);
  777. @end smallexample
  778. @end cartouche
  779. @end deftypefun
  780. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  781. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  782. collected back into one big piece in the @var{gathering_node} (usually 0).
  783. @cartouche
  784. @smallexample
  785. starpu_data_unpartition(A_handle, 0);
  786. @end smallexample
  787. @end cartouche
  788. @end deftypefun
  789. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  790. This function returns the number of children.
  791. @end deftypefun
  792. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  793. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  794. @end deftypefun
  795. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  796. After partitioning a StarPU data by applying a filter,
  797. @code{starpu_data_get_sub_data} can be used to get handles for each of
  798. the data portions. @var{root_data} is the parent data that was
  799. partitioned. @var{depth} is the number of filters to traverse (in
  800. case several filters have been applied, to e.g. partition in row
  801. blocks, and then in column blocks), and the subsequent
  802. parameters are the indexes. The function returns a handle to the
  803. subdata.
  804. @cartouche
  805. @smallexample
  806. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  807. @end smallexample
  808. @end cartouche
  809. @end deftypefun
  810. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  811. This function is similar to @code{starpu_data_get_sub_data} but uses a
  812. va_list for the parameter list.
  813. @end deftypefun
  814. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  815. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  816. recursively. @var{nfilters} pointers to variables of the type
  817. starpu_data_filter should be given.
  818. @end deftypefun
  819. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  820. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  821. recursively. It uses a va_list of pointers to variables of the typer
  822. starpu_data_filter.
  823. @end deftypefun
  824. @node Predefined filter functions
  825. @subsection Predefined filter functions
  826. @menu
  827. * Partitioning BCSR Data::
  828. * Partitioning BLAS interface::
  829. * Partitioning Vector Data::
  830. * Partitioning Block Data::
  831. @end menu
  832. This section gives a partial list of the predefined partitioning functions.
  833. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  834. list can be found in @code{starpu_data_filters.h} .
  835. @node Partitioning BCSR Data
  836. @subsubsection Partitioning BCSR Data
  837. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  838. TODO
  839. @end deftypefun
  840. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  841. TODO
  842. @end deftypefun
  843. @node Partitioning BLAS interface
  844. @subsubsection Partitioning BLAS interface
  845. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  846. This partitions a dense Matrix into horizontal blocks.
  847. @end deftypefun
  848. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  849. This partitions a dense Matrix into vertical blocks.
  850. @end deftypefun
  851. @node Partitioning Vector Data
  852. @subsubsection Partitioning Vector Data
  853. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  854. Return in @code{*@var{child_interface}} the @var{id}th element of the
  855. vector represented by @var{father_interface} once partitioned in
  856. @var{nparts} chunks of equal size.
  857. @end deftypefun
  858. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  859. Return in @code{*@var{child_interface}} the @var{id}th element of the
  860. vector represented by @var{father_interface} once partitioned into
  861. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  862. @code{*@var{f}}.
  863. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  864. @code{uint32_t} elements, each of which specifies the number of elements
  865. in each chunk of the partition.
  866. @end deftypefun
  867. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  868. Return in @code{*@var{child_interface}} the @var{id}th element of the
  869. vector represented by @var{father_interface} once partitioned in two
  870. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  871. @code{0} or @code{1}.
  872. @end deftypefun
  873. @node Partitioning Block Data
  874. @subsubsection Partitioning Block Data
  875. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  876. This partitions a 3D matrix along the X axis.
  877. @end deftypefun
  878. @node Codelets and Tasks
  879. @section Codelets and Tasks
  880. This section describes the interface to manipulate codelets and tasks.
  881. @deftp {Data Type} {enum starpu_codelet_type}
  882. todo
  883. @end deftp
  884. @deftp {Data Type} {struct starpu_codelet}
  885. The codelet structure describes a kernel that is possibly implemented on various
  886. targets. For compatibility, make sure to initialize the whole structure to zero.
  887. @table @asis
  888. @item @code{uint32_t where} (optional)
  889. Indicates which types of processing units are able to execute the
  890. codelet. The different values
  891. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  892. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  893. on which types of processing units the codelet can be executed.
  894. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  895. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  896. indicates that it is only available on Cell SPUs. If the field is
  897. unset, its value will be automatically set based on the availability
  898. of the @code{XXX_funcs} fields defined below.
  899. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  900. Defines a function which should return 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  901. @item @code{enum starpu_codelet_type type} (optional)
  902. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  903. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  904. implementation is also available. See @ref{Parallel Tasks} for details.
  905. @item @code{int max_parallelism} (optional)
  906. If a parallel implementation is available, this denotes the maximum combined
  907. worker size that StarPU will use to execute parallel tasks for this codelet.
  908. @item @code{starpu_cpu_func_t cpu_func} (optional)
  909. This field has been made deprecated. One should use instead the
  910. @code{cpu_funcs} field.
  911. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  912. Is an array of function pointers to the CPU implementations of the codelet.
  913. It must be terminated by a NULL value.
  914. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  915. argument being the array of data managed by the data management library, and
  916. the second argument is a pointer to the argument passed from the @code{cl_arg}
  917. field of the @code{starpu_task} structure.
  918. If the @code{where} field is set, then the @code{cpu_funcs} field is
  919. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  920. field, it must be non-null otherwise.
  921. @item @code{starpu_cuda_func_t cuda_func} (optional)
  922. This field has been made deprecated. One should use instead the
  923. @code{cuda_funcs} field.
  924. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  925. Is an array of function pointers to the CUDA implementations of the codelet.
  926. It must be terminated by a NULL value.
  927. @emph{The functions must be host-functions written in the CUDA runtime
  928. API}. Their prototype must
  929. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  930. If the @code{where} field is set, then the @code{cuda_funcs}
  931. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  932. field, it must be non-null otherwise.
  933. @item @code{starpu_opencl_func_t opencl_func} (optional)
  934. This field has been made deprecated. One should use instead the
  935. @code{opencl_funcs} field.
  936. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  937. Is an array of function pointers to the OpenCL implementations of the codelet.
  938. It must be terminated by a NULL value.
  939. The functions prototype must be:
  940. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  941. If the @code{where} field is set, then the @code{opencl_funcs} field
  942. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  943. field, it must be non-null otherwise.
  944. @item @code{uint8_t gordon_func} (optional)
  945. This field has been made deprecated. One should use instead the
  946. @code{gordon_funcs} field.
  947. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  948. Is an array of index of the Cell SPU implementations of the codelet within the
  949. Gordon library.
  950. It must be terminated by a NULL value.
  951. See Gordon documentation for more details on how to register a kernel and
  952. retrieve its index.
  953. @item @code{unsigned nbuffers}
  954. Specifies the number of arguments taken by the codelet. These arguments are
  955. managed by the DSM and are accessed from the @code{void *buffers[]}
  956. array. The constant argument passed with the @code{cl_arg} field of the
  957. @code{starpu_task} structure is not counted in this number. This value should
  958. not be above @code{STARPU_NMAXBUFS}.
  959. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  960. Is an array of @code{enum starpu_access_mode}. It describes the
  961. required access modes to the data neeeded by the codelet (e.g.
  962. @code{STARPU_RW}). The number of entries in this array must be
  963. specified in the @code{nbuffers} field (defined above), and should not
  964. exceed @code{STARPU_NMAXBUFS}.
  965. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  966. option when configuring StarPU.
  967. @item @code{struct starpu_perfmodel *model} (optional)
  968. This is a pointer to the task duration performance model associated to this
  969. codelet. This optional field is ignored when set to @code{NULL}.
  970. @item @code{struct starpu_perfmodel *power_model} (optional)
  971. This is a pointer to the task power consumption performance model associated
  972. to this codelet. This optional field is ignored when set to @code{NULL}.
  973. In the case of parallel codelets, this has to account for all processing units
  974. involved in the parallel execution.
  975. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  976. Statistics collected at runtime: this is filled by StarPU and should not be
  977. accessed directly, but for example by calling the
  978. @code{starpu_display_codelet_stats} function (See
  979. @ref{starpu_display_codelet_stats} for details).
  980. @item @code{const char *name} (optional)
  981. Define the name of the codelet. This can be useful for debugging purposes.
  982. @end table
  983. @end deftp
  984. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  985. Initialize @var{cl} with default values. Codelets should preferably be
  986. initialized statically as shown in @ref{Defining a Codelet}. However
  987. such a initialisation is not always possible, e.g. when using C++.
  988. @end deftypefun
  989. @deftp {Data Type} {enum starpu_task_status}
  990. todo
  991. @end deftp
  992. @deftp {Data Type} {struct starpu_task}
  993. The @code{starpu_task} structure describes a task that can be offloaded on the various
  994. processing units managed by StarPU. It instantiates a codelet. It can either be
  995. allocated dynamically with the @code{starpu_task_create} method, or declared
  996. statically. In the latter case, the programmer has to zero the
  997. @code{starpu_task} structure and to fill the different fields properly. The
  998. indicated default values correspond to the configuration of a task allocated
  999. with @code{starpu_task_create}.
  1000. @table @asis
  1001. @item @code{struct starpu_codelet *cl}
  1002. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1003. describes where the kernel should be executed, and supplies the appropriate
  1004. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1005. such empty tasks can be useful for synchronization purposes.
  1006. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1007. This field has been made deprecated. One should use instead the
  1008. @code{handles} field to specify the handles to the data accessed by
  1009. the task. The access modes are now defined in the @code{mode} field of
  1010. the @code{struct starpu_codelet cl} field defined above.
  1011. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1012. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1013. to the different pieces of data accessed by the task. The number
  1014. of entries in this array must be specified in the @code{nbuffers} field of the
  1015. @code{struct starpu_codelet} structure, and should not exceed
  1016. @code{STARPU_NMAXBUFS}.
  1017. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1018. option when configuring StarPU.
  1019. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1020. todo
  1021. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1022. This pointer is passed to the codelet through the second argument
  1023. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1024. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1025. argument.
  1026. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1027. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1028. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1029. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1030. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1031. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1032. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1033. codelets, where the @code{cl_arg} pointer is given as such.
  1034. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1035. This is a function pointer of prototype @code{void (*f)(void *)} which
  1036. specifies a possible callback. If this pointer is non-null, the callback
  1037. function is executed @emph{on the host} after the execution of the task. The
  1038. callback is passed the value contained in the @code{callback_arg} field. No
  1039. callback is executed if the field is set to @code{NULL}.
  1040. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1041. This is the pointer passed to the callback function. This field is ignored if
  1042. the @code{callback_func} is set to @code{NULL}.
  1043. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1044. If set, this flag indicates that the task should be associated with the tag
  1045. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1046. with the task and to express task dependencies easily.
  1047. @item @code{starpu_tag_t tag_id}
  1048. This fields contains the tag associated to the task if the @code{use_tag} field
  1049. was set, it is ignored otherwise.
  1050. @item @code{unsigned synchronous}
  1051. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1052. returns only when the task has been executed (or if no worker is able to
  1053. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1054. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1055. This field indicates a level of priority for the task. This is an integer value
  1056. that must be set between the return values of the
  1057. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1058. and that of the @code{starpu_sched_get_max_priority} for the most important
  1059. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1060. are provided for convenience and respectively returns value of
  1061. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1062. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1063. order to allow static task initialization. Scheduling strategies that take
  1064. priorities into account can use this parameter to take better scheduling
  1065. decisions, but the scheduling policy may also ignore it.
  1066. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1067. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1068. task to the worker specified by the @code{workerid} field.
  1069. @item @code{unsigned workerid} (optional)
  1070. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1071. which is the identifier of the worker that should process this task (as
  1072. returned by @code{starpu_worker_get_id}). This field is ignored if
  1073. @code{execute_on_a_specific_worker} field is set to 0.
  1074. @item @code{starpu_task_bundle_t bundle} (optional)
  1075. The bundle that includes this task. If no bundle is used, this should be NULL.
  1076. @item @code{int detach} (optional) (default: @code{1})
  1077. If this flag is set, it is not possible to synchronize with the task
  1078. by the means of @code{starpu_task_wait} later on. Internal data structures
  1079. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1080. flag is not set.
  1081. @item @code{int destroy} (optional) (default: @code{0})
  1082. If this flag is set, the task structure will automatically be freed, either
  1083. after the execution of the callback if the task is detached, or during
  1084. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1085. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1086. called explicitly. Setting this flag for a statically allocated task structure
  1087. will result in undefined behaviour. The flag is set to 1 when the task
  1088. is created by calling @code{starpu_task_create()}.
  1089. @item @code{int regenerate} (optional)
  1090. If this flag is set, the task will be re-submitted to StarPU once it has been
  1091. executed. This flag must not be set if the destroy flag is set too.
  1092. @item @code{enum starpu_task_status status} (optional)
  1093. todo
  1094. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1095. todo
  1096. @item @code{double predicted} (output field)
  1097. Predicted duration of the task. This field is only set if the scheduling
  1098. strategy used performance models.
  1099. @item @code{double predicted_transfer} (optional)
  1100. Predicted data transfer duration for the task in microseconds. This field is
  1101. only valid if the scheduling strategy uses performance models.
  1102. @item @code{struct starpu_task *prev}
  1103. A pointer to the previous task. This should only be used by StarPU.
  1104. @item @code{struct starpu_task *next}
  1105. A pointer to the next task. This should only be used by StarPU.
  1106. @item @code{unsigned int mf_skip}
  1107. todo
  1108. @item @code{void *starpu_private}
  1109. This is private to StarPU, do not modify. If the task is allocated by hand
  1110. (without starpu_task_create), this field should be set to NULL.
  1111. @item @code{int magic}
  1112. This field is set when initializing a task. It prevents a task from being
  1113. submitted if it has not been properly initialized.
  1114. @end table
  1115. @end deftp
  1116. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1117. Initialize @var{task} with default values. This function is implicitly
  1118. called by @code{starpu_task_create}. By default, tasks initialized with
  1119. @code{starpu_task_init} must be deinitialized explicitly with
  1120. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1121. using @code{STARPU_TASK_INITIALIZER} defined below.
  1122. @end deftypefun
  1123. @defmac STARPU_TASK_INITIALIZER
  1124. It is possible to initialize statically allocated tasks with this
  1125. value. This is equivalent to initializing a starpu_task structure with
  1126. the @code{starpu_task_init} function defined above.
  1127. @end defmac
  1128. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1129. Allocate a task structure and initialize it with default values. Tasks
  1130. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1131. task is terminated. This means that the task pointer can not be used any more
  1132. once the task is submitted, since it can be executed at any time (unless
  1133. dependencies make it wait) and thus freed at any time.
  1134. If the destroy flag is explicitly unset, the resources used
  1135. by the task have to be freed by calling
  1136. @code{starpu_task_destroy}.
  1137. @end deftypefun
  1138. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1139. Release all the structures automatically allocated to execute @var{task}. This is
  1140. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  1141. freed. This should be used for statically allocated tasks for instance.
  1142. @end deftypefun
  1143. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1144. Free the resource allocated during @code{starpu_task_create} and
  1145. associated with @var{task}. This function can be called automatically
  1146. after the execution of a task by setting the @code{destroy} flag of the
  1147. @code{starpu_task} structure (default behaviour). Calling this function
  1148. on a statically allocated task results in an undefined behaviour.
  1149. @end deftypefun
  1150. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1151. This function blocks until @var{task} has been executed. It is not possible to
  1152. synchronize with a task more than once. It is not possible to wait for
  1153. synchronous or detached tasks.
  1154. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1155. indicates that the specified task was either synchronous or detached.
  1156. @end deftypefun
  1157. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1158. This function submits @var{task} to StarPU. Calling this function does
  1159. not mean that the task will be executed immediately as there can be data or task
  1160. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1161. scheduling this task with respect to such dependencies.
  1162. This function returns immediately if the @code{synchronous} field of the
  1163. @code{starpu_task} structure was set to 0, and block until the termination of
  1164. the task otherwise. It is also possible to synchronize the application with
  1165. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1166. function for instance.
  1167. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1168. means that there is no worker able to process this task (e.g. there is no GPU
  1169. available and this task is only implemented for CUDA devices).
  1170. @end deftypefun
  1171. @deftypefun int starpu_task_wait_for_all (void)
  1172. This function blocks until all the tasks that were submitted are terminated.
  1173. @end deftypefun
  1174. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1175. This function returns the task currently executed by the worker, or
  1176. NULL if it is called either from a thread that is not a task or simply
  1177. because there is no task being executed at the moment.
  1178. @end deftypefun
  1179. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1180. @anchor{starpu_display_codelet_stats}
  1181. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1182. @end deftypefun
  1183. @deftypefun int starpu_task_wait_for_no_ready (void)
  1184. This function waits until there is no more ready task.
  1185. @end deftypefun
  1186. @c Callbacks: what can we put in callbacks ?
  1187. @node Explicit Dependencies
  1188. @section Explicit Dependencies
  1189. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1190. Declare task dependencies between a @var{task} and an array of tasks of length
  1191. @var{ndeps}. This function must be called prior to the submission of the task,
  1192. but it may called after the submission or the execution of the tasks in the
  1193. array, provided the tasks are still valid (ie. they were not automatically
  1194. destroyed). Calling this function on a task that was already submitted or with
  1195. an entry of @var{task_array} that is not a valid task anymore results in an
  1196. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1197. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1198. same task, in this case, the dependencies are added. It is possible to have
  1199. redundancy in the task dependencies.
  1200. @end deftypefun
  1201. @deftp {Data Type} {starpu_tag_t}
  1202. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1203. dependencies between tasks by the means of those tags. To do so, fill the
  1204. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1205. be arbitrary) and set the @code{use_tag} field to 1.
  1206. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1207. not be started until the tasks which holds the declared dependency tags are
  1208. completed.
  1209. @end deftp
  1210. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1211. Specify the dependencies of the task identified by tag @var{id}. The first
  1212. argument specifies the tag which is configured, the second argument gives the
  1213. number of tag(s) on which @var{id} depends. The following arguments are the
  1214. tags which have to be terminated to unlock the task.
  1215. This function must be called before the associated task is submitted to StarPU
  1216. with @code{starpu_task_submit}.
  1217. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1218. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1219. typically need to be explicitly casted. Using the
  1220. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1221. @cartouche
  1222. @smallexample
  1223. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1224. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1225. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1226. @end smallexample
  1227. @end cartouche
  1228. @end deftypefun
  1229. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1230. This function is similar to @code{starpu_tag_declare_deps}, except
  1231. that its does not take a variable number of arguments but an array of
  1232. tags of size @var{ndeps}.
  1233. @cartouche
  1234. @smallexample
  1235. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1236. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1237. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1238. @end smallexample
  1239. @end cartouche
  1240. @end deftypefun
  1241. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1242. This function blocks until the task associated to tag @var{id} has been
  1243. executed. This is a blocking call which must therefore not be called within
  1244. tasks or callbacks, but only from the application directly. It is possible to
  1245. synchronize with the same tag multiple times, as long as the
  1246. @code{starpu_tag_remove} function is not called. Note that it is still
  1247. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1248. data structure was freed (e.g. if the @code{destroy} flag of the
  1249. @code{starpu_task} was enabled).
  1250. @end deftypefun
  1251. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1252. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1253. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1254. terminated.
  1255. @end deftypefun
  1256. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1257. This function releases the resources associated to tag @var{id}. It can be
  1258. called once the corresponding task has been executed and when there is
  1259. no other tag that depend on this tag anymore.
  1260. @end deftypefun
  1261. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1262. This function explicitly unlocks tag @var{id}. It may be useful in the
  1263. case of applications which execute part of their computation outside StarPU
  1264. tasks (e.g. third-party libraries). It is also provided as a
  1265. convenient tool for the programmer, for instance to entirely construct the task
  1266. DAG before actually giving StarPU the opportunity to execute the tasks.
  1267. @end deftypefun
  1268. @node Implicit Data Dependencies
  1269. @section Implicit Data Dependencies
  1270. In this section, we describe how StarPU makes it possible to insert implicit
  1271. task dependencies in order to enforce sequential data consistency. When this
  1272. data consistency is enabled on a specific data handle, any data access will
  1273. appear as sequentially consistent from the application. For instance, if the
  1274. application submits two tasks that access the same piece of data in read-only
  1275. mode, and then a third task that access it in write mode, dependencies will be
  1276. added between the two first tasks and the third one. Implicit data dependencies
  1277. are also inserted in the case of data accesses from the application.
  1278. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1279. Set the default sequential consistency flag. If a non-zero value is passed, a
  1280. sequential data consistency will be enforced for all handles registered after
  1281. this function call, otherwise it is disabled. By default, StarPU enables
  1282. sequential data consistency. It is also possible to select the data consistency
  1283. mode of a specific data handle with the
  1284. @code{starpu_data_set_sequential_consistency_flag} function.
  1285. @end deftypefun
  1286. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1287. Return the default sequential consistency flag
  1288. @end deftypefun
  1289. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1290. Sets the data consistency mode associated to a data handle. The consistency
  1291. mode set using this function has the priority over the default mode which can
  1292. be set with @code{starpu_data_set_sequential_consistency_flag}.
  1293. @end deftypefun
  1294. @node Performance Model API
  1295. @section Performance Model API
  1296. @deftp {Data Type} {enum starpu_perf_archtype}
  1297. Enumerates the various types of architectures.
  1298. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1299. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1300. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1301. @table @asis
  1302. @item @code{STARPU_CPU_DEFAULT}
  1303. @item @code{STARPU_CUDA_DEFAULT}
  1304. @item @code{STARPU_OPENCL_DEFAULT}
  1305. @item @code{STARPU_GORDON_DEFAULT}
  1306. @end table
  1307. @end deftp
  1308. @deftp {Data Type} {enum starpu_perfmodel_type}
  1309. The possible values are:
  1310. @table @asis
  1311. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1312. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1313. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1314. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1315. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1316. @end table
  1317. @end deftp
  1318. @deftp {Data Type} {struct starpu_perfmodel}
  1319. @anchor{struct starpu_perfmodel}
  1320. contains all information about a performance model. At least the
  1321. @code{type} and @code{symbol} fields have to be filled when defining a
  1322. performance model for a codelet. If not provided, other fields have to be zero.
  1323. @table @asis
  1324. @item @code{type}
  1325. is the type of performance model @code{enum starpu_perfmodel_type}:
  1326. @code{STARPU_HISTORY_BASED},
  1327. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1328. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1329. @code{per_arch} has to be filled with functions which return the cost in
  1330. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1331. a function that returns the cost in micro-seconds on a CPU, timing on other
  1332. archs will be determined by multiplying by an arch-specific factor.
  1333. @item @code{const char *symbol}
  1334. is the symbol name for the performance model, which will be used as
  1335. file name to store the model.
  1336. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1337. This field is deprecated. Use instead the @code{cost_function} field.
  1338. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1339. Used by @code{STARPU_COMMON}: takes a task and
  1340. implementation number, and must return a task duration estimation in micro-seconds.
  1341. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1342. Used by @code{STARPU_HISTORY_BASED} and
  1343. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1344. implementation number, and returns the size to be used as index for
  1345. history and regression.
  1346. @item @code{struct starpu_per_arch_perfmodel per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1347. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1348. starpu_per_arch_perfmodel} structures.
  1349. @item @code{unsigned is_loaded}
  1350. TODO
  1351. @item @code{unsigned benchmarking}
  1352. TODO
  1353. @item @code{pthread_rwlock_t model_rwlock}
  1354. TODO
  1355. @end table
  1356. @end deftp
  1357. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1358. contains information about the performance model of a given arch.
  1359. @table @asis
  1360. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1361. This field is deprecated. Use instead the @code{cost_function} field.
  1362. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1363. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1364. target arch and implementation number (as mere conveniency, since the array
  1365. is already indexed by these), and must return a task duration estimation in
  1366. micro-seconds.
  1367. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1368. starpu_perf_archtype arch, unsigned nimpl)}
  1369. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1370. case it depends on the architecture-specific implementation.
  1371. @item @code{struct starpu_htbl32_node *history}
  1372. todo
  1373. @item @code{struct starpu_history_list *list}
  1374. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1375. records all execution history measures.
  1376. @item @code{struct starpu_regression_model regression}
  1377. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1378. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1379. regression.
  1380. @end table
  1381. @end deftp
  1382. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1383. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1384. @end deftypefun
  1385. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1386. returns the path to the debugging information for the performance model.
  1387. @end deftypefun
  1388. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1389. returns the architecture name for @var{arch}.
  1390. todo
  1391. @end deftypefun
  1392. @deftypefun void starpu_force_bus_sampling (void)
  1393. forces sampling the bus performance model again.
  1394. @end deftypefun
  1395. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1396. returns the architecture type of a given worker.
  1397. @end deftypefun
  1398. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1399. prints a list of all performance models on @var{output}.
  1400. @end deftypefun
  1401. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1402. prints a matrix of bus bandwidths on @var{f}.
  1403. @end deftypefun
  1404. @node Profiling API
  1405. @section Profiling API
  1406. @deftypefun int starpu_profiling_status_set (int @var{status})
  1407. Thie function sets the profiling status. Profiling is activated by passing
  1408. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1409. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1410. resets all profiling measurements. When profiling is enabled, the
  1411. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1412. to a valid @code{struct starpu_task_profiling_info} structure containing
  1413. information about the execution of the task.
  1414. Negative return values indicate an error, otherwise the previous status is
  1415. returned.
  1416. @end deftypefun
  1417. @deftypefun int starpu_profiling_status_get (void)
  1418. Return the current profiling status or a negative value in case there was an error.
  1419. @end deftypefun
  1420. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1421. This function sets the ID used for profiling trace filename
  1422. @end deftypefun
  1423. @deftp {Data Type} {struct starpu_task_profiling_info}
  1424. This structure contains information about the execution of a task. It is
  1425. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1426. structure if profiling was enabled. The different fields are:
  1427. @table @asis
  1428. @item @code{struct timespec submit_time}
  1429. Date of task submission (relative to the initialization of StarPU).
  1430. @item @code{struct timespec push_start_time}
  1431. TODO. Scheduling overhead.
  1432. @item @code{struct timespec push_end_time}
  1433. TODO. Scheduling overhead
  1434. @item @code{struct timespec pop_start_time}
  1435. TODO. Scheduling overhead
  1436. @item @code{struct timespec pop_end_time}
  1437. TODO. Scheduling overhead
  1438. @item @code{struct timespec acquire_data_start_time}
  1439. TODO. Take input data
  1440. @item @code{struct timespec acquire_data_end_time}
  1441. TODO. Take input data
  1442. @item @code{struct timespec start_time}
  1443. Date of task execution beginning (relative to the initialization of StarPU).
  1444. @item @code{struct timespec end_time}
  1445. Date of task execution termination (relative to the initialization of StarPU).
  1446. @item @code{struct timespec release_data_start_time}
  1447. TODO. Release data
  1448. @item @code{struct timespec release_data_end_time}
  1449. TODO. Release data
  1450. @item @code{struct timespec callback_start_time}
  1451. TODO. Callback
  1452. @item @code{struct timespec callback_end_time}
  1453. TODO. Callback
  1454. @item @code{workerid}
  1455. Identifier of the worker which has executed the task.
  1456. @item @code{uint64_t used_cycles}
  1457. TODO
  1458. @item @code{uint64_t stall_cycles}
  1459. TODO
  1460. @item @code{double power_consumed}
  1461. TODO
  1462. @end table
  1463. @end deftp
  1464. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1465. This structure contains the profiling information associated to a
  1466. worker. The different fields are:
  1467. @table @asis
  1468. @item @code{struct timespec start_time}
  1469. Starting date for the reported profiling measurements.
  1470. @item @code{struct timespec total_time}
  1471. Duration of the profiling measurement interval.
  1472. @item @code{struct timespec executing_time}
  1473. Time spent by the worker to execute tasks during the profiling measurement interval.
  1474. @item @code{struct timespec sleeping_time}
  1475. Time spent idling by the worker during the profiling measurement interval.
  1476. @item @code{int executed_tasks}
  1477. Number of tasks executed by the worker during the profiling measurement interval.
  1478. @item @code{uint64_t used_cycles}
  1479. TODO
  1480. @item @code{uint64_t stall_cycles}
  1481. TODO
  1482. @item @code{double power_consumed}
  1483. TODO
  1484. @end table
  1485. @end deftp
  1486. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1487. Get the profiling info associated to the worker identified by @var{workerid},
  1488. and reset the profiling measurements. If the @var{worker_info} argument is
  1489. NULL, only reset the counters associated to worker @var{workerid}.
  1490. Upon successful completion, this function returns 0. Otherwise, a negative
  1491. value is returned.
  1492. @end deftypefun
  1493. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1494. TODO. The different fields are:
  1495. @table @asis
  1496. @item @code{struct timespec start_time}
  1497. TODO
  1498. @item @code{struct timespec total_time}
  1499. TODO
  1500. @item @code{int long long transferred_bytes}
  1501. TODO
  1502. @item @code{int transfer_count}
  1503. TODO
  1504. @end table
  1505. @end deftp
  1506. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1507. Get the profiling info associated to the worker designated by @var{workerid},
  1508. and reset the profiling measurements. If worker_info is NULL, only reset the
  1509. counters.
  1510. @end deftypefun
  1511. @deftypefun int starpu_bus_get_count (void)
  1512. TODO
  1513. @end deftypefun
  1514. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1515. TODO
  1516. @end deftypefun
  1517. @deftypefun int starpu_bus_get_src (int @var{busid})
  1518. TODO
  1519. @end deftypefun
  1520. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1521. TODO
  1522. @end deftypefun
  1523. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1524. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1525. @end deftypefun
  1526. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1527. Converts the given timespec @var{ts} into microseconds.
  1528. @end deftypefun
  1529. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1530. TODO
  1531. @end deftypefun
  1532. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1533. TODO
  1534. @end deftypefun
  1535. @node CUDA extensions
  1536. @section CUDA extensions
  1537. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1538. This function gets the current worker's CUDA stream.
  1539. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1540. function is only provided for convenience so that programmers can easily use
  1541. asynchronous operations within codelets without having to create a stream by
  1542. hand. Note that the application is not forced to use the stream provided by
  1543. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1544. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1545. the likelihood of having all transfers overlapped.
  1546. @end deftypefun
  1547. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1548. This function returns a pointer to device properties for worker @var{workerid}
  1549. (assumed to be a CUDA worker).
  1550. @end deftypefun
  1551. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1552. todo
  1553. @end deftypefun
  1554. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1555. todo
  1556. @end deftypefun
  1557. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1558. todo
  1559. @end defmac
  1560. @deftypefun void starpu_helper_cublas_init (void)
  1561. This function initializes CUBLAS on every CUDA device.
  1562. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1563. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1564. controlled by StarPU. This call blocks until CUBLAS has been properly
  1565. initialized on every device.
  1566. @end deftypefun
  1567. @deftypefun void starpu_helper_cublas_shutdown (void)
  1568. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1569. @end deftypefun
  1570. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1571. todo
  1572. @end deftypefun
  1573. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1574. todo
  1575. @end defmac
  1576. @node OpenCL extensions
  1577. @section OpenCL extensions
  1578. @menu
  1579. * Writing OpenCL kernels:: Writing OpenCL kernels
  1580. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1581. * Loading OpenCL kernels:: Loading OpenCL kernels
  1582. * OpenCL statistics:: Collecting statistics from OpenCL
  1583. * OpenCL utilities:: Utilities for OpenCL
  1584. @end menu
  1585. @node Writing OpenCL kernels
  1586. @subsection Writing OpenCL kernels
  1587. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1588. Return the size of global device memory in bytes.
  1589. @end deftypefun
  1590. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1591. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1592. @end deftypefun
  1593. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1594. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1595. @end deftypefun
  1596. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1597. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1598. @end deftypefun
  1599. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1600. todo
  1601. @end deftypefun
  1602. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1603. todo
  1604. @end deftypefun
  1605. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1606. Sets the arguments of a given kernel. The list of arguments must be given as
  1607. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1608. The last argument must be 0. Returns the number of arguments that were
  1609. successfully set. In case of failure, @var{err} is set to the error returned by
  1610. OpenCL.
  1611. @end deftypefun
  1612. @node Compiling OpenCL kernels
  1613. @subsection Compiling OpenCL kernels
  1614. Source codes for OpenCL kernels can be stored in a file or in a
  1615. string. StarPU provides functions to build the program executable for
  1616. each available OpenCL device as a @code{cl_program} object. This
  1617. program executable can then be loaded within a specific queue as
  1618. explained in the next section. These are only helpers, Applications
  1619. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1620. use (e.g. different programs on the different OpenCL devices, for
  1621. relocation purpose for instance).
  1622. @deftp {Data Type} {struct starpu_opencl_program}
  1623. todo
  1624. @table @asis
  1625. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  1626. todo
  1627. @end table
  1628. @end deftp
  1629. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1630. @anchor{starpu_opencl_load_opencl_from_file}
  1631. This function compiles an OpenCL source code stored in a file.
  1632. @end deftypefun
  1633. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1634. This function compiles an OpenCL source code stored in a string.
  1635. @end deftypefun
  1636. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1637. This function unloads an OpenCL compiled code.
  1638. @end deftypefun
  1639. @node Loading OpenCL kernels
  1640. @subsection Loading OpenCL kernels
  1641. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1642. TODO
  1643. @end deftypefun
  1644. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1645. TODO
  1646. @end deftypefun
  1647. @node OpenCL statistics
  1648. @subsection OpenCL statistics
  1649. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1650. This function allows to collect statistics on a kernel execution.
  1651. After termination of the kernels, the OpenCL codelet should call this function
  1652. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1653. collect statistics about the kernel execution (used cycles, consumed power).
  1654. @end deftypefun
  1655. @node OpenCL utilities
  1656. @subsection OpenCL utilities
  1657. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1658. Given a valid error @var{status}, prints the corresponding error message on
  1659. stdout, along with the given function name @var{func}, the given filename
  1660. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1661. @end deftypefun
  1662. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1663. Call the function @code{starpu_opencl_display_error} with the given
  1664. error @var{status}, the current function name, current file and line
  1665. number, and a empty message.
  1666. @end defmac
  1667. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1668. Call the function @code{starpu_opencl_display_error} and abort.
  1669. @end deftypefun
  1670. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1671. Call the function @code{starpu_opencl_report_error} with the given
  1672. error @var{status}, with the current function name, current file and
  1673. line number, and a empty message.
  1674. @end defmac
  1675. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1676. Call the function @code{starpu_opencl_report_error} with the given
  1677. message and the given error @var{status}, with the current function
  1678. name, current file and line number.
  1679. @end defmac
  1680. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1681. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1682. valid combination of cl_mem_flags values.
  1683. @end deftypefun
  1684. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl_async_sync ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1685. Copy @var{size} bytes asynchronously from the given @var{ptr} on
  1686. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1687. @var{offset} is the offset, in bytes, in @var{buffer}.
  1688. @var{event} can be used to wait for this particular copy to complete. It can be
  1689. NULL.
  1690. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1691. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1692. was successful, or to 0 if event was NULL.
  1693. @end deftypefun
  1694. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1695. Copy @var{size} bytes from the given @var{ptr} on @var{src_node} to the
  1696. given @var{buffer} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1697. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1698. complete. It can be NULL.
  1699. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1700. otherwise.
  1701. @end deftypefun
  1702. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram_async_sync (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1703. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1704. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1705. @var{offset} is the offset, in bytes, in @var{buffer}.
  1706. @var{event} can be used to wait for this particular copy to complete. It can be
  1707. NULL.
  1708. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1709. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1710. was successful, or to 0 if event was NULL.
  1711. @end deftypefun
  1712. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1713. Copy @var{size} bytes from the given @var{buffer} on @var{src_node} to the
  1714. given @var{ptr} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1715. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1716. complete. It can be NULL.
  1717. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1718. otherwise.
  1719. @end deftypefun
  1720. @node Cell extensions
  1721. @section Cell extensions
  1722. nothing yet.
  1723. @node Miscellaneous helpers
  1724. @section Miscellaneous helpers
  1725. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1726. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1727. The @var{asynchronous} parameter indicates whether the function should
  1728. block or not. In the case of an asynchronous call, it is possible to
  1729. synchronize with the termination of this operation either by the means of
  1730. implicit dependencies (if enabled) or by calling
  1731. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1732. this callback function is executed after the handle has been copied, and it is
  1733. given the @var{callback_arg} pointer as argument.
  1734. @end deftypefun
  1735. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1736. This function executes the given function on a subset of workers.
  1737. When calling this method, the offloaded function specified by the first argument is
  1738. executed by every StarPU worker that may execute the function.
  1739. The second argument is passed to the offloaded function.
  1740. The last argument specifies on which types of processing units the function
  1741. should be executed. Similarly to the @var{where} field of the
  1742. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1743. should be executed on every CUDA device and every CPU by passing
  1744. @code{STARPU_CPU|STARPU_CUDA}.
  1745. This function blocks until the function has been executed on every appropriate
  1746. processing units, so that it may not be called from a callback function for
  1747. instance.
  1748. @end deftypefun