basic-api.texi 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Workers' Properties::
  11. * Data Management::
  12. * Data Interfaces::
  13. * Data Partition::
  14. * Codelets and Tasks::
  15. * Explicit Dependencies::
  16. * Implicit Data Dependencies::
  17. * Performance Model API::
  18. * Profiling API::
  19. * CUDA extensions::
  20. * OpenCL extensions::
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Versioning
  24. @section Versioning
  25. @defmac STARPU_MAJOR_VERSION
  26. Define the major version of StarPU
  27. @end defmac
  28. @defmac STARPU_MINOR_VERSION
  29. Define the minor version of StarPU
  30. @end defmac
  31. @node Initialization and Termination
  32. @section Initialization and Termination
  33. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  34. This is StarPU initialization method, which must be called prior to any other
  35. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  36. policy, number of cores, ...) by passing a non-null argument. Default
  37. configuration is used if the passed argument is @code{NULL}.
  38. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  39. indicates that no worker was available (so that StarPU was not initialized).
  40. @end deftypefun
  41. @deftp {Data Type} {struct starpu_driver}
  42. @table @asis
  43. @item @code{enum starpu_archtype type}
  44. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  45. STARPU_OPENCL_DRIVER are currently supported.
  46. @item @code{union id} Anonymous union
  47. @table @asis
  48. @item @code{unsigned cpu_id}
  49. Should only be used if type is STARPU_CPU_WORKER.
  50. @item @code{unsigned cuda_id}
  51. Should only be used if type is STARPU_CUDA_WORKER.
  52. @item @code{cl_device_id opencl_id}
  53. Should only be used if type is STARPU_OPENCL_WORKER.
  54. @end table
  55. @end table
  56. @end deftp
  57. @deftp {Data Type} {struct starpu_conf}
  58. This structure is passed to the @code{starpu_init} function in order
  59. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  60. When the default value is used, StarPU automatically selects the number of
  61. processing units and takes the default scheduling policy. The environment
  62. variables overwrite the equivalent parameters.
  63. @table @asis
  64. @item @code{const char *sched_policy_name} (default = NULL)
  65. This is the name of the scheduling policy. This can also be specified
  66. with the @code{STARPU_SCHED} environment variable.
  67. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  68. This is the definition of the scheduling policy. This field is ignored
  69. if @code{sched_policy_name} is set.
  70. @item @code{int ncpus} (default = -1)
  71. This is the number of CPU cores that StarPU can use. This can also be
  72. specified with the @code{STARPU_NCPU} environment variable.
  73. @item @code{int ncuda} (default = -1)
  74. This is the number of CUDA devices that StarPU can use. This can also
  75. be specified with the @code{STARPU_NCUDA} environment variable.
  76. @item @code{int nopencl} (default = -1)
  77. This is the number of OpenCL devices that StarPU can use. This can
  78. also be specified with the @code{STARPU_NOPENCL} environment variable.
  79. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  80. If this flag is set, the @code{workers_bindid} array indicates where the
  81. different workers are bound, otherwise StarPU automatically selects where to
  82. bind the different workers. This can also be specified with the
  83. @code{STARPU_WORKERS_CPUID} environment variable.
  84. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_bindid} flag is set, this array
  86. indicates where to bind the different workers. The i-th entry of the
  87. @code{workers_bindid} indicates the logical identifier of the
  88. processor which should execute the i-th worker. Note that the logical
  89. ordering of the CPUs is either determined by the OS, or provided by
  90. the @code{hwloc} library in case it is available.
  91. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  92. If this flag is set, the CUDA workers will be attached to the CUDA devices
  93. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  94. CUDA devices in a round-robin fashion. This can also be specified with the
  95. @code{STARPU_WORKERS_CUDAID} environment variable.
  96. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  97. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  98. contains the logical identifiers of the CUDA devices (as used by
  99. @code{cudaGetDevice}).
  100. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  101. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  102. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  103. the OpenCL devices in a round-robin fashion. This can also be specified with
  104. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  105. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  106. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  107. contains the logical identifiers of the OpenCL devices to be used.
  108. @item @code{int calibrate} (default = 0)
  109. If this flag is set, StarPU will calibrate the performance models when
  110. executing tasks. If this value is equal to @code{-1}, the default value is
  111. used. If the value is equal to @code{1}, it will force continuing
  112. calibration. If the value is equal to @code{2}, the existing performance
  113. models will be overwritten. This can also be specified with the
  114. @code{STARPU_CALIBRATE} environment variable.
  115. @item @code{int bus_calibrate} (default = 0)
  116. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  117. to @code{-1}, the default value is used. This can also be specified with the
  118. @code{STARPU_BUS_CALIBRATE} environment variable.
  119. @item @code{int single_combined_worker} (default = 0)
  120. By default, StarPU executes parallel tasks concurrently.
  121. Some parallel libraries (e.g. most OpenMP implementations) however do
  122. not support concurrent calls to parallel code. In such case, setting this flag
  123. makes StarPU only start one parallel task at a time (but other
  124. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  125. task scheduler will however still however still try varying combined worker
  126. sizes to look for the most efficient ones.
  127. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  128. @item @code{int disable_asynchronous_copy} (default = 0)
  129. This flag should be set to 1 to disable asynchronous copies between
  130. CPUs and all accelerators. This can also be specified with the
  131. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  132. The AMD implementation of OpenCL is known to
  133. fail when copying data asynchronously. When using this implementation,
  134. it is therefore necessary to disable asynchronous data transfers.
  135. This can also be specified at compilation time by giving to the
  136. configure script the option @code{--disable-asynchronous-copy}.
  137. @item @code{int disable_cuda_asynchronous_copy} (default = 0)
  138. This flag should be set to 1 to disable asynchronous copies between
  139. CPUs and CUDA accelerators. This can also be specified with the
  140. @code{STARPU_DISABLE_CUDA_ASYNCHRONOUS_COPY} environment variable.
  141. This can also be specified at compilation time by giving to the
  142. configure script the option @code{--disable-asynchronous-cuda-copy}.
  143. @item @code{int disable_opencl_asynchronous_copy} (default = 0)
  144. This flag should be set to 1 to disable asynchronous copies between
  145. CPUs and OpenCL accelerators. This can also be specified with the
  146. @code{STARPU_DISABLE_OPENCL_ASYNCHRONOUS_COPY} environment variable.
  147. The AMD implementation of OpenCL is known to
  148. fail when copying data asynchronously. When using this implementation,
  149. it is therefore necessary to disable asynchronous data transfers.
  150. This can also be specified at compilation time by giving to the
  151. configure script the option @code{--disable-asynchronous-opencl-copy}.
  152. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  153. This can be set to an array of CUDA device identifiers for which
  154. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  155. size is specified by the @code{n_cuda_opengl_interoperability} field below
  156. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  157. This has to be set to the size of the array pointed to by the
  158. @code{cuda_opengl_interoperability} field.
  159. @item @code{struct starpu_driver *not_launched_drivers}
  160. The drivers that should not be launched by StarPU.
  161. @item @code{unsigned nnot_launched_drivers}
  162. The number of StarPU drivers that should not be launched by StarPU.
  163. @end table
  164. @end deftp
  165. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  166. This function initializes the @var{conf} structure passed as argument
  167. with the default values. In case some configuration parameters are already
  168. specified through environment variables, @code{starpu_conf_init} initializes
  169. the fields of the structure according to the environment variables. For
  170. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  171. @code{.calibrate} field of the structure passed as argument.
  172. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  173. indicates that the argument was NULL.
  174. @end deftypefun
  175. @deftypefun void starpu_shutdown (void)
  176. This is StarPU termination method. It must be called at the end of the
  177. application: statistics and other post-mortem debugging information are not
  178. guaranteed to be available until this method has been called.
  179. @end deftypefun
  180. @deftypefun int starpu_asynchronous_copy_disabled (void)
  181. Return 1 if asynchronous data transfers between CPU and accelerators
  182. are disabled.
  183. @end deftypefun
  184. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  185. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  186. are disabled.
  187. @end deftypefun
  188. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  189. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  190. are disabled.
  191. @end deftypefun
  192. @node Workers' Properties
  193. @section Workers' Properties
  194. @deftp {Data Type} {enum starpu_archtype}
  195. The different values are:
  196. @table @asis
  197. @item @code{STARPU_CPU_WORKER}
  198. @item @code{STARPU_CUDA_WORKER}
  199. @item @code{STARPU_OPENCL_WORKER}
  200. @end table
  201. @end deftp
  202. @deftypefun unsigned starpu_worker_get_count (void)
  203. This function returns the number of workers (i.e. processing units executing
  204. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  205. @end deftypefun
  206. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  207. Returns the number of workers of the given @var{type}. A positive
  208. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  209. the type is not valid otherwise.
  210. @end deftypefun
  211. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  212. This function returns the number of CPUs controlled by StarPU. The returned
  213. value should be at most @code{STARPU_MAXCPUS}.
  214. @end deftypefun
  215. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  216. This function returns the number of CUDA devices controlled by StarPU. The returned
  217. value should be at most @code{STARPU_MAXCUDADEVS}.
  218. @end deftypefun
  219. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  220. This function returns the number of OpenCL devices controlled by StarPU. The returned
  221. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  222. @end deftypefun
  223. @deftypefun int starpu_worker_get_id (void)
  224. This function returns the identifier of the current worker, i.e the one associated to the calling
  225. thread. The returned value is either -1 if the current context is not a StarPU
  226. worker (i.e. when called from the application outside a task or a callback), or
  227. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  228. @end deftypefun
  229. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  230. This function gets the list of identifiers of workers with the given
  231. type. It fills the workerids array with the identifiers of the workers that have the type
  232. indicated in the first argument. The maxsize argument indicates the size of the
  233. workids array. The returned value gives the number of identifiers that were put
  234. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  235. workers with the appropriate type: in that case, the array is filled with the
  236. maxsize first elements. To avoid such overflows, the value of maxsize can be
  237. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  238. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  239. @end deftypefun
  240. @deftypefun int starpu_worker_get_devid (int @var{id})
  241. This functions returns the device id of the given worker. The worker
  242. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  243. CUDA worker, this device identifier is the logical device identifier exposed by
  244. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  245. identifier of a CPU worker is the logical identifier of the core on which the
  246. worker was bound; this identifier is either provided by the OS or by the
  247. @code{hwloc} library in case it is available.
  248. @end deftypefun
  249. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  250. This function returns the type of processing unit associated to a
  251. worker. The worker identifier is a value returned by the
  252. @code{starpu_worker_get_id} function). The returned value
  253. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  254. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  255. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  256. identifier is unspecified.
  257. @end deftypefun
  258. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  259. This function allows to get the name of a given worker.
  260. StarPU associates a unique human readable string to each processing unit. This
  261. function copies at most the @var{maxlen} first bytes of the unique string
  262. associated to a worker identified by its identifier @var{id} into the
  263. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  264. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  265. function on an invalid identifier results in an unspecified behaviour.
  266. @end deftypefun
  267. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  268. This function returns the identifier of the memory node associated to the
  269. worker identified by @var{workerid}.
  270. @end deftypefun
  271. @deftp {Data Type} {enum starpu_node_kind}
  272. todo
  273. @table @asis
  274. @item @code{STARPU_UNUSED}
  275. @item @code{STARPU_CPU_RAM}
  276. @item @code{STARPU_CUDA_RAM}
  277. @item @code{STARPU_OPENCL_RAM}
  278. @end table
  279. @end deftp
  280. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  281. Returns the type of the given node as defined by @code{enum
  282. starpu_node_kind}. For example, when defining a new data interface,
  283. this function should be used in the allocation function to determine
  284. on which device the memory needs to be allocated.
  285. @end deftypefun
  286. @node Data Management
  287. @section Data Management
  288. @menu
  289. * Introduction to Data Management::
  290. * Basic Data Management API::
  291. * Access registered data from the application::
  292. @end menu
  293. This section describes the data management facilities provided by StarPU.
  294. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  295. design their own data interfaces if required.
  296. @node Introduction to Data Management
  297. @subsection Introduction
  298. Data management is done at a high-level in StarPU: rather than accessing a mere
  299. list of contiguous buffers, the tasks may manipulate data that are described by
  300. a high-level construct which we call data interface.
  301. An example of data interface is the "vector" interface which describes a
  302. contiguous data array on a spefic memory node. This interface is a simple
  303. structure containing the number of elements in the array, the size of the
  304. elements, and the address of the array in the appropriate address space (this
  305. address may be invalid if there is no valid copy of the array in the memory
  306. node). More informations on the data interfaces provided by StarPU are
  307. given in @ref{Data Interfaces}.
  308. When a piece of data managed by StarPU is used by a task, the task
  309. implementation is given a pointer to an interface describing a valid copy of
  310. the data that is accessible from the current processing unit.
  311. Every worker is associated to a memory node which is a logical abstraction of
  312. the address space from which the processing unit gets its data. For instance,
  313. the memory node associated to the different CPU workers represents main memory
  314. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  315. Every memory node is identified by a logical index which is accessible from the
  316. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  317. to StarPU, the specified memory node indicates where the piece of data
  318. initially resides (we also call this memory node the home node of a piece of
  319. data).
  320. @node Basic Data Management API
  321. @subsection Basic Data Management API
  322. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  323. This function allocates data of the given size in main memory. It will also try to pin it in
  324. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  325. thus permit data transfer and computation overlapping. The allocated buffer must
  326. be freed thanks to the @code{starpu_free} function.
  327. @end deftypefun
  328. @deftypefun int starpu_free (void *@var{A})
  329. This function frees memory which has previously allocated with
  330. @code{starpu_malloc}.
  331. @end deftypefun
  332. @deftp {Data Type} {enum starpu_access_mode}
  333. This datatype describes a data access mode. The different available modes are:
  334. @table @asis
  335. @item @code{STARPU_R}: read-only mode.
  336. @item @code{STARPU_W}: write-only mode.
  337. @item @code{STARPU_RW}: read-write mode.
  338. This is equivalent to @code{STARPU_R|STARPU_W}.
  339. @item @code{STARPU_SCRATCH}: scratch memory.
  340. A temporary buffer is allocated for the task, but StarPU does not
  341. enforce data consistency---i.e. each device has its own buffer,
  342. independently from each other (even for CPUs), and no data transfer is
  343. ever performed. This is useful for temporary variables to avoid
  344. allocating/freeing buffers inside each task.
  345. Currently, no behavior is defined concerning the relation with the
  346. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  347. registration---i.e., the value of the scratch buffer is undefined at
  348. entry of the codelet function. It is being considered for future
  349. extensions at least to define the initial value. For now, data to be
  350. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  351. a @code{NULL} pointer, since the value of the provided buffer is simply
  352. ignored for now.
  353. @item @code{STARPU_REDUX}: reduction mode. TODO!
  354. @end table
  355. @end deftp
  356. @deftp {Data Type} {starpu_data_handle_t}
  357. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  358. data. Once a piece of data has been registered to StarPU, it is associated to a
  359. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  360. over the entire machine, so that we can maintain data consistency and locate
  361. data replicates for instance.
  362. @end deftp
  363. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  364. Register a piece of data into the handle located at the @var{handleptr}
  365. address. The @var{data_interface} buffer contains the initial description of the
  366. data in the home node. The @var{ops} argument is a pointer to a structure
  367. describing the different methods used to manipulate this type of interface. See
  368. @ref{struct starpu_data_interface_ops} for more details on this structure.
  369. If @code{home_node} is -1, StarPU will automatically
  370. allocate the memory when it is used for the
  371. first time in write-only mode. Once such data handle has been automatically
  372. allocated, it is possible to access it using any access mode.
  373. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  374. matrix) which can be registered by the means of helper functions (e.g.
  375. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  376. @end deftypefun
  377. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  378. Register a new piece of data into the handle @var{handledst} with the
  379. same interface as the handle @var{handlesrc}.
  380. @end deftypefun
  381. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  382. This function unregisters a data handle from StarPU. If the data was
  383. automatically allocated by StarPU because the home node was -1, all
  384. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  385. is put back into the home node in the buffer that was initially registered.
  386. Using a data handle that has been unregistered from StarPU results in an
  387. undefined behaviour.
  388. @end deftypefun
  389. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  390. This is the same as starpu_data_unregister, except that StarPU does not put back
  391. a valid copy into the home node, in the buffer that was initially registered.
  392. @end deftypefun
  393. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  394. Destroy the data handle once it is not needed anymore by any submitted
  395. task. No coherency is assumed.
  396. @end deftypefun
  397. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  398. Destroy all replicates of the data handle. After data invalidation, the first
  399. access to the handle must be performed in write-only mode. Accessing an
  400. invalidated data in read-mode results in undefined behaviour.
  401. @end deftypefun
  402. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  403. Submits invalidation of the data handle after completion of previously submitted tasks.
  404. @end deftypefun
  405. @c TODO create a specific sections about user interaction with the DSM ?
  406. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  407. This function sets the write-through mask of a given data, i.e. a bitmask of
  408. nodes where the data should be always replicated after modification. It also
  409. prevents the data from being evicted from these nodes when memory gets scarse.
  410. @end deftypefun
  411. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  412. Issue a prefetch request for a given data to a given node, i.e.
  413. requests that the data be replicated to the given node, so that it is available
  414. there for tasks. If the @var{async} parameter is 0, the call will block until
  415. the transfer is achieved, else the call will return as soon as the request is
  416. scheduled (which may however have to wait for a task completion).
  417. @end deftypefun
  418. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  419. Return the handle corresponding to the data pointed to by the @var{ptr}
  420. host pointer.
  421. @end deftypefun
  422. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  423. Explicitly ask StarPU to allocate room for a piece of data on the specified
  424. memory node.
  425. @end deftypefun
  426. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  427. Query the status of the handle on the specified memory node.
  428. @end deftypefun
  429. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  430. This function allows to specify that a piece of data can be discarded
  431. without impacting the application.
  432. @end deftypefun
  433. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  434. This sets the codelets to be used for the @var{handle} when it is accessed in
  435. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  436. codelet, and reduction between per-worker buffers will be done with the
  437. @var{redux_cl} codelet.
  438. @end deftypefun
  439. @node Access registered data from the application
  440. @subsection Access registered data from the application
  441. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  442. The application must call this function prior to accessing registered data from
  443. main memory outside tasks. StarPU ensures that the application will get an
  444. up-to-date copy of the data in main memory located where the data was
  445. originally registered, and that all concurrent accesses (e.g. from tasks) will
  446. be consistent with the access mode specified in the @var{mode} argument.
  447. @code{starpu_data_release} must be called once the application does not need to
  448. access the piece of data anymore. Note that implicit data
  449. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  450. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  451. the data, unless they have been disabled explictly by calling
  452. @code{starpu_data_set_default_sequential_consistency_flag} or
  453. @code{starpu_data_set_sequential_consistency_flag}.
  454. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  455. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  456. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  457. @end deftypefun
  458. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  459. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  460. @code{starpu_data_acquire}. When the data specified in the first argument is
  461. available in the appropriate access mode, the callback function is executed.
  462. The application may access the requested data during the execution of this
  463. callback. The callback function must call @code{starpu_data_release} once the
  464. application does not need to access the piece of data anymore.
  465. Note that implicit data dependencies are also enforced by
  466. @code{starpu_data_acquire_cb} in case they are not disabled.
  467. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  468. be called from task callbacks. Upon successful completion, this function
  469. returns 0.
  470. @end deftypefun
  471. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  472. This is the same as @code{starpu_data_acquire}, except that the data will be
  473. available on the given memory node instead of main memory.
  474. @end deftypefun
  475. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  476. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  477. available on the given memory node instead of main memory.
  478. @end deftypefun
  479. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  480. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  481. except that the code to be executed in a callback is directly provided as a
  482. macro parameter, and the data handle is automatically released after it. This
  483. permits to easily execute code which depends on the value of some registered
  484. data. This is non-blocking too and may be called from task callbacks.
  485. @end defmac
  486. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  487. This function releases the piece of data acquired by the application either by
  488. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  489. @end deftypefun
  490. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  491. This is the same as @code{starpu_data_release}, except that the data will be
  492. available on the given memory node instead of main memory.
  493. @end deftypefun
  494. @node Data Interfaces
  495. @section Data Interfaces
  496. @menu
  497. * Registering Data::
  498. * Accessing Data Interfaces::
  499. @end menu
  500. @node Registering Data
  501. @subsection Registering Data
  502. There are several ways to register a memory region so that it can be managed by
  503. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  504. matrices as well as BCSR and CSR sparse matrices.
  505. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  506. Register a void interface. There is no data really associated to that
  507. interface, but it may be used as a synchronization mechanism. It also
  508. permits to express an abstract piece of data that is managed by the
  509. application internally: this makes it possible to forbid the
  510. concurrent execution of different tasks accessing the same "void" data
  511. in read-write concurrently.
  512. @end deftypefun
  513. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  514. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  515. typically a scalar, and initialize @var{handle} to represent this data
  516. item.
  517. @cartouche
  518. @smallexample
  519. float var;
  520. starpu_data_handle_t var_handle;
  521. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  522. @end smallexample
  523. @end cartouche
  524. @end deftypefun
  525. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  526. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  527. @var{ptr} and initialize @var{handle} to represent it.
  528. @cartouche
  529. @smallexample
  530. float vector[NX];
  531. starpu_data_handle_t vector_handle;
  532. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  533. sizeof(vector[0]));
  534. @end smallexample
  535. @end cartouche
  536. @end deftypefun
  537. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  538. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  539. pointed by @var{ptr} and initialize @var{handle} to represent it.
  540. @var{ld} specifies the number of elements between rows.
  541. a value greater than @var{nx} adds padding, which can be useful for
  542. alignment purposes.
  543. @cartouche
  544. @smallexample
  545. float *matrix;
  546. starpu_data_handle_t matrix_handle;
  547. matrix = (float*)malloc(width * height * sizeof(float));
  548. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  549. width, width, height, sizeof(float));
  550. @end smallexample
  551. @end cartouche
  552. @end deftypefun
  553. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  554. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  555. elements pointed by @var{ptr} and initialize @var{handle} to represent
  556. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  557. between rows and between z planes.
  558. @cartouche
  559. @smallexample
  560. float *block;
  561. starpu_data_handle_t block_handle;
  562. block = (float*)malloc(nx*ny*nz*sizeof(float));
  563. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  564. nx, nx*ny, nx, ny, nz, sizeof(float));
  565. @end smallexample
  566. @end cartouche
  567. @end deftypefun
  568. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  569. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  570. Compressed Sparse Row Representation) sparse matrix interface.
  571. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  572. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  573. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  574. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  575. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  576. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  577. or 1).
  578. @end deftypefun
  579. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  580. This variant of @code{starpu_data_register} uses the CSR (Compressed
  581. Sparse Row Representation) sparse matrix interface.
  582. TODO
  583. @end deftypefun
  584. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  585. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  586. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  587. elements of size @var{elemsize}. Initialize @var{handleptr}.
  588. @end deftypefun
  589. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  590. Return the interface associated with @var{handle} on @var{memory_node}.
  591. @end deftypefun
  592. @node Accessing Data Interfaces
  593. @subsection Accessing Data Interfaces
  594. Each data interface is provided with a set of field access functions.
  595. The ones using a @code{void *} parameter aimed to be used in codelet
  596. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  597. @deftp {Data Type} {enum starpu_data_interface_id}
  598. The different values are:
  599. @table @asis
  600. @item @code{STARPU_MATRIX_INTERFACE_ID}
  601. @item @code{STARPU_BLOCK_INTERFACE_ID}
  602. @item @code{STARPU_VECTOR_INTERFACE_ID}
  603. @item @code{STARPU_CSR_INTERFACE_ID}
  604. @item @code{STARPU_BCSR_INTERFACE_ID}
  605. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  606. @item @code{STARPU_VOID_INTERFACE_ID}
  607. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  608. @item @code{STARPU_COO_INTERCACE_ID}
  609. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  610. @end table
  611. @end deftp
  612. @menu
  613. * Accessing Handle::
  614. * Accessing Variable Data Interfaces::
  615. * Accessing Vector Data Interfaces::
  616. * Accessing Matrix Data Interfaces::
  617. * Accessing Block Data Interfaces::
  618. * Accessing BCSR Data Interfaces::
  619. * Accessing CSR Data Interfaces::
  620. * Accessing COO Data Interfaces::
  621. @end menu
  622. @node Accessing Handle
  623. @subsubsection Handle
  624. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  625. Return the pointer associated with @var{handle} on node @var{node} or
  626. @code{NULL} if @var{handle}'s interface does not support this
  627. operation or data for this handle is not allocated on that node.
  628. @end deftypefun
  629. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  630. Return the local pointer associated with @var{handle} or @code{NULL}
  631. if @var{handle}'s interface does not have data allocated locally
  632. @end deftypefun
  633. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  634. Return the unique identifier of the interface associated with the given @var{handle}.
  635. @end deftypefun
  636. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  637. Return the size of the data associated with @var{handle}
  638. @end deftypefun
  639. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {size_t *}@var{count})
  640. Execute the packing operation of the interface of the data registered
  641. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  642. packing operation must allocate a buffer large enough at @var{ptr} and
  643. copy into the newly allocated buffer the data associated to
  644. @var{handle}.
  645. The function also sets @var{count} to the size of the data handle by calling
  646. @code{starpu_handle_get_size()}.
  647. @end deftypefun
  648. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr})
  649. Copy in @var{handle} the data located at @var{ptr} as described by the
  650. interface of the data. The interface registered at @var{handle} must
  651. define a unpacking operation (@pxref{struct starpu_data_interface_ops}).
  652. @end deftypefun
  653. @node Accessing Variable Data Interfaces
  654. @subsubsection Variable Data Interfaces
  655. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  656. Return the size of the variable designated by @var{handle}.
  657. @end deftypefun
  658. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  659. Return a pointer to the variable designated by @var{handle}.
  660. @end deftypefun
  661. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  662. Return a pointer to the variable designated by @var{interface}.
  663. @end defmac
  664. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  665. Return the size of the variable designated by @var{interface}.
  666. @end defmac
  667. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  668. Return a device handle for the variable designated by @var{interface}, to be
  669. used on OpenCL. The offset documented below has to be used in addition to this.
  670. @end defmac
  671. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  672. Return the offset in the variable designated by @var{interface}, to be used
  673. with the device handle.
  674. @end defmac
  675. @node Accessing Vector Data Interfaces
  676. @subsubsection Vector Data Interfaces
  677. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  678. Return the number of elements registered into the array designated by @var{handle}.
  679. @end deftypefun
  680. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  681. Return the size of each element of the array designated by @var{handle}.
  682. @end deftypefun
  683. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  684. Return the local pointer associated with @var{handle}.
  685. @end deftypefun
  686. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  687. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  688. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  689. @end defmac
  690. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  691. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  692. documented below has to be used in addition to this.
  693. @end defmac
  694. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  695. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  696. @end defmac
  697. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  698. Return the number of elements registered into the array designated by @var{interface}.
  699. @end defmac
  700. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  701. Return the size of each element of the array designated by @var{interface}.
  702. @end defmac
  703. @node Accessing Matrix Data Interfaces
  704. @subsubsection Matrix Data Interfaces
  705. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  706. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  707. @end deftypefun
  708. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  709. Return the number of elements on the y-axis of the matrix designated by
  710. @var{handle}.
  711. @end deftypefun
  712. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  713. Return the number of elements between each row of the matrix designated by
  714. @var{handle}. Maybe be equal to nx when there is no padding.
  715. @end deftypefun
  716. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  717. Return the local pointer associated with @var{handle}.
  718. @end deftypefun
  719. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  720. Return the size of the elements registered into the matrix designated by
  721. @var{handle}.
  722. @end deftypefun
  723. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  724. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  725. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  726. used instead.
  727. @end defmac
  728. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  729. Return a device handle for the matrix designated by @var{interface}, to be used
  730. on OpenCL. The offset documented below has to be used in addition to this.
  731. @end defmac
  732. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  733. Return the offset in the matrix designated by @var{interface}, to be used with
  734. the device handle.
  735. @end defmac
  736. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  737. Return the number of elements on the x-axis of the matrix designated by
  738. @var{interface}.
  739. @end defmac
  740. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  741. Return the number of elements on the y-axis of the matrix designated by
  742. @var{interface}.
  743. @end defmac
  744. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  745. Return the number of elements between each row of the matrix designated by
  746. @var{interface}. May be equal to nx when there is no padding.
  747. @end defmac
  748. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  749. Return the size of the elements registered into the matrix designated by
  750. @var{interface}.
  751. @end defmac
  752. @node Accessing Block Data Interfaces
  753. @subsubsection Block Data Interfaces
  754. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  755. Return the number of elements on the x-axis of the block designated by @var{handle}.
  756. @end deftypefun
  757. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  758. Return the number of elements on the y-axis of the block designated by @var{handle}.
  759. @end deftypefun
  760. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  761. Return the number of elements on the z-axis of the block designated by @var{handle}.
  762. @end deftypefun
  763. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  764. Return the number of elements between each row of the block designated by
  765. @var{handle}, in the format of the current memory node.
  766. @end deftypefun
  767. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  768. Return the number of elements between each z plane of the block designated by
  769. @var{handle}, in the format of the current memory node.
  770. @end deftypefun
  771. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  772. Return the local pointer associated with @var{handle}.
  773. @end deftypefun
  774. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  775. Return the size of the elements of the block designated by @var{handle}.
  776. @end deftypefun
  777. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  778. Return a pointer to the block designated by @var{interface}.
  779. @end defmac
  780. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  781. Return a device handle for the block designated by @var{interface}, to be used
  782. on OpenCL. The offset document below has to be used in addition to this.
  783. @end defmac
  784. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  785. Return the offset in the block designated by @var{interface}, to be used with
  786. the device handle.
  787. @end defmac
  788. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  789. Return the number of elements on the x-axis of the block designated by @var{handle}.
  790. @end defmac
  791. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  792. Return the number of elements on the y-axis of the block designated by @var{handle}.
  793. @end defmac
  794. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  795. Return the number of elements on the z-axis of the block designated by @var{handle}.
  796. @end defmac
  797. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  798. Return the number of elements between each row of the block designated by
  799. @var{interface}. May be equal to nx when there is no padding.
  800. @end defmac
  801. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  802. Return the number of elements between each z plane of the block designated by
  803. @var{interface}. May be equal to nx*ny when there is no padding.
  804. @end defmac
  805. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  806. Return the size of the elements of the matrix designated by @var{interface}.
  807. @end defmac
  808. @node Accessing BCSR Data Interfaces
  809. @subsubsection BCSR Data Interfaces
  810. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  811. Return the number of non-zero elements in the matrix designated by @var{handle}.
  812. @end deftypefun
  813. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  814. Return the number of rows (in terms of blocks of size r*c) in the matrix
  815. designated by @var{handle}.
  816. @end deftypefun
  817. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  818. Return the index at which all arrays (the column indexes, the row pointers...)
  819. of the matrix desginated by @var{handle} start.
  820. @end deftypefun
  821. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  822. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  823. @end deftypefun
  824. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  825. Return a pointer to the column index, which holds the positions of the non-zero
  826. entries in the matrix designated by @var{handle}.
  827. @end deftypefun
  828. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  829. Return the row pointer array of the matrix designated by @var{handle}.
  830. @end deftypefun
  831. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  832. Return the number of rows in a block.
  833. @end deftypefun
  834. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  835. Return the numberof columns in a block.
  836. @end deftypefun
  837. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  838. Return the size of the elements in the matrix designated by @var{handle}.
  839. @end deftypefun
  840. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  841. Return the number of non-zero values in the matrix designated by @var{interface}.
  842. @end defmac
  843. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  844. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  845. @end defmac
  846. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  847. Return a device handle for the array of non-zero values in the matrix designated
  848. by @var{interface}. The offset documented below has to be used in addition to
  849. this.
  850. @end defmac
  851. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  852. Return a pointer to the column index of the matrix designated by @var{interface}.
  853. @end defmac
  854. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  855. Return a device handle for the column index of the matrix designated by
  856. @var{interface}. The offset documented below has to be used in addition to
  857. this.
  858. @end defmac
  859. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  860. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  861. @end defmac
  862. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  863. Return a device handle for the row pointer array of the matrix designated by
  864. @var{interface}. The offset documented below has to be used in addition to
  865. this.
  866. @end defmac
  867. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  868. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  869. designated by @var{interface}, to be used with the device handles.
  870. @end defmac
  871. @node Accessing CSR Data Interfaces
  872. @subsubsection CSR Data Interfaces
  873. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  874. Return the number of non-zero values in the matrix designated by @var{handle}.
  875. @end deftypefun
  876. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  877. Return the size of the row pointer array of the matrix designated by @var{handle}.
  878. @end deftypefun
  879. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  880. Return the index at which all arrays (the column indexes, the row pointers...)
  881. of the matrix designated by @var{handle} start.
  882. @end deftypefun
  883. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  884. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  885. @end deftypefun
  886. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  887. Return a local pointer to the column index of the matrix designated by @var{handle}.
  888. @end deftypefun
  889. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  890. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  891. @end deftypefun
  892. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  893. Return the size of the elements registered into the matrix designated by @var{handle}.
  894. @end deftypefun
  895. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  896. Return the number of non-zero values in the matrix designated by @var{interface}.
  897. @end defmac
  898. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  899. Return the size of the row pointer array of the matrix designated by @var{interface}.
  900. @end defmac
  901. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  902. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  903. @end defmac
  904. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  905. Return a device handle for the array of non-zero values in the matrix designated
  906. by @var{interface}. The offset documented below has to be used in addition to
  907. this.
  908. @end defmac
  909. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  910. Return a pointer to the column index of the matrix designated by @var{interface}.
  911. @end defmac
  912. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  913. Return a device handle for the column index of the matrix designated by
  914. @var{interface}. The offset documented below has to be used in addition to
  915. this.
  916. @end defmac
  917. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  918. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  919. @end defmac
  920. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  921. Return a device handle for the row pointer array of the matrix designated by
  922. @var{interface}. The offset documented below has to be used in addition to
  923. this.
  924. @end defmac
  925. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  926. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  927. designated by @var{interface}, to be used with the device handles.
  928. @end defmac
  929. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  930. Return the index at which all arrays (the column indexes, the row pointers...)
  931. of the @var{interface} start.
  932. @end defmac
  933. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  934. Return the size of the elements registered into the matrix designated by @var{interface}.
  935. @end defmac
  936. @node Accessing COO Data Interfaces
  937. @subsubsection COO Data Interfaces
  938. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  939. Return a pointer to the column array of the matrix designated by
  940. @var{interface}.
  941. @end defmac
  942. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  943. Return a device handle for the column array of the matrix designated by
  944. @var{interface}, to be used on OpenCL. The offset documented below has to be
  945. used in addition to this.
  946. @end defmac
  947. @defmac STARPU_COO_GET_ROWS (interface)
  948. Return a pointer to the rows array of the matrix designated by @var{interface}.
  949. @end defmac
  950. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  951. Return a device handle for the row array of the matrix designated by
  952. @var{interface}, to be used on OpenCL. The offset documented below has to be
  953. used in addition to this.
  954. @end defmac
  955. @defmac STARPU_COO_GET_VALUES (interface)
  956. Return a pointer to the values array of the matrix designated by
  957. @var{interface}.
  958. @end defmac
  959. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  960. Return a device handle for the value array of the matrix designated by
  961. @var{interface}, to be used on OpenCL. The offset documented below has to be
  962. used in addition to this.
  963. @end defmac
  964. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  965. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  966. @end defmac
  967. @defmac STARPU_COO_GET_NX (interface)
  968. Return the number of elements on the x-axis of the matrix designated by
  969. @var{interface}.
  970. @end defmac
  971. @defmac STARPU_COO_GET_NY (interface)
  972. Return the number of elements on the y-axis of the matrix designated by
  973. @var{interface}.
  974. @end defmac
  975. @defmac STARPU_COO_GET_NVALUES (interface)
  976. Return the number of values registered in the matrix designated by
  977. @var{interface}.
  978. @end defmac
  979. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  980. Return the size of the elements registered into the matrix designated by
  981. @var{interface}.
  982. @end defmac
  983. @node Data Partition
  984. @section Data Partition
  985. @menu
  986. * Basic API::
  987. * Predefined filter functions::
  988. @end menu
  989. @node Basic API
  990. @subsection Basic API
  991. @deftp {Data Type} {struct starpu_data_filter}
  992. The filter structure describes a data partitioning operation, to be given to the
  993. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  994. for an example. The different fields are:
  995. @table @asis
  996. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  997. This function fills the @code{child_interface} structure with interface
  998. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  999. @item @code{unsigned nchildren}
  1000. This is the number of parts to partition the data into.
  1001. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1002. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1003. children depends on the actual data (e.g. the number of blocks in a sparse
  1004. matrix).
  1005. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1006. In case the resulting children use a different data interface, this function
  1007. returns which interface is used by child number @code{id}.
  1008. @item @code{unsigned filter_arg}
  1009. Allow to define an additional parameter for the filter function.
  1010. @item @code{void *filter_arg_ptr}
  1011. Allow to define an additional pointer parameter for the filter
  1012. function, such as the sizes of the different parts.
  1013. @end table
  1014. @end deftp
  1015. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1016. @anchor{starpu_data_partition}
  1017. This requests partitioning one StarPU data @var{initial_handle} into several
  1018. subdata according to the filter @var{f}, as shown in the following example:
  1019. @cartouche
  1020. @smallexample
  1021. struct starpu_data_filter f = @{
  1022. .filter_func = starpu_block_filter_func,
  1023. .nchildren = nslicesx,
  1024. .get_nchildren = NULL,
  1025. .get_child_ops = NULL
  1026. @};
  1027. starpu_data_partition(A_handle, &f);
  1028. @end smallexample
  1029. @end cartouche
  1030. @end deftypefun
  1031. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  1032. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1033. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1034. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1035. @cartouche
  1036. @smallexample
  1037. starpu_data_unpartition(A_handle, 0);
  1038. @end smallexample
  1039. @end cartouche
  1040. @end deftypefun
  1041. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1042. This function returns the number of children.
  1043. @end deftypefun
  1044. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1045. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1046. @end deftypefun
  1047. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1048. After partitioning a StarPU data by applying a filter,
  1049. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1050. the data portions. @var{root_data} is the parent data that was
  1051. partitioned. @var{depth} is the number of filters to traverse (in
  1052. case several filters have been applied, to e.g. partition in row
  1053. blocks, and then in column blocks), and the subsequent
  1054. parameters are the indexes. The function returns a handle to the
  1055. subdata.
  1056. @cartouche
  1057. @smallexample
  1058. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1059. @end smallexample
  1060. @end cartouche
  1061. @end deftypefun
  1062. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1063. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1064. va_list for the parameter list.
  1065. @end deftypefun
  1066. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1067. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1068. recursively. @var{nfilters} pointers to variables of the type
  1069. starpu_data_filter should be given.
  1070. @end deftypefun
  1071. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1072. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1073. recursively. It uses a va_list of pointers to variables of the typer
  1074. starpu_data_filter.
  1075. @end deftypefun
  1076. @node Predefined filter functions
  1077. @subsection Predefined filter functions
  1078. @menu
  1079. * Partitioning Vector Data::
  1080. * Partitioning Matrix Data::
  1081. * Partitioning 3D Matrix Data::
  1082. * Partitioning BCSR Data::
  1083. @end menu
  1084. This section gives a partial list of the predefined partitioning functions.
  1085. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1086. list can be found in @code{starpu_data_filters.h} .
  1087. @node Partitioning Vector Data
  1088. @subsubsection Partitioning Vector Data
  1089. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1090. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1091. vector represented by @var{father_interface} once partitioned in
  1092. @var{nparts} chunks of equal size.
  1093. @end deftypefun
  1094. @deftypefun void starpu_block_shadow_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1095. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1096. vector represented by @var{father_interface} once partitioned in
  1097. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1098. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1099. IMPORTANT: This can only be used for read-only access, as no coherency is
  1100. enforced for the shadowed parts.
  1101. A usage example is available in examples/filters/shadow.c
  1102. @end deftypefun
  1103. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1104. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1105. vector represented by @var{father_interface} once partitioned into
  1106. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1107. @code{*@var{f}}.
  1108. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1109. @code{uint32_t} elements, each of which specifies the number of elements
  1110. in each chunk of the partition.
  1111. @end deftypefun
  1112. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1113. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1114. vector represented by @var{father_interface} once partitioned in two
  1115. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1116. @code{0} or @code{1}.
  1117. @end deftypefun
  1118. @node Partitioning Matrix Data
  1119. @subsubsection Partitioning Matrix Data
  1120. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1121. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1122. matrices. If nparts does not divide x, the last submatrix contains the
  1123. remainder.
  1124. @end deftypefun
  1125. @deftypefun void starpu_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1126. This partitions a dense Matrix along the x dimension, with a shadow border
  1127. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1128. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1129. remainder.
  1130. IMPORTANT: This can only be used for read-only access, as no coherency is
  1131. enforced for the shadowed parts.
  1132. A usage example is available in examples/filters/shadow2d.c
  1133. @end deftypefun
  1134. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1135. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1136. matrices. If nparts does not divide y, the last submatrix contains the
  1137. remainder.
  1138. @end deftypefun
  1139. @deftypefun void starpu_vertical_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1140. This partitions a dense Matrix along the y dimension, with a shadow border
  1141. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1142. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1143. remainder.
  1144. IMPORTANT: This can only be used for read-only access, as no coherency is
  1145. enforced for the shadowed parts.
  1146. A usage example is available in examples/filters/shadow2d.c
  1147. @end deftypefun
  1148. @node Partitioning 3D Matrix Data
  1149. @subsubsection Partitioning 3D Matrix Data
  1150. A usage example is available in examples/filters/shadow3d.c
  1151. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1152. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1153. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1154. remainder.
  1155. @end deftypefun
  1156. @deftypefun void starpu_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1157. This partitions a 3D matrix along the X dimension, with a shadow border
  1158. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1159. matrices. If nparts does not divide x, the last submatrix contains the
  1160. remainder.
  1161. IMPORTANT: This can only be used for read-only access, as no coherency is
  1162. enforced for the shadowed parts.
  1163. @end deftypefun
  1164. @deftypefun void starpu_vertical_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1165. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1166. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1167. remainder.
  1168. @end deftypefun
  1169. @deftypefun void starpu_vertical_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1170. This partitions a 3D matrix along the Y dimension, with a shadow border
  1171. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1172. matrices. If nparts does not divide y, the last submatrix contains the
  1173. remainder.
  1174. IMPORTANT: This can only be used for read-only access, as no coherency is
  1175. enforced for the shadowed parts.
  1176. @end deftypefun
  1177. @deftypefun void starpu_depth_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1178. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1179. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1180. remainder.
  1181. @end deftypefun
  1182. @deftypefun void starpu_depth_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1183. This partitions a 3D matrix along the Z dimension, with a shadow border
  1184. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1185. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1186. remainder.
  1187. IMPORTANT: This can only be used for read-only access, as no coherency is
  1188. enforced for the shadowed parts.
  1189. @end deftypefun
  1190. @node Partitioning BCSR Data
  1191. @subsubsection Partitioning BCSR Data
  1192. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1193. This partitions a block-sparse matrix into dense matrices.
  1194. @end deftypefun
  1195. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1196. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1197. @end deftypefun
  1198. @node Codelets and Tasks
  1199. @section Codelets and Tasks
  1200. This section describes the interface to manipulate codelets and tasks.
  1201. @deftp {Data Type} {enum starpu_codelet_type}
  1202. Describes the type of parallel task. The different values are:
  1203. @table @asis
  1204. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1205. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1206. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1207. @code{starpu_combined_worker_get_rank} to distribute the work
  1208. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1209. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1210. determine how many threads should be started.
  1211. @end table
  1212. See @ref{Parallel Tasks} for details.
  1213. @end deftp
  1214. @defmac STARPU_CPU
  1215. This macro is used when setting the field @code{where} of a @code{struct
  1216. starpu_codelet} to specify the codelet may be executed on a CPU
  1217. processing unit.
  1218. @end defmac
  1219. @defmac STARPU_CUDA
  1220. This macro is used when setting the field @code{where} of a @code{struct
  1221. starpu_codelet} to specify the codelet may be executed on a CUDA
  1222. processing unit.
  1223. @end defmac
  1224. @defmac STARPU_OPENCL
  1225. This macro is used when setting the field @code{where} of a @code{struct
  1226. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1227. processing unit.
  1228. @end defmac
  1229. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1230. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1231. with this macro indicates the codelet will have several
  1232. implementations. The use of this macro is deprecated. One should
  1233. always only define the field @code{cpu_funcs}.
  1234. @end defmac
  1235. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1236. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1237. with this macro indicates the codelet will have several
  1238. implementations. The use of this macro is deprecated. One should
  1239. always only define the field @code{cuda_funcs}.
  1240. @end defmac
  1241. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1242. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1243. with this macro indicates the codelet will have several
  1244. implementations. The use of this macro is deprecated. One should
  1245. always only define the field @code{opencl_funcs}.
  1246. @end defmac
  1247. @deftp {Data Type} {struct starpu_codelet}
  1248. The codelet structure describes a kernel that is possibly implemented on various
  1249. targets. For compatibility, make sure to initialize the whole structure to zero,
  1250. either by using explicit memset, or by letting the compiler implicitly do it in
  1251. e.g. static storage case.
  1252. @table @asis
  1253. @item @code{uint32_t where} (optional)
  1254. Indicates which types of processing units are able to execute the
  1255. codelet. The different values
  1256. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1257. @code{STARPU_OPENCL} can be combined to specify
  1258. on which types of processing units the codelet can be executed.
  1259. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1260. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1261. indicates that it is only available on OpenCL devices. If the field is
  1262. unset, its value will be automatically set based on the availability
  1263. of the @code{XXX_funcs} fields defined below.
  1264. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1265. Defines a function which should return 1 if the worker designated by
  1266. @var{workerid} can execute the @var{nimpl}th implementation of the
  1267. given @var{task}, 0 otherwise.
  1268. @item @code{enum starpu_codelet_type type} (optional)
  1269. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1270. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1271. implementation is also available. See @ref{Parallel Tasks} for details.
  1272. @item @code{int max_parallelism} (optional)
  1273. If a parallel implementation is available, this denotes the maximum combined
  1274. worker size that StarPU will use to execute parallel tasks for this codelet.
  1275. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1276. This field has been made deprecated. One should use instead the
  1277. @code{cpu_funcs} field.
  1278. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1279. Is an array of function pointers to the CPU implementations of the codelet.
  1280. It must be terminated by a NULL value.
  1281. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1282. argument being the array of data managed by the data management library, and
  1283. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1284. field of the @code{starpu_task} structure.
  1285. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1286. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1287. field, it must be non-null otherwise.
  1288. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1289. This field has been made deprecated. One should use instead the
  1290. @code{cuda_funcs} field.
  1291. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1292. Is an array of function pointers to the CUDA implementations of the codelet.
  1293. It must be terminated by a NULL value.
  1294. @emph{The functions must be host-functions written in the CUDA runtime
  1295. API}. Their prototype must
  1296. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1297. If the @code{where} field is set, then the @code{cuda_funcs}
  1298. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1299. field, it must be non-null otherwise.
  1300. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1301. This field has been made deprecated. One should use instead the
  1302. @code{opencl_funcs} field.
  1303. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1304. Is an array of function pointers to the OpenCL implementations of the codelet.
  1305. It must be terminated by a NULL value.
  1306. The functions prototype must be:
  1307. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1308. If the @code{where} field is set, then the @code{opencl_funcs} field
  1309. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1310. field, it must be non-null otherwise.
  1311. @item @code{unsigned nbuffers}
  1312. Specifies the number of arguments taken by the codelet. These arguments are
  1313. managed by the DSM and are accessed from the @code{void *buffers[]}
  1314. array. The constant argument passed with the @code{cl_arg} field of the
  1315. @code{starpu_task} structure is not counted in this number. This value should
  1316. not be above @code{STARPU_NMAXBUFS}.
  1317. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1318. Is an array of @code{enum starpu_access_mode}. It describes the
  1319. required access modes to the data neeeded by the codelet (e.g.
  1320. @code{STARPU_RW}). The number of entries in this array must be
  1321. specified in the @code{nbuffers} field (defined above), and should not
  1322. exceed @code{STARPU_NMAXBUFS}.
  1323. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1324. option when configuring StarPU.
  1325. @item @code{struct starpu_perfmodel *model} (optional)
  1326. This is a pointer to the task duration performance model associated to this
  1327. codelet. This optional field is ignored when set to @code{NULL} or
  1328. when its @code{symbol} field is not set.
  1329. @item @code{struct starpu_perfmodel *power_model} (optional)
  1330. This is a pointer to the task power consumption performance model associated
  1331. to this codelet. This optional field is ignored when set to
  1332. @code{NULL} or when its @code{symbol} field is not set.
  1333. In the case of parallel codelets, this has to account for all processing units
  1334. involved in the parallel execution.
  1335. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1336. Statistics collected at runtime: this is filled by StarPU and should not be
  1337. accessed directly, but for example by calling the
  1338. @code{starpu_display_codelet_stats} function (See
  1339. @ref{starpu_display_codelet_stats} for details).
  1340. @item @code{const char *name} (optional)
  1341. Define the name of the codelet. This can be useful for debugging purposes.
  1342. @end table
  1343. @end deftp
  1344. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1345. Initialize @var{cl} with default values. Codelets should preferably be
  1346. initialized statically as shown in @ref{Defining a Codelet}. However
  1347. such a initialisation is not always possible, e.g. when using C++.
  1348. @end deftypefun
  1349. @deftp {Data Type} {enum starpu_task_status}
  1350. State of a task, can be either of
  1351. @table @asis
  1352. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1353. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1354. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1355. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1356. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1357. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1358. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1359. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1360. @end table
  1361. @end deftp
  1362. @deftp {Data Type} {struct starpu_buffer_descr}
  1363. This type is used to describe a data handle along with an
  1364. access mode.
  1365. @table @asis
  1366. @item @code{starpu_data_handle_t handle} describes a data,
  1367. @item @code{enum starpu_access_mode mode} describes its access mode
  1368. @end table
  1369. @end deftp
  1370. @deftp {Data Type} {struct starpu_task}
  1371. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1372. processing units managed by StarPU. It instantiates a codelet. It can either be
  1373. allocated dynamically with the @code{starpu_task_create} method, or declared
  1374. statically. In the latter case, the programmer has to zero the
  1375. @code{starpu_task} structure and to fill the different fields properly. The
  1376. indicated default values correspond to the configuration of a task allocated
  1377. with @code{starpu_task_create}.
  1378. @table @asis
  1379. @item @code{struct starpu_codelet *cl}
  1380. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1381. describes where the kernel should be executed, and supplies the appropriate
  1382. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1383. such empty tasks can be useful for synchronization purposes.
  1384. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1385. This field has been made deprecated. One should use instead the
  1386. @code{handles} field to specify the handles to the data accessed by
  1387. the task. The access modes are now defined in the @code{mode} field of
  1388. the @code{struct starpu_codelet cl} field defined above.
  1389. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1390. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1391. to the different pieces of data accessed by the task. The number
  1392. of entries in this array must be specified in the @code{nbuffers} field of the
  1393. @code{struct starpu_codelet} structure, and should not exceed
  1394. @code{STARPU_NMAXBUFS}.
  1395. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1396. option when configuring StarPU.
  1397. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1398. The actual data pointers to the memory node where execution will happen, managed
  1399. by the DSM.
  1400. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1401. This pointer is passed to the codelet through the second argument
  1402. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1403. @item @code{size_t cl_arg_size} (optional)
  1404. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1405. given to the driver function. A buffer of size @code{cl_arg_size}
  1406. needs to be allocated on the driver. This buffer is then filled with
  1407. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1408. this case, the argument given to the codelet is therefore not the
  1409. @code{cl_arg} pointer, but the address of the buffer in local store
  1410. (LS) instead.
  1411. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1412. @code{cl_arg} pointer is given as such.
  1413. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1414. This is a function pointer of prototype @code{void (*f)(void *)} which
  1415. specifies a possible callback. If this pointer is non-null, the callback
  1416. function is executed @emph{on the host} after the execution of the task. Tasks
  1417. which depend on it might already be executing. The callback is passed the
  1418. value contained in the @code{callback_arg} field. No callback is executed if the
  1419. field is set to @code{NULL}.
  1420. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1421. This is the pointer passed to the callback function. This field is ignored if
  1422. the @code{callback_func} is set to @code{NULL}.
  1423. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1424. If set, this flag indicates that the task should be associated with the tag
  1425. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1426. with the task and to express task dependencies easily.
  1427. @item @code{starpu_tag_t tag_id}
  1428. This fields contains the tag associated to the task if the @code{use_tag} field
  1429. was set, it is ignored otherwise.
  1430. @item @code{unsigned synchronous}
  1431. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1432. returns only when the task has been executed (or if no worker is able to
  1433. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1434. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1435. This field indicates a level of priority for the task. This is an integer value
  1436. that must be set between the return values of the
  1437. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1438. and that of the @code{starpu_sched_get_max_priority} for the most important
  1439. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1440. are provided for convenience and respectively returns value of
  1441. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1442. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1443. order to allow static task initialization. Scheduling strategies that take
  1444. priorities into account can use this parameter to take better scheduling
  1445. decisions, but the scheduling policy may also ignore it.
  1446. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1447. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1448. task to the worker specified by the @code{workerid} field.
  1449. @item @code{unsigned workerid} (optional)
  1450. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1451. which is the identifier of the worker that should process this task (as
  1452. returned by @code{starpu_worker_get_id}). This field is ignored if
  1453. @code{execute_on_a_specific_worker} field is set to 0.
  1454. @item @code{starpu_task_bundle_t bundle} (optional)
  1455. The bundle that includes this task. If no bundle is used, this should be NULL.
  1456. @item @code{int detach} (optional) (default: @code{1})
  1457. If this flag is set, it is not possible to synchronize with the task
  1458. by the means of @code{starpu_task_wait} later on. Internal data structures
  1459. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1460. flag is not set.
  1461. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1462. If this flag is set, the task structure will automatically be freed, either
  1463. after the execution of the callback if the task is detached, or during
  1464. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1465. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1466. called explicitly. Setting this flag for a statically allocated task structure
  1467. will result in undefined behaviour. The flag is set to 1 when the task is
  1468. created by calling @code{starpu_task_create()}. Note that
  1469. @code{starpu_task_wait_for_all} will not free any task.
  1470. @item @code{int regenerate} (optional)
  1471. If this flag is set, the task will be re-submitted to StarPU once it has been
  1472. executed. This flag must not be set if the destroy flag is set too.
  1473. @item @code{enum starpu_task_status status} (optional)
  1474. Current state of the task.
  1475. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1476. Profiling information for the task.
  1477. @item @code{double predicted} (output field)
  1478. Predicted duration of the task. This field is only set if the scheduling
  1479. strategy used performance models.
  1480. @item @code{double predicted_transfer} (optional)
  1481. Predicted data transfer duration for the task in microseconds. This field is
  1482. only valid if the scheduling strategy uses performance models.
  1483. @item @code{struct starpu_task *prev}
  1484. A pointer to the previous task. This should only be used by StarPU.
  1485. @item @code{struct starpu_task *next}
  1486. A pointer to the next task. This should only be used by StarPU.
  1487. @item @code{unsigned int mf_skip}
  1488. This is only used for tasks that use multiformat handle. This should only be
  1489. used by StarPU.
  1490. @item @code{void *starpu_private}
  1491. This is private to StarPU, do not modify. If the task is allocated by hand
  1492. (without starpu_task_create), this field should be set to NULL.
  1493. @item @code{int magic}
  1494. This field is set when initializing a task. It prevents a task from being
  1495. submitted if it has not been properly initialized.
  1496. @end table
  1497. @end deftp
  1498. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1499. Initialize @var{task} with default values. This function is implicitly
  1500. called by @code{starpu_task_create}. By default, tasks initialized with
  1501. @code{starpu_task_init} must be deinitialized explicitly with
  1502. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1503. using @code{STARPU_TASK_INITIALIZER} defined below.
  1504. @end deftypefun
  1505. @defmac STARPU_TASK_INITIALIZER
  1506. It is possible to initialize statically allocated tasks with this
  1507. value. This is equivalent to initializing a starpu_task structure with
  1508. the @code{starpu_task_init} function defined above.
  1509. @end defmac
  1510. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1511. Allocate a task structure and initialize it with default values. Tasks
  1512. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1513. task is terminated. This means that the task pointer can not be used any more
  1514. once the task is submitted, since it can be executed at any time (unless
  1515. dependencies make it wait) and thus freed at any time.
  1516. If the destroy flag is explicitly unset, the resources used
  1517. by the task have to be freed by calling
  1518. @code{starpu_task_destroy}.
  1519. @end deftypefun
  1520. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1521. Release all the structures automatically allocated to execute @var{task}, but
  1522. not the task structure itself and values set by the user remain unchanged.
  1523. It is thus useful for statically allocated tasks for instance.
  1524. It is also useful when the user wants to execute the same operation several
  1525. times with as least overhead as possible.
  1526. It is called automatically by @code{starpu_task_destroy}.
  1527. It has to be called only after explicitly waiting for the task or after
  1528. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1529. still manipulates the task after calling the callback).
  1530. @end deftypefun
  1531. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1532. Free the resource allocated during @code{starpu_task_create} and
  1533. associated with @var{task}. This function is already called automatically
  1534. after the execution of a task when the @code{destroy} flag of the
  1535. @code{starpu_task} structure is set, which is the default for tasks created by
  1536. @code{starpu_task_create}. Calling this function on a statically allocated task
  1537. results in an undefined behaviour.
  1538. @end deftypefun
  1539. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1540. This function blocks until @var{task} has been executed. It is not possible to
  1541. synchronize with a task more than once. It is not possible to wait for
  1542. synchronous or detached tasks.
  1543. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1544. indicates that the specified task was either synchronous or detached.
  1545. @end deftypefun
  1546. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1547. This function submits @var{task} to StarPU. Calling this function does
  1548. not mean that the task will be executed immediately as there can be data or task
  1549. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1550. scheduling this task with respect to such dependencies.
  1551. This function returns immediately if the @code{synchronous} field of the
  1552. @code{starpu_task} structure was set to 0, and block until the termination of
  1553. the task otherwise. It is also possible to synchronize the application with
  1554. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1555. function for instance.
  1556. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1557. means that there is no worker able to process this task (e.g. there is no GPU
  1558. available and this task is only implemented for CUDA devices).
  1559. starpu_task_submit() can be called from anywhere, including codelet
  1560. functions and callbacks, provided that the @code{synchronous} field of the
  1561. @code{starpu_task} structure is left to 0.
  1562. @end deftypefun
  1563. @deftypefun int starpu_task_wait_for_all (void)
  1564. This function blocks until all the tasks that were submitted are terminated. It
  1565. does not destroy these tasks.
  1566. @end deftypefun
  1567. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1568. This function returns the task currently executed by the worker, or
  1569. NULL if it is called either from a thread that is not a task or simply
  1570. because there is no task being executed at the moment.
  1571. @end deftypefun
  1572. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1573. @anchor{starpu_display_codelet_stats}
  1574. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1575. @end deftypefun
  1576. @deftypefun int starpu_task_wait_for_no_ready (void)
  1577. This function waits until there is no more ready task.
  1578. @end deftypefun
  1579. @c Callbacks: what can we put in callbacks ?
  1580. @node Explicit Dependencies
  1581. @section Explicit Dependencies
  1582. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1583. Declare task dependencies between a @var{task} and an array of tasks of length
  1584. @var{ndeps}. This function must be called prior to the submission of the task,
  1585. but it may called after the submission or the execution of the tasks in the
  1586. array, provided the tasks are still valid (ie. they were not automatically
  1587. destroyed). Calling this function on a task that was already submitted or with
  1588. an entry of @var{task_array} that is not a valid task anymore results in an
  1589. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1590. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1591. same task, in this case, the dependencies are added. It is possible to have
  1592. redundancy in the task dependencies.
  1593. @end deftypefun
  1594. @deftp {Data Type} {starpu_tag_t}
  1595. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1596. dependencies between tasks by the means of those tags. To do so, fill the
  1597. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1598. be arbitrary) and set the @code{use_tag} field to 1.
  1599. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1600. not be started until the tasks which holds the declared dependency tags are
  1601. completed.
  1602. @end deftp
  1603. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1604. Specify the dependencies of the task identified by tag @var{id}. The first
  1605. argument specifies the tag which is configured, the second argument gives the
  1606. number of tag(s) on which @var{id} depends. The following arguments are the
  1607. tags which have to be terminated to unlock the task.
  1608. This function must be called before the associated task is submitted to StarPU
  1609. with @code{starpu_task_submit}.
  1610. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1611. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1612. typically need to be explicitly casted. Using the
  1613. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1614. @cartouche
  1615. @smallexample
  1616. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1617. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1618. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1619. @end smallexample
  1620. @end cartouche
  1621. @end deftypefun
  1622. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1623. This function is similar to @code{starpu_tag_declare_deps}, except
  1624. that its does not take a variable number of arguments but an array of
  1625. tags of size @var{ndeps}.
  1626. @cartouche
  1627. @smallexample
  1628. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1629. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1630. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1631. @end smallexample
  1632. @end cartouche
  1633. @end deftypefun
  1634. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1635. This function blocks until the task associated to tag @var{id} has been
  1636. executed. This is a blocking call which must therefore not be called within
  1637. tasks or callbacks, but only from the application directly. It is possible to
  1638. synchronize with the same tag multiple times, as long as the
  1639. @code{starpu_tag_remove} function is not called. Note that it is still
  1640. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1641. data structure was freed (e.g. if the @code{destroy} flag of the
  1642. @code{starpu_task} was enabled).
  1643. @end deftypefun
  1644. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1645. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1646. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1647. terminated.
  1648. @end deftypefun
  1649. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1650. This function can be used to clear the "already notified" status
  1651. of a tag which is not associated with a task. Before that, calling
  1652. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1653. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1654. successors.
  1655. @end deftypefun
  1656. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1657. This function releases the resources associated to tag @var{id}. It can be
  1658. called once the corresponding task has been executed and when there is
  1659. no other tag that depend on this tag anymore.
  1660. @end deftypefun
  1661. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1662. This function explicitly unlocks tag @var{id}. It may be useful in the
  1663. case of applications which execute part of their computation outside StarPU
  1664. tasks (e.g. third-party libraries). It is also provided as a
  1665. convenient tool for the programmer, for instance to entirely construct the task
  1666. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1667. called several times on the same tag, notification will be done only on first
  1668. call, thus implementing "OR" dependencies, until the tag is restarted using
  1669. @code{starpu_tag_restart}.
  1670. @end deftypefun
  1671. @node Implicit Data Dependencies
  1672. @section Implicit Data Dependencies
  1673. In this section, we describe how StarPU makes it possible to insert implicit
  1674. task dependencies in order to enforce sequential data consistency. When this
  1675. data consistency is enabled on a specific data handle, any data access will
  1676. appear as sequentially consistent from the application. For instance, if the
  1677. application submits two tasks that access the same piece of data in read-only
  1678. mode, and then a third task that access it in write mode, dependencies will be
  1679. added between the two first tasks and the third one. Implicit data dependencies
  1680. are also inserted in the case of data accesses from the application.
  1681. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1682. Set the default sequential consistency flag. If a non-zero value is passed, a
  1683. sequential data consistency will be enforced for all handles registered after
  1684. this function call, otherwise it is disabled. By default, StarPU enables
  1685. sequential data consistency. It is also possible to select the data consistency
  1686. mode of a specific data handle with the
  1687. @code{starpu_data_set_sequential_consistency_flag} function.
  1688. @end deftypefun
  1689. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1690. Return the default sequential consistency flag
  1691. @end deftypefun
  1692. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1693. Sets the data consistency mode associated to a data handle. The consistency
  1694. mode set using this function has the priority over the default mode which can
  1695. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1696. @end deftypefun
  1697. @node Performance Model API
  1698. @section Performance Model API
  1699. @deftp {Data Type} {enum starpu_perf_archtype}
  1700. Enumerates the various types of architectures.
  1701. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1702. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1703. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1704. @table @asis
  1705. @item @code{STARPU_CPU_DEFAULT}
  1706. @item @code{STARPU_CUDA_DEFAULT}
  1707. @item @code{STARPU_OPENCL_DEFAULT}
  1708. @end table
  1709. @end deftp
  1710. @deftp {Data Type} {enum starpu_perfmodel_type}
  1711. The possible values are:
  1712. @table @asis
  1713. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1714. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1715. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1716. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1717. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1718. @end table
  1719. @end deftp
  1720. @deftp {Data Type} {struct starpu_perfmodel}
  1721. @anchor{struct starpu_perfmodel}
  1722. contains all information about a performance model. At least the
  1723. @code{type} and @code{symbol} fields have to be filled when defining a
  1724. performance model for a codelet. For compatibility, make sure to initialize the
  1725. whole structure to zero, either by using explicit memset, or by letting the
  1726. compiler implicitly do it in e.g. static storage case.
  1727. If not provided, other fields have to be zero.
  1728. @table @asis
  1729. @item @code{type}
  1730. is the type of performance model @code{enum starpu_perfmodel_type}:
  1731. @code{STARPU_HISTORY_BASED},
  1732. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1733. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1734. @code{per_arch} has to be filled with functions which return the cost in
  1735. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1736. a function that returns the cost in micro-seconds on a CPU, timing on other
  1737. archs will be determined by multiplying by an arch-specific factor.
  1738. @item @code{const char *symbol}
  1739. is the symbol name for the performance model, which will be used as
  1740. file name to store the model. It must be set otherwise the model will
  1741. be ignored.
  1742. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1743. This field is deprecated. Use instead the @code{cost_function} field.
  1744. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1745. Used by @code{STARPU_COMMON}: takes a task and
  1746. implementation number, and must return a task duration estimation in micro-seconds.
  1747. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1748. Used by @code{STARPU_HISTORY_BASED} and
  1749. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1750. implementation number, and returns the size to be used as index for
  1751. history and regression.
  1752. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1753. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1754. starpu_per_arch_perfmodel} structures.
  1755. @item @code{unsigned is_loaded}
  1756. Whether the performance model is already loaded from the disk.
  1757. @item @code{unsigned benchmarking}
  1758. Whether the performance model is still being calibrated.
  1759. @item @code{pthread_rwlock_t model_rwlock}
  1760. Lock to protect concurrency between loading from disk (W), updating the values
  1761. (W), and making a performance estimation (R).
  1762. @end table
  1763. @end deftp
  1764. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1765. @table @asis
  1766. @item @code{double sumlny} sum of ln(measured)
  1767. @item @code{double sumlnx} sum of ln(size)
  1768. @item @code{double sumlnx2} sum of ln(size)^2
  1769. @item @code{unsigned long minx} minimum size
  1770. @item @code{unsigned long maxx} maximum size
  1771. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1772. @item @code{double alpha} estimated = alpha * size ^ beta
  1773. @item @code{double beta}
  1774. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1775. @item @code{double a, b, c} estimaed = a size ^b + c
  1776. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1777. @item @code{unsigned nsample} number of sample values for non-linear regression
  1778. @end table
  1779. @end deftp
  1780. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1781. contains information about the performance model of a given arch.
  1782. @table @asis
  1783. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1784. This field is deprecated. Use instead the @code{cost_function} field.
  1785. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1786. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1787. target arch and implementation number (as mere conveniency, since the array
  1788. is already indexed by these), and must return a task duration estimation in
  1789. micro-seconds.
  1790. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1791. starpu_perf_archtype arch, unsigned nimpl)}
  1792. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1793. case it depends on the architecture-specific implementation.
  1794. @item @code{struct starpu_htbl32_node *history}
  1795. The history of performance measurements.
  1796. @item @code{struct starpu_perfmodel_history_list *list}
  1797. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1798. records all execution history measures.
  1799. @item @code{struct starpu_perfmodel_regression_model regression}
  1800. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1801. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1802. regression.
  1803. @end table
  1804. @end deftp
  1805. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1806. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$HOME/.starpu} (@code{$USERPROFILE/.starpu} in windows environments).
  1807. @end deftypefun
  1808. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1809. returns the path to the debugging information for the performance model.
  1810. @end deftypefun
  1811. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1812. returns the architecture name for @var{arch}.
  1813. @end deftypefun
  1814. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1815. returns the architecture type of a given worker.
  1816. @end deftypefun
  1817. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1818. prints a list of all performance models on @var{output}.
  1819. @end deftypefun
  1820. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1821. todo
  1822. @end deftypefun
  1823. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1824. todo
  1825. @end deftypefun
  1826. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1827. prints a matrix of bus bandwidths on @var{f}.
  1828. @end deftypefun
  1829. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1830. prints the affinity devices on @var{f}.
  1831. @end deftypefun
  1832. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1833. prints a description of the topology on @var{f}.
  1834. @end deftypefun
  1835. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1836. This feeds the performance model @var{model} with an explicit measurement
  1837. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1838. useful when the application already has an existing set of measurements done
  1839. in good conditions, that StarPU could benefit from instead of doing on-line
  1840. measurements. And example of use can be see in @ref{Performance model example}.
  1841. @end deftypefun
  1842. @node Profiling API
  1843. @section Profiling API
  1844. @deftypefun int starpu_profiling_status_set (int @var{status})
  1845. Thie function sets the profiling status. Profiling is activated by passing
  1846. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1847. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1848. resets all profiling measurements. When profiling is enabled, the
  1849. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1850. to a valid @code{struct starpu_task_profiling_info} structure containing
  1851. information about the execution of the task.
  1852. Negative return values indicate an error, otherwise the previous status is
  1853. returned.
  1854. @end deftypefun
  1855. @deftypefun int starpu_profiling_status_get (void)
  1856. Return the current profiling status or a negative value in case there was an error.
  1857. @end deftypefun
  1858. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1859. This function sets the ID used for profiling trace filename
  1860. @end deftypefun
  1861. @deftp {Data Type} {struct starpu_task_profiling_info}
  1862. This structure contains information about the execution of a task. It is
  1863. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1864. structure if profiling was enabled. The different fields are:
  1865. @table @asis
  1866. @item @code{struct timespec submit_time}
  1867. Date of task submission (relative to the initialization of StarPU).
  1868. @item @code{struct timespec push_start_time}
  1869. Time when the task was submitted to the scheduler.
  1870. @item @code{struct timespec push_end_time}
  1871. Time when the scheduler finished with the task submission.
  1872. @item @code{struct timespec pop_start_time}
  1873. Time when the scheduler started to be requested for a task, and eventually gave
  1874. that task.
  1875. @item @code{struct timespec pop_end_time}
  1876. Time when the scheduler finished providing the task for execution.
  1877. @item @code{struct timespec acquire_data_start_time}
  1878. Time when the worker started fetching input data.
  1879. @item @code{struct timespec acquire_data_end_time}
  1880. Time when the worker finished fetching input data.
  1881. @item @code{struct timespec start_time}
  1882. Date of task execution beginning (relative to the initialization of StarPU).
  1883. @item @code{struct timespec end_time}
  1884. Date of task execution termination (relative to the initialization of StarPU).
  1885. @item @code{struct timespec release_data_start_time}
  1886. Time when the worker started releasing data.
  1887. @item @code{struct timespec release_data_end_time}
  1888. Time when the worker finished releasing data.
  1889. @item @code{struct timespec callback_start_time}
  1890. Time when the worker started the application callback for the task.
  1891. @item @code{struct timespec callback_end_time}
  1892. Time when the worker finished the application callback for the task.
  1893. @item @code{workerid}
  1894. Identifier of the worker which has executed the task.
  1895. @item @code{uint64_t used_cycles}
  1896. Number of cycles used by the task, only available in the MoviSim
  1897. @item @code{uint64_t stall_cycles}
  1898. Number of cycles stalled within the task, only available in the MoviSim
  1899. @item @code{double power_consumed}
  1900. Power consumed by the task, only available in the MoviSim
  1901. @end table
  1902. @end deftp
  1903. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1904. This structure contains the profiling information associated to a
  1905. worker. The different fields are:
  1906. @table @asis
  1907. @item @code{struct timespec start_time}
  1908. Starting date for the reported profiling measurements.
  1909. @item @code{struct timespec total_time}
  1910. Duration of the profiling measurement interval.
  1911. @item @code{struct timespec executing_time}
  1912. Time spent by the worker to execute tasks during the profiling measurement interval.
  1913. @item @code{struct timespec sleeping_time}
  1914. Time spent idling by the worker during the profiling measurement interval.
  1915. @item @code{int executed_tasks}
  1916. Number of tasks executed by the worker during the profiling measurement interval.
  1917. @item @code{uint64_t used_cycles}
  1918. Number of cycles used by the worker, only available in the MoviSim
  1919. @item @code{uint64_t stall_cycles}
  1920. Number of cycles stalled within the worker, only available in the MoviSim
  1921. @item @code{double power_consumed}
  1922. Power consumed by the worker, only available in the MoviSim
  1923. @end table
  1924. @end deftp
  1925. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1926. Get the profiling info associated to the worker identified by @var{workerid},
  1927. and reset the profiling measurements. If the @var{worker_info} argument is
  1928. NULL, only reset the counters associated to worker @var{workerid}.
  1929. Upon successful completion, this function returns 0. Otherwise, a negative
  1930. value is returned.
  1931. @end deftypefun
  1932. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1933. The different fields are:
  1934. @table @asis
  1935. @item @code{struct timespec start_time}
  1936. Time of bus profiling startup.
  1937. @item @code{struct timespec total_time}
  1938. Total time of bus profiling.
  1939. @item @code{int long long transferred_bytes}
  1940. Number of bytes transferred during profiling.
  1941. @item @code{int transfer_count}
  1942. Number of transfers during profiling.
  1943. @end table
  1944. @end deftp
  1945. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1946. Get the profiling info associated to the worker designated by @var{workerid},
  1947. and reset the profiling measurements. If worker_info is NULL, only reset the
  1948. counters.
  1949. @end deftypefun
  1950. @deftypefun int starpu_bus_get_count (void)
  1951. Return the number of buses in the machine.
  1952. @end deftypefun
  1953. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1954. Return the identifier of the bus between @var{src} and @var{dst}
  1955. @end deftypefun
  1956. @deftypefun int starpu_bus_get_src (int @var{busid})
  1957. Return the source point of bus @var{busid}
  1958. @end deftypefun
  1959. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1960. Return the destination point of bus @var{busid}
  1961. @end deftypefun
  1962. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1963. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1964. @end deftypefun
  1965. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1966. Converts the given timespec @var{ts} into microseconds.
  1967. @end deftypefun
  1968. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1969. Displays statistics about the bus on stderr.
  1970. @end deftypefun
  1971. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1972. Displays statistics about the workers on stderr.
  1973. @end deftypefun
  1974. @node CUDA extensions
  1975. @section CUDA extensions
  1976. @defmac STARPU_USE_CUDA
  1977. This macro is defined when StarPU has been installed with CUDA
  1978. support. It should be used in your code to detect the availability of
  1979. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1980. @end defmac
  1981. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1982. This function gets the current worker's CUDA stream.
  1983. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1984. function is only provided for convenience so that programmers can easily use
  1985. asynchronous operations within codelets without having to create a stream by
  1986. hand. Note that the application is not forced to use the stream provided by
  1987. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1988. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1989. the likelihood of having all transfers overlapped.
  1990. @end deftypefun
  1991. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1992. This function returns a pointer to device properties for worker @var{workerid}
  1993. (assumed to be a CUDA worker).
  1994. @end deftypefun
  1995. @deftypefun size_t starpu_cuda_get_global_mem_size (unsigned @var{devid})
  1996. Return the size of the global memory of CUDA device @var{devid}.
  1997. @end deftypefun
  1998. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1999. Report a CUDA error.
  2000. @end deftypefun
  2001. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2002. Calls starpu_cuda_report_error, passing the current function, file and line
  2003. position.
  2004. @end defmac
  2005. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2006. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2007. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2008. The function first tries to copy the data asynchronous (unless
  2009. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2010. @var{stream} is @code{NULL}, it copies the data synchronously.
  2011. The function returns @code{-EAGAIN} if the asynchronous copy was
  2012. successfull. It returns 0 if the synchronous copy was successful, or
  2013. fails otherwise.
  2014. @end deftypefun
  2015. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2016. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2017. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2018. the @code{starpu_conf} structure.
  2019. @end deftypefun
  2020. @deftypefun void starpu_helper_cublas_init (void)
  2021. This function initializes CUBLAS on every CUDA device.
  2022. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2023. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2024. controlled by StarPU. This call blocks until CUBLAS has been properly
  2025. initialized on every device.
  2026. @end deftypefun
  2027. @deftypefun void starpu_helper_cublas_shutdown (void)
  2028. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2029. @end deftypefun
  2030. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2031. Report a cublas error.
  2032. @end deftypefun
  2033. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2034. Calls starpu_cublas_report_error, passing the current function, file and line
  2035. position.
  2036. @end defmac
  2037. @node OpenCL extensions
  2038. @section OpenCL extensions
  2039. @menu
  2040. * Writing OpenCL kernels:: Writing OpenCL kernels
  2041. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2042. * Loading OpenCL kernels:: Loading OpenCL kernels
  2043. * OpenCL statistics:: Collecting statistics from OpenCL
  2044. * OpenCL utilities:: Utilities for OpenCL
  2045. @end menu
  2046. @defmac STARPU_USE_OPENCL
  2047. This macro is defined when StarPU has been installed with OpenCL
  2048. support. It should be used in your code to detect the availability of
  2049. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2050. @end defmac
  2051. @node Writing OpenCL kernels
  2052. @subsection Writing OpenCL kernels
  2053. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  2054. Return the size of global device memory in bytes.
  2055. @end deftypefun
  2056. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2057. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2058. @end deftypefun
  2059. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2060. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2061. @end deftypefun
  2062. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2063. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2064. @end deftypefun
  2065. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2066. Return the context of the current worker.
  2067. @end deftypefun
  2068. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2069. Return the computation kernel command queue of the current worker.
  2070. @end deftypefun
  2071. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2072. Sets the arguments of a given kernel. The list of arguments must be given as
  2073. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2074. The last argument must be 0. Returns the number of arguments that were
  2075. successfully set. In case of failure, returns the id of the argument
  2076. that could not be set and @var{err} is set to the error returned by
  2077. OpenCL. Otherwise, returns the number of arguments that were set.
  2078. @cartouche
  2079. @smallexample
  2080. int n;
  2081. cl_int err;
  2082. cl_kernel kernel;
  2083. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2084. sizeof(foo), &foo,
  2085. sizeof(bar), &bar,
  2086. 0);
  2087. if (n != 2)
  2088. fprintf(stderr, "Error : %d\n", err);
  2089. @end smallexample
  2090. @end cartouche
  2091. @end deftypefun
  2092. @node Compiling OpenCL kernels
  2093. @subsection Compiling OpenCL kernels
  2094. Source codes for OpenCL kernels can be stored in a file or in a
  2095. string. StarPU provides functions to build the program executable for
  2096. each available OpenCL device as a @code{cl_program} object. This
  2097. program executable can then be loaded within a specific queue as
  2098. explained in the next section. These are only helpers, Applications
  2099. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2100. use (e.g. different programs on the different OpenCL devices, for
  2101. relocation purpose for instance).
  2102. @deftp {Data Type} {struct starpu_opencl_program}
  2103. Stores the OpenCL programs as compiled for the different OpenCL devices.
  2104. @table @asis
  2105. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2106. Stores each program for each OpenCL device.
  2107. @end table
  2108. @end deftp
  2109. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2110. @anchor{starpu_opencl_load_opencl_from_file}
  2111. This function compiles an OpenCL source code stored in a file.
  2112. @end deftypefun
  2113. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2114. This function compiles an OpenCL source code stored in a string.
  2115. @end deftypefun
  2116. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2117. This function unloads an OpenCL compiled code.
  2118. @end deftypefun
  2119. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2120. Store the contents of the file @var{source_file_name} in the buffer
  2121. @var{opencl_program_source}. The file @var{source_file_name} can be
  2122. located in the current directory, or in the directory specified by the
  2123. environment variable @code{STARPU_OPENCL_PROGRAM_DIR}, or in the
  2124. directory @code{share/starpu/opencl} of the installation directory of
  2125. StarPU, or in the source directory of StarPU.
  2126. When the file is found, @code{located_file_name} is the full name of
  2127. the file as it has been located on the system, @code{located_dir_name}
  2128. the directory where it has been located. Otherwise, they are both set
  2129. to the empty string.
  2130. @end deftypefun
  2131. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2132. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2133. with the given options @code{build_options} and stores the result in
  2134. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2135. filename as @code{source_file_name} (@code{$USERPROFILE/.starpu/opencl} in
  2136. windows environments). The compilation is done for every
  2137. OpenCL device, and the filename is suffixed with the vendor id and the
  2138. device id of the OpenCL device.
  2139. @end deftypefun
  2140. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2141. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2142. with the given options @code{build_options} and stores the result in
  2143. the directory @code{$STARPU_HOME/.starpu/opencl}
  2144. (@code{$USERPROFILE/.starpu/opencl} in windows environments) with the filename
  2145. @code{file_name}. The compilation is done for every
  2146. OpenCL device, and the filename is suffixed with the vendor id and the
  2147. device id of the OpenCL device.
  2148. @end deftypefun
  2149. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2150. Compile the binary OpenCL kernel identified with @var{id}. For every
  2151. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2152. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2153. @end deftypefun
  2154. @node Loading OpenCL kernels
  2155. @subsection Loading OpenCL kernels
  2156. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2157. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2158. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2159. @var{kernel_name}
  2160. @end deftypefun
  2161. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2162. Release the given @var{kernel}, to be called after kernel execution.
  2163. @end deftypefun
  2164. @node OpenCL statistics
  2165. @subsection OpenCL statistics
  2166. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2167. This function allows to collect statistics on a kernel execution.
  2168. After termination of the kernels, the OpenCL codelet should call this function
  2169. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2170. collect statistics about the kernel execution (used cycles, consumed power).
  2171. @end deftypefun
  2172. @node OpenCL utilities
  2173. @subsection OpenCL utilities
  2174. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2175. Return the error message in English corresponding to @var{status}, an
  2176. OpenCL error code.
  2177. @end deftypefun
  2178. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2179. Given a valid error @var{status}, prints the corresponding error message on
  2180. stdout, along with the given function name @var{func}, the given filename
  2181. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2182. @end deftypefun
  2183. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2184. Call the function @code{starpu_opencl_display_error} with the given
  2185. error @var{status}, the current function name, current file and line
  2186. number, and a empty message.
  2187. @end defmac
  2188. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2189. Call the function @code{starpu_opencl_display_error} and abort.
  2190. @end deftypefun
  2191. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2192. Call the function @code{starpu_opencl_report_error} with the given
  2193. error @var{status}, with the current function name, current file and
  2194. line number, and a empty message.
  2195. @end defmac
  2196. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2197. Call the function @code{starpu_opencl_report_error} with the given
  2198. message and the given error @var{status}, with the current function
  2199. name, current file and line number.
  2200. @end defmac
  2201. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2202. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2203. valid combination of cl_mem_flags values.
  2204. @end deftypefun
  2205. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2206. Copy @var{size} bytes from the given @var{ptr} on
  2207. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  2208. @var{offset} is the offset, in bytes, in @var{buffer}.
  2209. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2210. synchronised before returning. If non NULL, @var{event} can be used
  2211. after the call to wait for this particular copy to complete.
  2212. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2213. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2214. was successful, or to 0 if event was NULL.
  2215. @end deftypefun
  2216. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2217. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2218. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  2219. @var{offset} is the offset, in bytes, in @var{buffer}.
  2220. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2221. synchronised before returning. If non NULL, @var{event} can be used
  2222. after the call to wait for this particular copy to complete.
  2223. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2224. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2225. was successful, or to 0 if event was NULL.
  2226. @end deftypefun
  2227. @node Miscellaneous helpers
  2228. @section Miscellaneous helpers
  2229. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2230. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2231. The @var{asynchronous} parameter indicates whether the function should
  2232. block or not. In the case of an asynchronous call, it is possible to
  2233. synchronize with the termination of this operation either by the means of
  2234. implicit dependencies (if enabled) or by calling
  2235. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2236. this callback function is executed after the handle has been copied, and it is
  2237. given the @var{callback_arg} pointer as argument.
  2238. @end deftypefun
  2239. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2240. This function executes the given function on a subset of workers.
  2241. When calling this method, the offloaded function specified by the first argument is
  2242. executed by every StarPU worker that may execute the function.
  2243. The second argument is passed to the offloaded function.
  2244. The last argument specifies on which types of processing units the function
  2245. should be executed. Similarly to the @var{where} field of the
  2246. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2247. should be executed on every CUDA device and every CPU by passing
  2248. @code{STARPU_CPU|STARPU_CUDA}.
  2249. This function blocks until the function has been executed on every appropriate
  2250. processing units, so that it may not be called from a callback function for
  2251. instance.
  2252. @end deftypefun