cholesky_implicit.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010, 2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include "cholesky.h"
  19. /*
  20. * Create the codelets
  21. */
  22. static starpu_codelet cl11 =
  23. {
  24. .where = STARPU_CPU|STARPU_CUDA,
  25. .type = STARPU_SEQ,
  26. .cpu_func = chol_cpu_codelet_update_u11,
  27. #ifdef STARPU_USE_CUDA
  28. .cuda_func = chol_cublas_codelet_update_u11,
  29. #endif
  30. .nbuffers = 1,
  31. .model = &chol_model_11
  32. };
  33. static starpu_codelet cl21 =
  34. {
  35. .where = STARPU_CPU|STARPU_CUDA,
  36. .type = STARPU_SEQ,
  37. .cpu_func = chol_cpu_codelet_update_u21,
  38. #ifdef STARPU_USE_CUDA
  39. .cuda_func = chol_cublas_codelet_update_u21,
  40. #endif
  41. .nbuffers = 2,
  42. .model = &chol_model_21
  43. };
  44. static starpu_codelet cl22 =
  45. {
  46. .where = STARPU_CPU|STARPU_CUDA,
  47. .type = STARPU_SEQ,
  48. .max_parallelism = INT_MAX,
  49. .cpu_func = chol_cpu_codelet_update_u22,
  50. #ifdef STARPU_USE_CUDA
  51. .cuda_func = chol_cublas_codelet_update_u22,
  52. #endif
  53. .nbuffers = 3,
  54. .model = &chol_model_22
  55. };
  56. /*
  57. * code to bootstrap the factorization
  58. * and construct the DAG
  59. */
  60. static void callback_turn_spmd_on(void *arg __attribute__ ((unused)))
  61. {
  62. cl22.type = STARPU_SPMD;
  63. }
  64. static double _cholesky(starpu_data_handle dataA, unsigned nblocks, struct starpu_sched_ctx *sched_ctx, double *timing)
  65. {
  66. struct timeval start;
  67. struct timeval end;
  68. unsigned i,j,k;
  69. int prio_level = noprio?STARPU_DEFAULT_PRIO:STARPU_MAX_PRIO;
  70. gettimeofday(&start, NULL);
  71. /* create all the DAG nodes */
  72. for (k = 0; k < nblocks; k++)
  73. {
  74. starpu_data_handle sdatakk = starpu_data_get_sub_data(dataA, 2, k, k);
  75. if(sched_ctx != NULL)
  76. starpu_insert_task_to_ctx(sched_ctx, &cl11,
  77. STARPU_PRIORITY, prio_level,
  78. STARPU_RW, sdatakk,
  79. STARPU_CALLBACK, (k == 3*nblocks/4)?callback_turn_spmd_on:NULL,
  80. 0);
  81. else
  82. starpu_insert_task(&cl11,
  83. STARPU_PRIORITY, prio_level,
  84. STARPU_RW, sdatakk,
  85. STARPU_CALLBACK, (k == 3*nblocks/4)?callback_turn_spmd_on:NULL,
  86. 0);
  87. for (j = k+1; j<nblocks; j++)
  88. {
  89. starpu_data_handle sdatakj = starpu_data_get_sub_data(dataA, 2, k, j);
  90. if(sched_ctx != NULL)
  91. starpu_insert_task_to_ctx(sched_ctx, &cl21,
  92. STARPU_PRIORITY, (j == k+1)?prio_level:STARPU_DEFAULT_PRIO,
  93. STARPU_R, sdatakk,
  94. STARPU_RW, sdatakj,
  95. 0);
  96. else
  97. starpu_insert_task(&cl21,
  98. STARPU_PRIORITY, (j == k+1)?prio_level:STARPU_DEFAULT_PRIO,
  99. STARPU_R, sdatakk,
  100. STARPU_RW, sdatakj,
  101. 0);
  102. for (i = k+1; i<nblocks; i++)
  103. {
  104. if (i <= j)
  105. {
  106. starpu_data_handle sdataki = starpu_data_get_sub_data(dataA, 2, k, i);
  107. starpu_data_handle sdataij = starpu_data_get_sub_data(dataA, 2, i, j);
  108. if(sched_ctx != NULL)
  109. starpu_insert_task_to_ctx(sched_ctx, &cl22,
  110. STARPU_PRIORITY, ((i == k+1) && (j == k+1))?prio_level:STARPU_DEFAULT_PRIO,
  111. STARPU_R, sdataki,
  112. STARPU_R, sdatakj,
  113. STARPU_RW, sdataij,
  114. 0);
  115. else
  116. starpu_insert_task(&cl22,
  117. STARPU_PRIORITY, ((i == k+1) && (j == k+1))?prio_level:STARPU_DEFAULT_PRIO,
  118. STARPU_R, sdataki,
  119. STARPU_R, sdatakj,
  120. STARPU_RW, sdataij,
  121. 0);
  122. }
  123. }
  124. }
  125. }
  126. if(sched_ctx != NULL)
  127. starpu_wait_for_all_tasks_of_sched_ctx(sched_ctx);
  128. else
  129. starpu_task_wait_for_all();
  130. starpu_data_unpartition(dataA, 0);
  131. gettimeofday(&end, NULL);
  132. (*timing) = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  133. unsigned long n = starpu_matrix_get_nx(dataA);
  134. double flop = (1.0f*n*n*n)/3.0f;
  135. return (flop/(*timing)/1000.0f);
  136. }
  137. static double cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks, struct starpu_sched_ctx *sched_ctx, double *timing)
  138. {
  139. starpu_data_handle dataA;
  140. /* monitor and partition the A matrix into blocks :
  141. * one block is now determined by 2 unsigned (i,j) */
  142. starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(float));
  143. struct starpu_data_filter f;
  144. f.filter_func = starpu_vertical_block_filter_func;
  145. f.nchildren = nblocks;
  146. f.get_nchildren = NULL;
  147. f.get_child_ops = NULL;
  148. struct starpu_data_filter f2;
  149. f2.filter_func = starpu_block_filter_func;
  150. f2.nchildren = nblocks;
  151. f2.get_nchildren = NULL;
  152. f2.get_child_ops = NULL;
  153. starpu_data_map_filters(dataA, 2, &f, &f2);
  154. return _cholesky(dataA, nblocks, sched_ctx, timing);
  155. }
  156. double run_cholesky_implicit(struct starpu_sched_ctx *sched_ctx, int argc, char **argv, double *timing, pthread_barrier_t *barrier)
  157. {
  158. /* create a simple definite positive symetric matrix example
  159. *
  160. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  161. * */
  162. unsigned size = 4 * 1024;
  163. unsigned nblocks = 16;
  164. parse_args(argc, argv, &size, &nblocks);
  165. // starpu_init(NULL);
  166. // starpu_helper_cublas_init();
  167. float *mat;
  168. starpu_data_malloc_pinned_if_possible((void **)&mat, (size_t)size*size*sizeof(float));
  169. unsigned i,j;
  170. for (i = 0; i < size; i++)
  171. {
  172. for (j = 0; j < size; j++)
  173. {
  174. mat[j +i*size] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  175. //mat[j +i*size] = ((i == j)?1.0f*size:0.0f);
  176. }
  177. }
  178. //#define PRINT_OUTPUT
  179. #ifdef PRINT_OUTPUT
  180. printf("Input :\n");
  181. for (j = 0; j < size; j++)
  182. {
  183. for (i = 0; i < size; i++)
  184. {
  185. if (i <= j) {
  186. printf("%2.2f\t", mat[j +i*size]);
  187. }
  188. else {
  189. printf(".\t");
  190. }
  191. }
  192. printf("\n");
  193. }
  194. #endif
  195. if(barrier != NULL)
  196. pthread_barrier_wait(barrier);
  197. double gflops = cholesky(mat, size, size, nblocks, sched_ctx, timing);
  198. #ifdef PRINT_OUTPUT
  199. printf("Results :\n");
  200. for (j = 0; j < size; j++)
  201. {
  202. for (i = 0; i < size; i++)
  203. {
  204. if (i <= j) {
  205. printf("%2.2f\t", mat[j +i*size]);
  206. }
  207. else {
  208. printf(".\t");
  209. mat[j+i*size] = 0.0f; // debug
  210. }
  211. }
  212. printf("\n");
  213. }
  214. #endif
  215. if (check)
  216. {
  217. fprintf(stderr, "compute explicit LLt ...\n");
  218. for (j = 0; j < size; j++)
  219. {
  220. for (i = 0; i < size; i++)
  221. {
  222. if (i > j) {
  223. mat[j+i*size] = 0.0f; // debug
  224. }
  225. }
  226. }
  227. float *test_mat = malloc(size*size*sizeof(float));
  228. STARPU_ASSERT(test_mat);
  229. SSYRK("L", "N", size, size, 1.0f,
  230. mat, size, 0.0f, test_mat, size);
  231. fprintf(stderr, "comparing results ...\n");
  232. #ifdef PRINT_OUTPUT
  233. for (j = 0; j < size; j++)
  234. {
  235. for (i = 0; i < size; i++)
  236. {
  237. if (i <= j) {
  238. printf("%2.2f\t", test_mat[j +i*size]);
  239. }
  240. else {
  241. printf(".\t");
  242. }
  243. }
  244. printf("\n");
  245. }
  246. #endif
  247. for (j = 0; j < size; j++)
  248. {
  249. for (i = 0; i < size; i++)
  250. {
  251. if (i <= j) {
  252. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  253. float err = abs(test_mat[j +i*size] - orig);
  254. if (err > 0.00001) {
  255. fprintf(stderr, "Error[%d, %d] --> %2.2f != %2.2f (err %2.2f)\n", i, j, test_mat[j +i*size], orig, err);
  256. assert(0);
  257. }
  258. }
  259. }
  260. }
  261. }
  262. // starpu_helper_cublas_shutdown();
  263. // starpu_shutdown();
  264. return gflops;
  265. }