starpu.texi 181 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @dircategory Development
  9. @direntry
  10. * StarPU: (starpu). StarPU Handbook
  11. @end direntry
  12. @titlepage
  13. @title StarPU Handbook
  14. @subtitle for StarPU @value{VERSION}
  15. @page
  16. @vskip 0pt plus 1fill
  17. @comment For the @value{version-GCC} Version*
  18. @end titlepage
  19. @c @summarycontents
  20. @contents
  21. @page
  22. @node Top
  23. @top Preface
  24. @cindex Preface
  25. This manual documents the usage of StarPU version @value{VERSION}. It
  26. was last updated on @value{UPDATED}.
  27. @comment
  28. @comment When you add a new menu item, please keep the right hand
  29. @comment aligned to the same column. Do not use tabs. This provides
  30. @comment better formatting.
  31. @comment
  32. @menu
  33. * Introduction:: A basic introduction to using StarPU
  34. * Installing StarPU:: How to configure, build and install StarPU
  35. * Using StarPU:: How to run StarPU application
  36. * Basic Examples:: Basic examples of the use of StarPU
  37. * Performance optimization:: How to optimize performance with StarPU
  38. * Performance feedback:: Performance debugging tools
  39. * StarPU MPI support:: How to combine StarPU with MPI
  40. * Configuring StarPU:: How to configure StarPU
  41. * StarPU API:: The API to use StarPU
  42. * Advanced Topics:: Advanced use of StarPU
  43. * Full source code for the 'Scaling a Vector' example::
  44. * Function Index:: Index of C functions.
  45. @end menu
  46. @c ---------------------------------------------------------------------
  47. @c Introduction to StarPU
  48. @c ---------------------------------------------------------------------
  49. @node Introduction
  50. @chapter Introduction to StarPU
  51. @menu
  52. * Motivation:: Why StarPU ?
  53. * StarPU in a Nutshell:: The Fundamentals of StarPU
  54. @end menu
  55. @node Motivation
  56. @section Motivation
  57. @c complex machines with heterogeneous cores/devices
  58. The use of specialized hardware such as accelerators or coprocessors offers an
  59. interesting approach to overcome the physical limits encountered by processor
  60. architects. As a result, many machines are now equipped with one or several
  61. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  62. efforts have been devoted to offload computation onto such accelerators, very
  63. little attention as been paid to portability concerns on the one hand, and to the
  64. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  65. StarPU is a runtime system that offers support for heterogeneous multicore
  66. architectures, it not only offers a unified view of the computational resources
  67. (i.e. CPUs and accelerators at the same time), but it also takes care of
  68. efficiently mapping and executing tasks onto an heterogeneous machine while
  69. transparently handling low-level issues such as data transfers in a portable
  70. fashion.
  71. @c this leads to a complicated distributed memory design
  72. @c which is not (easily) manageable by hand
  73. @c added value/benefits of StarPU
  74. @c - portability
  75. @c - scheduling, perf. portability
  76. @node StarPU in a Nutshell
  77. @section StarPU in a Nutshell
  78. @menu
  79. * Codelet and Tasks::
  80. * StarPU Data Management Library::
  81. * Glossary::
  82. * Research Papers::
  83. @end menu
  84. From a programming point of view, StarPU is not a new language but a library
  85. that executes tasks explicitly submitted by the application. The data that a
  86. task manipulates are automatically transferred onto the accelerator so that the
  87. programmer does not have to take care of complex data movements. StarPU also
  88. takes particular care of scheduling those tasks efficiently and allows
  89. scheduling experts to implement custom scheduling policies in a portable
  90. fashion.
  91. @c explain the notion of codelet and task (i.e. g(A, B)
  92. @node Codelet and Tasks
  93. @subsection Codelet and Tasks
  94. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  95. computational kernel that can possibly be implemented on multiple architectures
  96. such as a CPU, a CUDA device or a Cell's SPU.
  97. @c TODO insert illustration f : f_spu, f_cpu, ...
  98. Another important data structure is the @b{task}. Executing a StarPU task
  99. consists in applying a codelet on a data set, on one of the architectures on
  100. which the codelet is implemented. A task thus describes the codelet that it
  101. uses, but also which data are accessed, and how they are
  102. accessed during the computation (read and/or write).
  103. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  104. operation. The task structure can also specify a @b{callback} function that is
  105. called once StarPU has properly executed the task. It also contains optional
  106. fields that the application may use to give hints to the scheduler (such as
  107. priority levels).
  108. By default, task dependencies are inferred from data dependency (sequential
  109. coherence) by StarPU. The application can however disable sequential coherency
  110. for some data, and dependencies be expressed by hand.
  111. A task may be identified by a unique 64-bit number chosen by the application
  112. which we refer as a @b{tag}.
  113. Task dependencies can be enforced by hand either by the means of callback functions, by
  114. submitting other tasks, or by expressing dependencies
  115. between tags (which can thus correspond to tasks that have not been submitted
  116. yet).
  117. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  118. @c DSM
  119. @node StarPU Data Management Library
  120. @subsection StarPU Data Management Library
  121. Because StarPU schedules tasks at runtime, data transfers have to be
  122. done automatically and ``just-in-time'' between processing units,
  123. relieving the application programmer from explicit data transfers.
  124. Moreover, to avoid unnecessary transfers, StarPU keeps data
  125. where it was last needed, even if was modified there, and it
  126. allows multiple copies of the same data to reside at the same time on
  127. several processing units as long as it is not modified.
  128. @node Glossary
  129. @subsection Glossary
  130. A @b{codelet} records pointers to various implementations of the same
  131. theoretical function.
  132. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  133. A @b{bus} is a link between memory nodes.
  134. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  135. application) over various memory nodes. The data management library manages
  136. keeping them coherent.
  137. The @b{home} memory node of a data handle is the memory node from which the data
  138. was registered (usually the main memory node).
  139. A @b{task} represents a scheduled execution of a codelet on some data handles.
  140. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  141. depend on other tags. The value is chosen by the application.
  142. A @b{worker} execute tasks. There is typically one per CPU computation core and
  143. one per accelerator (for which a whole CPU core is dedicated).
  144. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  145. OpenCL and Gordon drivers. They usually start several workers to actually drive
  146. them.
  147. A @b{performance model} is a (dynamic or static) model of the performance of a
  148. given codelet. Codelets can have execution time performance model as well as
  149. power consumption performance models.
  150. A data @b{interface} describes the layout of the data: for a vector, a pointer
  151. for the start, the number of elements and the size of elements ; for a matrix, a
  152. pointer for the start, the number of elements per row, the offset between rows,
  153. and the size of each element ; etc. To access their data, codelet functions are
  154. given interfaces for the local memory node replicates of the data handles of the
  155. scheduled task.
  156. @b{Partitioning} data means dividing the data of a given data handle (called
  157. @b{father}) into a series of @b{children} data handles which designate various
  158. portions of the former.
  159. A @b{filter} is the function which computes children data handles from a father
  160. data handle, and thus describes how the partitioning should be done (horizontal,
  161. vertical, etc.)
  162. @b{Acquiring} a data handle can be done from the main application, to safely
  163. access the data of a data handle from its home node, without having to
  164. unregister it.
  165. @node Research Papers
  166. @subsection Research Papers
  167. Research papers about StarPU can be found at
  168. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  169. Notably a good overview in the research report
  170. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  171. @c ---------------------------------------------------------------------
  172. @c Installing StarPU
  173. @c ---------------------------------------------------------------------
  174. @node Installing StarPU
  175. @chapter Installing StarPU
  176. @menu
  177. * Downloading StarPU::
  178. * Configuration of StarPU::
  179. * Building and Installing StarPU::
  180. @end menu
  181. StarPU can be built and installed by the standard means of the GNU
  182. autotools. The following chapter is intended to briefly remind how these tools
  183. can be used to install StarPU.
  184. @node Downloading StarPU
  185. @section Downloading StarPU
  186. @menu
  187. * Getting Sources::
  188. * Optional dependencies::
  189. @end menu
  190. @node Getting Sources
  191. @subsection Getting Sources
  192. The simplest way to get StarPU sources is to download the latest official
  193. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  194. or the latest nightly snapshot from
  195. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  196. how to get the very latest version from the subversion repository itself, it
  197. should be needed only if you need the very latest changes (i.e. less than a
  198. day!)
  199. The source code is managed by a Subversion server hosted by the
  200. InriaGforge. To get the source code, you need:
  201. @itemize
  202. @item
  203. To install the client side of the software Subversion if it is
  204. not already available on your system. The software can be obtained from
  205. @indicateurl{http://subversion.tigris.org} . If you are running
  206. on Windows, you will probably prefer to use TortoiseSVN from
  207. @indicateurl{http://tortoisesvn.tigris.org/} .
  208. @item
  209. You can check out the project's SVN repository through anonymous
  210. access. This will provide you with a read access to the
  211. repository.
  212. If you need to have write access on the StarPU project, you can also choose to
  213. become a member of the project @code{starpu}. For this, you first need to get
  214. an account to the gForge server. You can then send a request to join the project
  215. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  216. @item
  217. More information on how to get a gForge account, to become a member of
  218. a project, or on any other related task can be obtained from the
  219. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  220. thing is to upload your public SSH key on the gForge server (see the
  221. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  222. instructions).
  223. @end itemize
  224. You can now check out the latest version from the Subversion server:
  225. @itemize
  226. @item
  227. using the anonymous access via svn:
  228. @example
  229. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  230. @end example
  231. @item
  232. using the anonymous access via https:
  233. @example
  234. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  235. @end example
  236. The password is @code{anonsvn}.
  237. @item
  238. using your gForge account
  239. @example
  240. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  241. @end example
  242. @end itemize
  243. The following step requires the availability of @code{autoconf} and
  244. @code{automake} to generate the @code{./configure} script. This is
  245. done by calling @code{./autogen.sh}. The required version for
  246. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  247. @example
  248. % ./autogen.sh
  249. @end example
  250. If the autotools are not available on your machine or not recent
  251. enough, you can choose to download the latest nightly tarball, which
  252. is provided with a @code{configure} script.
  253. @example
  254. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  255. @end example
  256. @node Optional dependencies
  257. @subsection Optional dependencies
  258. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  259. but strongly recommended. It allows to increase performance, and to
  260. perform some topology aware scheduling.
  261. @code{hwloc} is available in major distributions and for most OSes and can be
  262. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  263. @node Configuration of StarPU
  264. @section Configuration of StarPU
  265. @menu
  266. * Generating Makefiles and configuration scripts::
  267. * Running the configuration::
  268. @end menu
  269. @node Generating Makefiles and configuration scripts
  270. @subsection Generating Makefiles and configuration scripts
  271. This step is not necessary when using the tarball releases of StarPU. If you
  272. are using the source code from the svn repository, you first need to generate
  273. the configure scripts and the Makefiles.
  274. @example
  275. % ./autogen.sh
  276. @end example
  277. @node Running the configuration
  278. @subsection Running the configuration
  279. @example
  280. % ./configure
  281. @end example
  282. Details about options that are useful to give to @code{./configure} are given in
  283. @ref{Compilation configuration}.
  284. @node Building and Installing StarPU
  285. @section Building and Installing StarPU
  286. @menu
  287. * Building::
  288. * Sanity Checks::
  289. * Installing::
  290. @end menu
  291. @node Building
  292. @subsection Building
  293. @example
  294. % make
  295. @end example
  296. @node Sanity Checks
  297. @subsection Sanity Checks
  298. In order to make sure that StarPU is working properly on the system, it is also
  299. possible to run a test suite.
  300. @example
  301. % make check
  302. @end example
  303. @node Installing
  304. @subsection Installing
  305. In order to install StarPU at the location that was specified during
  306. configuration:
  307. @example
  308. % make install
  309. @end example
  310. @c ---------------------------------------------------------------------
  311. @c Using StarPU
  312. @c ---------------------------------------------------------------------
  313. @node Using StarPU
  314. @chapter Using StarPU
  315. @menu
  316. * Setting flags for compiling and linking applications::
  317. * Running a basic StarPU application::
  318. * Kernel threads started by StarPU::
  319. * Using accelerators::
  320. @end menu
  321. @node Setting flags for compiling and linking applications
  322. @section Setting flags for compiling and linking applications
  323. Compiling and linking an application against StarPU may require to use
  324. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  325. To this end, it is possible to use the @code{pkg-config} tool.
  326. If StarPU was not installed at some standard location, the path of StarPU's
  327. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  328. that @code{pkg-config} can find it. For example if StarPU was installed in
  329. @code{$prefix_dir}:
  330. @example
  331. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  332. @end example
  333. The flags required to compile or link against StarPU are then
  334. accessible with the following commands:
  335. @example
  336. % pkg-config --cflags libstarpu # options for the compiler
  337. % pkg-config --libs libstarpu # options for the linker
  338. @end example
  339. @node Running a basic StarPU application
  340. @section Running a basic StarPU application
  341. Basic examples using StarPU have been built in the directory
  342. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  343. example @code{vector_scal}.
  344. @example
  345. % $prefix_dir/lib/starpu/examples/vector_scal
  346. BEFORE : First element was 1.000000
  347. AFTER First element is 3.140000
  348. %
  349. @end example
  350. When StarPU is used for the first time, the directory
  351. @code{$HOME/.starpu/} is created, performance models will be stored in
  352. that directory.
  353. Please note that buses are benchmarked when StarPU is launched for the
  354. first time. This may take a few minutes, or less if @code{hwloc} is
  355. installed. This step is done only once per user and per machine.
  356. @node Kernel threads started by StarPU
  357. @section Kernel threads started by StarPU
  358. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  359. them per GPU. The application is not supposed to do computations in its own
  360. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  361. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  362. worker).
  363. @node Using accelerators
  364. @section Using accelerators
  365. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  366. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  367. This design choice was necessary as OpenCL and CUDA can not run at the
  368. same time on the same NVIDIA GPU, as there is currently no interoperability
  369. between them.
  370. Details on how to specify devices running OpenCL and the ones running
  371. CUDA are given in @ref{Enabling OpenCL}.
  372. @c ---------------------------------------------------------------------
  373. @c Basic Examples
  374. @c ---------------------------------------------------------------------
  375. @node Basic Examples
  376. @chapter Basic Examples
  377. @menu
  378. * Compiling and linking options::
  379. * Hello World:: Submitting Tasks
  380. * Scaling a Vector:: Manipulating Data
  381. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  382. * Task and Worker Profiling::
  383. * Partitioning Data:: Partitioning Data
  384. * Performance model example::
  385. * Theoretical lower bound on execution time::
  386. * Insert Task Utility::
  387. * More examples:: More examples shipped with StarPU
  388. * Debugging:: When things go wrong.
  389. @end menu
  390. @node Compiling and linking options
  391. @section Compiling and linking options
  392. Let's suppose StarPU has been installed in the directory
  393. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  394. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  395. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  396. libraries at runtime.
  397. @example
  398. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  399. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  400. @end example
  401. The Makefile could for instance contain the following lines to define which
  402. options must be given to the compiler and to the linker:
  403. @cartouche
  404. @example
  405. CFLAGS += $$(pkg-config --cflags libstarpu)
  406. LDFLAGS += $$(pkg-config --libs libstarpu)
  407. @end example
  408. @end cartouche
  409. @node Hello World
  410. @section Hello World
  411. @menu
  412. * Required Headers::
  413. * Defining a Codelet::
  414. * Submitting a Task::
  415. * Execution of Hello World::
  416. @end menu
  417. In this section, we show how to implement a simple program that submits a task to StarPU.
  418. @node Required Headers
  419. @subsection Required Headers
  420. The @code{starpu.h} header should be included in any code using StarPU.
  421. @cartouche
  422. @smallexample
  423. #include <starpu.h>
  424. @end smallexample
  425. @end cartouche
  426. @node Defining a Codelet
  427. @subsection Defining a Codelet
  428. @cartouche
  429. @smallexample
  430. struct params @{
  431. int i;
  432. float f;
  433. @};
  434. void cpu_func(void *buffers[], void *cl_arg)
  435. @{
  436. struct params *params = cl_arg;
  437. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  438. @}
  439. starpu_codelet cl =
  440. @{
  441. .where = STARPU_CPU,
  442. .cpu_func = cpu_func,
  443. .nbuffers = 0
  444. @};
  445. @end smallexample
  446. @end cartouche
  447. A codelet is a structure that represents a computational kernel. Such a codelet
  448. may contain an implementation of the same kernel on different architectures
  449. (e.g. CUDA, Cell's SPU, x86, ...).
  450. The @code{nbuffers} field specifies the number of data buffers that are
  451. manipulated by the codelet: here the codelet does not access or modify any data
  452. that is controlled by our data management library. Note that the argument
  453. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  454. structure) does not count as a buffer since it is not managed by our data
  455. management library, but just contain trivial parameters.
  456. @c TODO need a crossref to the proper description of "where" see bla for more ...
  457. We create a codelet which may only be executed on the CPUs. The @code{where}
  458. field is a bitmask that defines where the codelet may be executed. Here, the
  459. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  460. (@pxref{Codelets and Tasks} for more details on this field).
  461. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  462. which @emph{must} have the following prototype:
  463. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  464. In this example, we can ignore the first argument of this function which gives a
  465. description of the input and output buffers (e.g. the size and the location of
  466. the matrices) since there is none.
  467. The second argument is a pointer to a buffer passed as an
  468. argument to the codelet by the means of the @code{cl_arg} field of the
  469. @code{starpu_task} structure.
  470. @c TODO rewrite so that it is a little clearer ?
  471. Be aware that this may be a pointer to a
  472. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  473. if the codelet modifies this buffer, there is no guarantee that the initial
  474. buffer will be modified as well: this for instance implies that the buffer
  475. cannot be used as a synchronization medium. If synchronization is needed, data
  476. has to be registered to StarPU, see @ref{Scaling a Vector}.
  477. @node Submitting a Task
  478. @subsection Submitting a Task
  479. @cartouche
  480. @smallexample
  481. void callback_func(void *callback_arg)
  482. @{
  483. printf("Callback function (arg %x)\n", callback_arg);
  484. @}
  485. int main(int argc, char **argv)
  486. @{
  487. /* @b{initialize StarPU} */
  488. starpu_init(NULL);
  489. struct starpu_task *task = starpu_task_create();
  490. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  491. struct params params = @{ 1, 2.0f @};
  492. task->cl_arg = &params;
  493. task->cl_arg_size = sizeof(params);
  494. task->callback_func = callback_func;
  495. task->callback_arg = 0x42;
  496. /* @b{starpu_task_submit will be a blocking call} */
  497. task->synchronous = 1;
  498. /* @b{submit the task to StarPU} */
  499. starpu_task_submit(task);
  500. /* @b{terminate StarPU} */
  501. starpu_shutdown();
  502. return 0;
  503. @}
  504. @end smallexample
  505. @end cartouche
  506. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  507. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  508. be submitted after the termination of StarPU by a call to
  509. @code{starpu_shutdown}.
  510. In the example above, a task structure is allocated by a call to
  511. @code{starpu_task_create}. This function only allocates and fills the
  512. corresponding structure with the default settings (@pxref{Codelets and
  513. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  514. @c not really clear ;)
  515. The @code{cl} field is a pointer to the codelet which the task will
  516. execute: in other words, the codelet structure describes which computational
  517. kernel should be offloaded on the different architectures, and the task
  518. structure is a wrapper containing a codelet and the piece of data on which the
  519. codelet should operate.
  520. The optional @code{cl_arg} field is a pointer to a buffer (of size
  521. @code{cl_arg_size}) with some parameters for the kernel
  522. described by the codelet. For instance, if a codelet implements a computational
  523. kernel that multiplies its input vector by a constant, the constant could be
  524. specified by the means of this buffer, instead of registering it as a StarPU
  525. data. It must however be noted that StarPU avoids making copy whenever possible
  526. and rather passes the pointer as such, so the buffer which is pointed at must
  527. kept allocated until the task terminates, and if several tasks are submitted
  528. with various parameters, each of them must be given a pointer to their own
  529. buffer.
  530. Once a task has been executed, an optional callback function is be called.
  531. While the computational kernel could be offloaded on various architectures, the
  532. callback function is always executed on a CPU. The @code{callback_arg}
  533. pointer is passed as an argument of the callback. The prototype of a callback
  534. function must be:
  535. @code{void (*callback_function)(void *);}
  536. If the @code{synchronous} field is non-zero, task submission will be
  537. synchronous: the @code{starpu_task_submit} function will not return until the
  538. task was executed. Note that the @code{starpu_shutdown} method does not
  539. guarantee that asynchronous tasks have been executed before it returns,
  540. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  541. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  542. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  543. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  544. @code{starpu_data_set_sequential_consistency_flag}.
  545. @node Execution of Hello World
  546. @subsection Execution of Hello World
  547. @smallexample
  548. % make hello_world
  549. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  550. % ./hello_world
  551. Hello world (params = @{1, 2.000000@} )
  552. Callback function (arg 42)
  553. @end smallexample
  554. @node Scaling a Vector
  555. @section Manipulating Data: Scaling a Vector
  556. The previous example has shown how to submit tasks. In this section,
  557. we show how StarPU tasks can manipulate data. The full source code for
  558. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  559. @menu
  560. * Source code of Vector Scaling::
  561. * Execution of Vector Scaling::
  562. @end menu
  563. @node Source code of Vector Scaling
  564. @subsection Source code of Vector Scaling
  565. Programmers can describe the data layout of their application so that StarPU is
  566. responsible for enforcing data coherency and availability across the machine.
  567. Instead of handling complex (and non-portable) mechanisms to perform data
  568. movements, programmers only declare which piece of data is accessed and/or
  569. modified by a task, and StarPU makes sure that when a computational kernel
  570. starts somewhere (e.g. on a GPU), its data are available locally.
  571. Before submitting those tasks, the programmer first needs to declare the
  572. different pieces of data to StarPU using the @code{starpu_*_data_register}
  573. functions. To ease the development of applications for StarPU, it is possible
  574. to describe multiple types of data layout. A type of data layout is called an
  575. @b{interface}. There are different predefined interfaces available in StarPU:
  576. here we will consider the @b{vector interface}.
  577. The following lines show how to declare an array of @code{NX} elements of type
  578. @code{float} using the vector interface:
  579. @cartouche
  580. @smallexample
  581. float vector[NX];
  582. starpu_data_handle vector_handle;
  583. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  584. sizeof(vector[0]));
  585. @end smallexample
  586. @end cartouche
  587. The first argument, called the @b{data handle}, is an opaque pointer which
  588. designates the array in StarPU. This is also the structure which is used to
  589. describe which data is used by a task. The second argument is the node number
  590. where the data originally resides. Here it is 0 since the @code{vector} array is in
  591. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  592. the number of elements in the vector and the size of each element.
  593. The following shows how to construct a StarPU task that will manipulate the
  594. vector and a constant factor.
  595. @cartouche
  596. @smallexample
  597. float factor = 3.14;
  598. struct starpu_task *task = starpu_task_create();
  599. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  600. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  601. task->buffers[0].mode = STARPU_RW;
  602. task->cl_arg = &factor;
  603. task->cl_arg_size = sizeof(factor);
  604. task->synchronous = 1;
  605. starpu_task_submit(task);
  606. @end smallexample
  607. @end cartouche
  608. Since the factor is a mere constant float value parameter,
  609. it does not need a preliminary registration, and
  610. can just be passed through the @code{cl_arg} pointer like in the previous
  611. example. The vector parameter is described by its handle.
  612. There are two fields in each element of the @code{buffers} array.
  613. @code{handle} is the handle of the data, and @code{mode} specifies how the
  614. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  615. write-only and @code{STARPU_RW} for read and write access).
  616. The definition of the codelet can be written as follows:
  617. @cartouche
  618. @smallexample
  619. void scal_cpu_func(void *buffers[], void *cl_arg)
  620. @{
  621. unsigned i;
  622. float *factor = cl_arg;
  623. /* length of the vector */
  624. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  625. /* CPU copy of the vector pointer */
  626. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  627. for (i = 0; i < n; i++)
  628. val[i] *= *factor;
  629. @}
  630. starpu_codelet cl = @{
  631. .where = STARPU_CPU,
  632. .cpu_func = scal_cpu_func,
  633. .nbuffers = 1
  634. @};
  635. @end smallexample
  636. @end cartouche
  637. The first argument is an array that gives
  638. a description of all the buffers passed in the @code{task->buffers}@ array. The
  639. size of this array is given by the @code{nbuffers} field of the codelet
  640. structure. For the sake of genericity, this array contains pointers to the
  641. different interfaces describing each buffer. In the case of the @b{vector
  642. interface}, the location of the vector (resp. its length) is accessible in the
  643. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  644. read-write fashion, any modification will automatically affect future accesses
  645. to this vector made by other tasks.
  646. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  647. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  648. constant factor from this pointer.
  649. @node Execution of Vector Scaling
  650. @subsection Execution of Vector Scaling
  651. @smallexample
  652. % make vector_scal
  653. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  654. % ./vector_scal
  655. 0.000000 3.000000 6.000000 9.000000 12.000000
  656. @end smallexample
  657. @node Vector Scaling on an Hybrid CPU/GPU Machine
  658. @section Vector Scaling on an Hybrid CPU/GPU Machine
  659. Contrary to the previous examples, the task submitted in this example may not
  660. only be executed by the CPUs, but also by a CUDA device.
  661. @menu
  662. * Definition of the CUDA Kernel::
  663. * Definition of the OpenCL Kernel::
  664. * Definition of the Main Code::
  665. * Execution of Hybrid Vector Scaling::
  666. @end menu
  667. @node Definition of the CUDA Kernel
  668. @subsection Definition of the CUDA Kernel
  669. The CUDA implementation can be written as follows. It needs to be compiled with
  670. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  671. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  672. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  673. call.
  674. @cartouche
  675. @smallexample
  676. #include <starpu.h>
  677. static __global__ void vector_mult_cuda(float *val, unsigned n,
  678. float factor)
  679. @{
  680. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  681. if (i < n)
  682. val[i] *= factor;
  683. @}
  684. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  685. @{
  686. float *factor = (float *)_args;
  687. /* length of the vector */
  688. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  689. /* CUDA copy of the vector pointer */
  690. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  691. unsigned threads_per_block = 64;
  692. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  693. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  694. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  695. @}
  696. @end smallexample
  697. @end cartouche
  698. @node Definition of the OpenCL Kernel
  699. @subsection Definition of the OpenCL Kernel
  700. The OpenCL implementation can be written as follows. StarPU provides
  701. tools to compile a OpenCL kernel stored in a file.
  702. @cartouche
  703. @smallexample
  704. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  705. @{
  706. const int i = get_global_id(0);
  707. if (i < nx) @{
  708. val[i] *= factor;
  709. @}
  710. @}
  711. @end smallexample
  712. @end cartouche
  713. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  714. a device pointer, so that it is passed as such to the OpenCL kernel.
  715. @cartouche
  716. @smallexample
  717. #include <starpu.h>
  718. @i{#include <starpu_opencl.h>}
  719. @i{extern struct starpu_opencl_program programs;}
  720. void scal_opencl_func(void *buffers[], void *_args)
  721. @{
  722. float *factor = _args;
  723. @i{ int id, devid, err;}
  724. @i{ cl_kernel kernel;}
  725. @i{ cl_command_queue queue;}
  726. @i{ cl_event event;}
  727. /* length of the vector */
  728. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  729. /* OpenCL copy of the vector pointer */
  730. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  731. @i{ id = starpu_worker_get_id();}
  732. @i{ devid = starpu_worker_get_devid(id);}
  733. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  734. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  735. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  736. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  737. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  738. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  739. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  740. @i{ @{}
  741. @i{ size_t global=1;}
  742. @i{ size_t local=1;}
  743. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  744. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  745. @i{ @}}
  746. @i{ clFinish(queue);}
  747. @i{ starpu_opencl_collect_stats(event);}
  748. @i{ clReleaseEvent(event);}
  749. @i{ starpu_opencl_release_kernel(kernel);}
  750. @}
  751. @end smallexample
  752. @end cartouche
  753. @node Definition of the Main Code
  754. @subsection Definition of the Main Code
  755. The CPU implementation is the same as in the previous section.
  756. Here is the source of the main application. You can notice the value of the
  757. field @code{where} for the codelet. We specify
  758. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  759. can be executed either on a CPU or on a CUDA or an OpenCL device.
  760. @cartouche
  761. @smallexample
  762. #include <starpu.h>
  763. #define NX 2048
  764. extern void scal_cuda_func(void *buffers[], void *_args);
  765. extern void scal_cpu_func(void *buffers[], void *_args);
  766. extern void scal_opencl_func(void *buffers[], void *_args);
  767. /* @b{Definition of the codelet} */
  768. static starpu_codelet cl = @{
  769. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  770. /* @b{on a CUDA device, or on an OpenCL device} */
  771. .cuda_func = scal_cuda_func;
  772. .cpu_func = scal_cpu_func;
  773. .opencl_func = scal_opencl_func;
  774. .nbuffers = 1;
  775. @}
  776. #ifdef STARPU_USE_OPENCL
  777. /* @b{The compiled version of the OpenCL program} */
  778. struct starpu_opencl_program programs;
  779. #endif
  780. int main(int argc, char **argv)
  781. @{
  782. float *vector;
  783. int i, ret;
  784. float factor=3.0;
  785. struct starpu_task *task;
  786. starpu_data_handle vector_handle;
  787. starpu_init(NULL); /* @b{Initialising StarPU} */
  788. #ifdef STARPU_USE_OPENCL
  789. starpu_opencl_load_opencl_from_file(
  790. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  791. &programs, NULL);
  792. #endif
  793. vector = malloc(NX*sizeof(vector[0]));
  794. assert(vector);
  795. for(i=0 ; i<NX ; i++) vector[i] = i;
  796. @end smallexample
  797. @end cartouche
  798. @cartouche
  799. @smallexample
  800. /* @b{Registering data within StarPU} */
  801. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  802. NX, sizeof(vector[0]));
  803. /* @b{Definition of the task} */
  804. task = starpu_task_create();
  805. task->cl = &cl;
  806. task->buffers[0].handle = vector_handle;
  807. task->buffers[0].mode = STARPU_RW;
  808. task->cl_arg = &factor;
  809. task->cl_arg_size = sizeof(factor);
  810. @end smallexample
  811. @end cartouche
  812. @cartouche
  813. @smallexample
  814. /* @b{Submitting the task} */
  815. ret = starpu_task_submit(task);
  816. if (ret == -ENODEV) @{
  817. fprintf(stderr, "No worker may execute this task\n");
  818. return 1;
  819. @}
  820. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  821. /* @b{Waiting for its termination} */
  822. starpu_task_wait_for_all();
  823. /* @b{Update the vector in RAM} */
  824. starpu_data_acquire(vector_handle, STARPU_R);
  825. @end smallexample
  826. @end cartouche
  827. @cartouche
  828. @smallexample
  829. /* @b{Access the data} */
  830. for(i=0 ; i<NX; i++) @{
  831. fprintf(stderr, "%f ", vector[i]);
  832. @}
  833. fprintf(stderr, "\n");
  834. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  835. starpu_data_release(vector_handle);
  836. starpu_data_unregister(vector_handle);
  837. starpu_shutdown();
  838. return 0;
  839. @}
  840. @end smallexample
  841. @end cartouche
  842. @node Execution of Hybrid Vector Scaling
  843. @subsection Execution of Hybrid Vector Scaling
  844. The Makefile given at the beginning of the section must be extended to
  845. give the rules to compile the CUDA source code. Note that the source
  846. file of the OpenCL kernel does not need to be compiled now, it will
  847. be compiled at run-time when calling the function
  848. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  849. @cartouche
  850. @smallexample
  851. CFLAGS += $(shell pkg-config --cflags libstarpu)
  852. LDFLAGS += $(shell pkg-config --libs libstarpu)
  853. CC = gcc
  854. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  855. %.o: %.cu
  856. nvcc $(CFLAGS) $< -c $@
  857. clean:
  858. rm -f vector_scal *.o
  859. @end smallexample
  860. @end cartouche
  861. @smallexample
  862. % make
  863. @end smallexample
  864. and to execute it, with the default configuration:
  865. @smallexample
  866. % ./vector_scal
  867. 0.000000 3.000000 6.000000 9.000000 12.000000
  868. @end smallexample
  869. or for example, by disabling CPU devices:
  870. @smallexample
  871. % STARPU_NCPUS=0 ./vector_scal
  872. 0.000000 3.000000 6.000000 9.000000 12.000000
  873. @end smallexample
  874. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  875. see @ref{Using accelerators}):
  876. @smallexample
  877. % STARPU_NCUDA=0 ./vector_scal
  878. 0.000000 3.000000 6.000000 9.000000 12.000000
  879. @end smallexample
  880. @node Task and Worker Profiling
  881. @section Task and Worker Profiling
  882. A full example showing how to use the profiling API is available in
  883. the StarPU sources in the directory @code{examples/profiling/}.
  884. @cartouche
  885. @smallexample
  886. struct starpu_task *task = starpu_task_create();
  887. task->cl = &cl;
  888. task->synchronous = 1;
  889. /* We will destroy the task structure by hand so that we can
  890. * query the profiling info before the task is destroyed. */
  891. task->destroy = 0;
  892. /* Submit and wait for completion (since synchronous was set to 1) */
  893. starpu_task_submit(task);
  894. /* The task is finished, get profiling information */
  895. struct starpu_task_profiling_info *info = task->profiling_info;
  896. /* How much time did it take before the task started ? */
  897. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  898. /* How long was the task execution ? */
  899. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  900. /* We don't need the task structure anymore */
  901. starpu_task_destroy(task);
  902. @end smallexample
  903. @end cartouche
  904. @cartouche
  905. @smallexample
  906. /* Display the occupancy of all workers during the test */
  907. int worker;
  908. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  909. @{
  910. struct starpu_worker_profiling_info worker_info;
  911. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  912. STARPU_ASSERT(!ret);
  913. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  914. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  915. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  916. float executing_ratio = 100.0*executing_time/total_time;
  917. float sleeping_ratio = 100.0*sleeping_time/total_time;
  918. char workername[128];
  919. starpu_worker_get_name(worker, workername, 128);
  920. fprintf(stderr, "Worker %s:\n", workername);
  921. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  922. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  923. executing_ratio);
  924. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  925. sleeping_ratio);
  926. @}
  927. @end smallexample
  928. @end cartouche
  929. @node Partitioning Data
  930. @section Partitioning Data
  931. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  932. @cartouche
  933. @smallexample
  934. int vector[NX];
  935. starpu_data_handle handle;
  936. /* Declare data to StarPU */
  937. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  938. /* Partition the vector in PARTS sub-vectors */
  939. starpu_filter f =
  940. @{
  941. .filter_func = starpu_block_filter_func_vector,
  942. .nchildren = PARTS,
  943. .get_nchildren = NULL,
  944. .get_child_ops = NULL
  945. @};
  946. starpu_data_partition(handle, &f);
  947. @end smallexample
  948. @end cartouche
  949. @cartouche
  950. @smallexample
  951. /* Submit a task on each sub-vector */
  952. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  953. /* Get subdata number i (there is only 1 dimension) */
  954. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  955. struct starpu_task *task = starpu_task_create();
  956. task->buffers[0].handle = sub_handle;
  957. task->buffers[0].mode = STARPU_RW;
  958. task->cl = &cl;
  959. task->synchronous = 1;
  960. task->cl_arg = &factor;
  961. task->cl_arg_size = sizeof(factor);
  962. starpu_task_submit(task);
  963. @}
  964. @end smallexample
  965. @end cartouche
  966. Partitioning can be applied several times, see
  967. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  968. @node Performance model example
  969. @section Performance model example
  970. To achieve good scheduling, StarPU scheduling policies need to be able to
  971. estimate in advance the duration of a task. This is done by giving to codelets a
  972. performance model. There are several kinds of performance models.
  973. @itemize
  974. @item
  975. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  976. see for instance
  977. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  978. @item
  979. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  980. given set of data input/output sizes, the performance will always be about the
  981. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  982. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  983. few different sets of data input/output sizes. StarPU will then keep record of
  984. the average time of previous executions on the various processing units, and use
  985. it as an estimation. History is done per task size, by using a hash of the input
  986. and ouput sizes as an index.
  987. It will also save it in @code{~/.starpu/sampling/codelets}
  988. for further executions, and can be observed by using the
  989. @code{starpu_perfmodel_display} command. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. The following is a small code example.
  990. If e.g. the code is recompiled with other compilation options, or several
  991. variants of the code are used, the symbol string should be changed to reflect
  992. that, in order to recalibrate the model from zero.
  993. @cartouche
  994. @smallexample
  995. static struct starpu_perfmodel_t mult_perf_model = @{
  996. .type = STARPU_HISTORY_BASED,
  997. .symbol = "mult_perf_model"
  998. @};
  999. starpu_codelet cl = @{
  1000. .where = STARPU_CPU,
  1001. .cpu_func = cpu_mult,
  1002. .nbuffers = 3,
  1003. /* for the scheduling policy to be able to use performance models */
  1004. .model = &mult_perf_model
  1005. @};
  1006. @end smallexample
  1007. @end cartouche
  1008. @item
  1009. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  1010. model type). This still assumes performance regularity, but can work
  1011. with various data input sizes, by applying regression over observed
  1012. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1013. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1014. STARPU_REGRESSION_BASED, but costs a lot more to compute)
  1015. @item
  1016. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  1017. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1018. functions which return the expected duration of the task in micro-seconds, one
  1019. per architecture.
  1020. @end itemize
  1021. How to use schedulers which can benefit from such performance model is explained
  1022. in @ref{Task scheduling policy}.
  1023. The same can be done for task power consumption estimation, by setting the
  1024. @code{power_model} field the same way as the @code{model} field. Note: for
  1025. now, the application has to give to the power consumption performance model
  1026. a name which is different from the execution time performance model.
  1027. @node Theoretical lower bound on execution time
  1028. @section Theoretical lower bound on execution time
  1029. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1030. bound for the execution time of a whole set of tasks. See for
  1031. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1032. call @code{starpu_bound_start}, and after complete execution, call
  1033. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1034. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1035. problem corresponding to the schedule of your tasks. Run it through
  1036. @code{lp_solve} or any other linear programming solver, and that will give you a
  1037. lower bound for the total execution time of your tasks. If StarPU was compiled
  1038. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1039. solve it immediately and get the optimized minimum. Its @code{integer}
  1040. parameter allows to decide whether integer resolution should be computed
  1041. and returned.
  1042. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1043. dependencies into account. It must be understood that the linear programming
  1044. problem size is quadratic with the number of tasks and thus the time to solve it
  1045. will be very long, it could be minutes for just a few dozen tasks. You should
  1046. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1047. problem to MPS format and then use a better solver, @code{glpsol} might be
  1048. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1049. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1050. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1051. of @code{lp_solve}. For instance, we often just use
  1052. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1053. the @code{-gr} option can also be quite useful.
  1054. Setting @code{deps} to 0 will only take into account the actual computations
  1055. on processing units. It however still properly takes into account the varying
  1056. performances of kernels and processing units, which is quite more accurate than
  1057. just comparing StarPU performances with the fastest of the kernels being used.
  1058. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1059. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1060. tasks before less prioritized tasks, to check to which extend this results
  1061. to a less optimal solution. This increases even more computation time.
  1062. Note that for simplicity, all this however doesn't take into account data
  1063. transfers, which are assumed to be completely overlapped.
  1064. @node Insert Task Utility
  1065. @section Insert Task Utility
  1066. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1067. the creation and submission of tasks.
  1068. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1069. Create and submit a task corresponding to @var{cl} with the following
  1070. arguments. The argument list must be zero-terminated.
  1071. The arguments following the codelets can be of the following types:
  1072. @itemize
  1073. @item
  1074. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1075. @item
  1076. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1077. the size of the constant;
  1078. @item
  1079. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1080. @item
  1081. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1082. argument to the callback function;
  1083. @item
  1084. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1085. @end itemize
  1086. Parameters to be passed to the codelet implementation are defined
  1087. through the type @code{STARPU_VALUE}. The function
  1088. @code{starpu_unpack_cl_args} must be called within the codelet
  1089. implementation to retrieve them.
  1090. @end deftypefun
  1091. Here the implementation of the codelet:
  1092. @smallexample
  1093. void func_cpu(void *descr[], void *_args)
  1094. @{
  1095. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1096. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1097. int ifactor;
  1098. float ffactor;
  1099. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1100. *x0 = *x0 * ifactor;
  1101. *x1 = *x1 * ffactor;
  1102. @}
  1103. starpu_codelet mycodelet = @{
  1104. .where = STARPU_CPU,
  1105. .cpu_func = func_cpu,
  1106. .nbuffers = 2
  1107. @};
  1108. @end smallexample
  1109. And the call to the @code{starpu_insert_task} wrapper:
  1110. @smallexample
  1111. starpu_insert_task(&mycodelet,
  1112. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1113. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1114. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1115. 0);
  1116. @end smallexample
  1117. The call to @code{starpu_insert_task} is equivalent to the following
  1118. code:
  1119. @smallexample
  1120. struct starpu_task *task = starpu_task_create();
  1121. task->cl = &mycodelet;
  1122. task->buffers[0].handle = data_handles[0];
  1123. task->buffers[0].mode = STARPU_RW;
  1124. task->buffers[1].handle = data_handles[1];
  1125. task->buffers[1].mode = STARPU_RW;
  1126. char *arg_buffer;
  1127. size_t arg_buffer_size;
  1128. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1129. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1130. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1131. 0);
  1132. task->cl_arg = arg_buffer;
  1133. task->cl_arg_size = arg_buffer_size;
  1134. int ret = starpu_task_submit(task);
  1135. @end smallexample
  1136. @node Debugging
  1137. @section Debugging
  1138. StarPU provides several tools to help debugging aplications. Execution traces
  1139. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1140. gdb helpers are also provided to show the whole StarPU state:
  1141. @smallexample
  1142. (gdb) source tools/gdbinit
  1143. (gdb) help starpu
  1144. @end smallexample
  1145. @node More examples
  1146. @section More examples
  1147. More examples are available in the StarPU sources in the @code{examples/}
  1148. directory. Simple examples include:
  1149. @table @asis
  1150. @item @code{incrementer/}:
  1151. Trivial incrementation test.
  1152. @item @code{basic_examples/}:
  1153. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1154. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1155. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1156. interface, and an example using the variable data interface.
  1157. @item @code{matvecmult/}:
  1158. OpenCL example from NVidia, adapted to StarPU.
  1159. @item @code{axpy/}:
  1160. AXPY CUBLAS operation adapted to StarPU.
  1161. @item @code{fortran/}:
  1162. Example of Fortran bindings.
  1163. @end table
  1164. More advanced examples include:
  1165. @table @asis
  1166. @item @code{filters/}:
  1167. Examples using filters, as shown in @ref{Partitioning Data}.
  1168. @item @code{lu/}:
  1169. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1170. @item @code{cholesky/}:
  1171. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1172. @end table
  1173. @c ---------------------------------------------------------------------
  1174. @c Performance options
  1175. @c ---------------------------------------------------------------------
  1176. @node Performance optimization
  1177. @chapter How to optimize performance with StarPU
  1178. TODO: improve!
  1179. @menu
  1180. * Data management::
  1181. * Task submission::
  1182. * Task priorities::
  1183. * Task scheduling policy::
  1184. * Performance model calibration::
  1185. * Task distribution vs Data transfer::
  1186. * Data prefetch::
  1187. * Power-based scheduling::
  1188. * Profiling::
  1189. * CUDA-specific optimizations::
  1190. @end menu
  1191. Simply encapsulating application kernels into tasks already permits to
  1192. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1193. few additional changes are needed.
  1194. @node Data management
  1195. @section Data management
  1196. When the application allocates data, whenever possible it should use the
  1197. @code{starpu_malloc} function, which will ask CUDA or
  1198. OpenCL to make the allocation itself and pin the corresponding allocated
  1199. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1200. transfer to overlap with computations.
  1201. By default, StarPU leaves replicates of data wherever they were used, in case they
  1202. will be re-used by other tasks, thus saving the data transfer time. When some
  1203. task modifies some data, all the other replicates are invalidated, and only the
  1204. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1205. that this data will not be re-used by further tasks, it should advise StarPU to
  1206. immediately replicate it to a desired list of memory nodes (given through a
  1207. bitmask). This can be understood like the write-through mode of CPU caches.
  1208. @example
  1209. starpu_data_set_wt_mask(img_handle, 1<<0);
  1210. @end example
  1211. will for instance request to always transfer a replicate into the main memory (node
  1212. 0), as bit 0 of the write-through bitmask is being set.
  1213. @node Task submission
  1214. @section Task submission
  1215. To let StarPU make online optimizations, tasks should be submitted
  1216. asynchronously as much as possible. Ideally, all the tasks should be
  1217. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1218. @code{starpu_data_unregister} be done to wait for
  1219. termination. StarPU will then be able to rework the whole schedule, overlap
  1220. computation with communication, manage accelerator local memory usage, etc.
  1221. @node Task priorities
  1222. @section Task priorities
  1223. By default, StarPU will consider the tasks in the order they are submitted by
  1224. the application. If the application programmer knows that some tasks should
  1225. be performed in priority (for instance because their output is needed by many
  1226. other tasks and may thus be a bottleneck if not executed early enough), the
  1227. @code{priority} field of the task structure should be set to transmit the
  1228. priority information to StarPU.
  1229. @node Task scheduling policy
  1230. @section Task scheduling policy
  1231. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1232. because it provides correct load balance even if the application codelets do not
  1233. have performance models. If your application codelets have performance models
  1234. (@pxref{Performance model example} for examples showing how to do it),
  1235. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1236. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1237. the list of available schedulers.
  1238. The @b{eager} scheduler uses a central task queue, from which workers draw tasks
  1239. to work on. This however does not permit to prefetch data since the scheduling
  1240. decision is taken late. If a task has a non-0 priority, it is put at the front of the queue.
  1241. The @b{prio} scheduler also uses a central task queue, but sorts tasks by
  1242. priority (between -5 and 5).
  1243. The @b{random} scheduler distributes tasks randomly according to assumed worker
  1244. overall performance.
  1245. The @b{ws} (work stealing) scheduler schedules tasks on the local worker by
  1246. default. When a worker becomes idle, it steals a task from the most loaded
  1247. worker.
  1248. The @b{dm} (deque model) scheduler uses task execution performance models into account to
  1249. perform an HEFT-similar scheduling strategy: it schedules tasks where their
  1250. termination time will be minimal.
  1251. The @b{dmda} (deque model data aware) scheduler is similar to dm, it also takes
  1252. into account data transfer time.
  1253. The @b{dmdar} (deque model data aware ready) scheduler is similar to dmda,
  1254. it also sorts tasks on per-worker queues by number of already-available data
  1255. buffers.
  1256. The @b{dmdas} (deque model data aware sorted) scheduler is similar to dmda, it
  1257. also supports arbitrary priority values.
  1258. The @b{heft} (HEFT) scheduler is similar to dmda, it also supports task bundles.
  1259. The @b{pheft} (parallel HEFT) scheduler is similar to heft, it also supports
  1260. parallel tasks (still experimental).
  1261. The @b{pgreedy} (parallel greedy) scheduler is similar to greedy, it also
  1262. supports parallel tasks (still experimental).
  1263. @node Performance model calibration
  1264. @section Performance model calibration
  1265. Most schedulers are based on an estimation of codelet duration on each kind
  1266. of processing unit. For this to be possible, the application programmer needs
  1267. to configure a performance model for the codelets of the application (see
  1268. @ref{Performance model example} for instance). History-based performance models
  1269. use on-line calibration. StarPU will automatically calibrate codelets
  1270. which have never been calibrated yet, and save the result in
  1271. @code{~/.starpu/sampling/codelets}.
  1272. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. To force continuing calibration, use
  1273. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1274. has not-so-stable performance. Details on the current performance model status
  1275. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1276. option lists the available performance models, and the @code{-s} option permits
  1277. to choose the performance model to be displayed. The result looks like:
  1278. @example
  1279. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1280. performance model for cpu
  1281. # hash size mean dev n
  1282. 5c6c3401 1572864 1.216300e+04 2.277778e+03 1240
  1283. @end example
  1284. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1285. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1286. 1240 samples. It is a good idea to check this before doing actual performance
  1287. measurements.
  1288. If a kernel source code was modified (e.g. performance improvement), the
  1289. calibration information is stale and should be dropped, to re-calibrate from
  1290. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1291. Note: due to CUDA limitations, to be able to measure kernel duration,
  1292. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1293. disables data transfer / computation overlapping, and should thus not be used
  1294. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1295. only if a performance-model-based scheduler is chosen.
  1296. @node Task distribution vs Data transfer
  1297. @section Task distribution vs Data transfer
  1298. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1299. thus needs to find a balance between both. The target function that the
  1300. @code{dmda} scheduler of StarPU
  1301. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1302. @code{T_execution} is the estimated execution time of the codelet (usually
  1303. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1304. latter is estimated based on bus calibration before execution start,
  1305. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1306. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1307. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1308. since during real application execution, contention makes transfer times bigger.
  1309. This is of course imprecise, but in practice, a rough estimation already gives
  1310. the good results that a precise estimation would give.
  1311. @node Data prefetch
  1312. @section Data prefetch
  1313. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1314. as soon as a scheduling decision is taken for a task, requests are issued to
  1315. transfer its required data to the target processing unit, if needeed, so that
  1316. when the processing unit actually starts the task, its data will hopefully be
  1317. already available and it will not have to wait for the transfer to finish.
  1318. The application may want to perform some manual prefetching, for several reasons
  1319. such as excluding initial data transfers from performance measurements, or
  1320. setting up an initial statically-computed data distribution on the machine
  1321. before submitting tasks, which will thus guide StarPU toward an initial task
  1322. distribution (since StarPU will try to avoid further transfers).
  1323. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1324. the handle and the desired target memory node.
  1325. @node Power-based scheduling
  1326. @section Power-based scheduling
  1327. If the application can provide some power performance model (through
  1328. the @code{power_model} field of the codelet structure), StarPU will
  1329. take it into account when distributing tasks. The target function that
  1330. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1331. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1332. is the estimated task consumption in Joules. To tune this parameter, use
  1333. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1334. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1335. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1336. This is however not sufficient to correctly optimize power: the scheduler would
  1337. simply tend to run all computations on the most energy-conservative processing
  1338. unit. To account for the consumption of the whole machine (including idle
  1339. processing units), the idle power of the machine should be given by setting
  1340. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1341. be obtained from the machine power supplier.
  1342. The power actually consumed by the total execution can be displayed by setting
  1343. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1344. @node Profiling
  1345. @section Profiling
  1346. A quick view of how many tasks each worker has executed can be obtained by setting
  1347. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1348. execution did happen on accelerators without penalizing performance with
  1349. the profiling overhead.
  1350. A quick view of how much data transfers have been issued can be obtained by setting
  1351. @code{export STARPU_BUS_STATS=1} .
  1352. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1353. calling @code{starpu_profiling_status_set} from the source code.
  1354. Statistics on the execution can then be obtained by using @code{export
  1355. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1356. More details on performance feedback are provided by the next chapter.
  1357. @node CUDA-specific optimizations
  1358. @section CUDA-specific optimizations
  1359. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1360. communications and the codelet computations if the application does not use a
  1361. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1362. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1363. operations. For instance:
  1364. @example
  1365. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1366. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1367. @end example
  1368. StarPU already does appropriate calls for the CUBLAS library.
  1369. Unfortunately, some CUDA libraries do not have stream variants of
  1370. kernels. That will lower the potential for overlapping.
  1371. @c ---------------------------------------------------------------------
  1372. @c Performance feedback
  1373. @c ---------------------------------------------------------------------
  1374. @node Performance feedback
  1375. @chapter Performance feedback
  1376. @menu
  1377. * On-line:: On-line performance feedback
  1378. * Off-line:: Off-line performance feedback
  1379. * Codelet performance:: Performance of codelets
  1380. @end menu
  1381. @node On-line
  1382. @section On-line performance feedback
  1383. @menu
  1384. * Enabling monitoring:: Enabling on-line performance monitoring
  1385. * Task feedback:: Per-task feedback
  1386. * Codelet feedback:: Per-codelet feedback
  1387. * Worker feedback:: Per-worker feedback
  1388. * Bus feedback:: Bus-related feedback
  1389. @end menu
  1390. @node Enabling monitoring
  1391. @subsection Enabling on-line performance monitoring
  1392. In order to enable online performance monitoring, the application can call
  1393. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1394. detect whether monitoring is already enabled or not by calling
  1395. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1396. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1397. can also be set to 1 to achieve the same effect.
  1398. Likewise, performance monitoring is stopped by calling
  1399. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1400. does not reset the performance counters so that the application may consult
  1401. them later on.
  1402. More details about the performance monitoring API are available in section
  1403. @ref{Profiling API}.
  1404. @node Task feedback
  1405. @subsection Per-task feedback
  1406. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1407. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1408. structure when a task terminates.
  1409. This structure is automatically destroyed when the task structure is destroyed,
  1410. either automatically or by calling @code{starpu_task_destroy}.
  1411. The @code{starpu_task_profiling_info} structure indicates the date when the
  1412. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1413. terminated (@code{end_time}), relative to the initialization of
  1414. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1415. that has executed the task (@code{workerid}).
  1416. These date are stored as @code{timespec} structures which the user may convert
  1417. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1418. function.
  1419. It it worth noting that the application may directly access this structure from
  1420. the callback executed at the end of the task. The @code{starpu_task} structure
  1421. associated to the callback currently being executed is indeed accessible with
  1422. the @code{starpu_get_current_task()} function.
  1423. @node Codelet feedback
  1424. @subsection Per-codelet feedback
  1425. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1426. an array of counters. The i-th entry of the array is incremented every time a
  1427. task implementing the codelet is executed on the i-th worker.
  1428. This array is not reinitialized when profiling is enabled or disabled.
  1429. @node Worker feedback
  1430. @subsection Per-worker feedback
  1431. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1432. function is a @code{starpu_worker_profiling_info} structure that gives
  1433. statistics about the specified worker. This structure specifies when StarPU
  1434. started collecting profiling information for that worker (@code{start_time}),
  1435. the duration of the profiling measurement interval (@code{total_time}), the
  1436. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1437. because there is no task to execute at all (@code{sleeping_time}), and the
  1438. number of tasks that were executed while profiling was enabled.
  1439. These values give an estimation of the proportion of time spent do real work,
  1440. and the time spent either sleeping because there are not enough executable
  1441. tasks or simply wasted in pure StarPU overhead.
  1442. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1443. information associated to a worker.
  1444. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1445. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1446. generate a graphic showing the evolution of these values during the time, for
  1447. the different workers.
  1448. @node Bus feedback
  1449. @subsection Bus-related feedback
  1450. TODO
  1451. @c how to enable/disable performance monitoring
  1452. @c what kind of information do we get ?
  1453. @node Off-line
  1454. @section Off-line performance feedback
  1455. @menu
  1456. * Generating traces:: Generating traces with FxT
  1457. * Gantt diagram:: Creating a Gantt Diagram
  1458. * DAG:: Creating a DAG with graphviz
  1459. * starpu-top:: Monitoring activity
  1460. @end menu
  1461. @node Generating traces
  1462. @subsection Generating traces with FxT
  1463. StarPU can use the FxT library (see
  1464. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1465. with a limited runtime overhead.
  1466. You can either get a tarball:
  1467. @example
  1468. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1469. @end example
  1470. or use the FxT library from CVS (autotools are required):
  1471. @example
  1472. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1473. % ./bootstrap
  1474. @end example
  1475. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1476. done following the standard procedure:
  1477. @example
  1478. % ./configure --prefix=$FXTDIR
  1479. % make
  1480. % make install
  1481. @end example
  1482. In order to have StarPU to generate traces, StarPU should be configured with
  1483. the @code{--with-fxt} option:
  1484. @example
  1485. $ ./configure --with-fxt=$FXTDIR
  1486. @end example
  1487. Or you can simply point the @code{PKG_CONFIG_PATH} to
  1488. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  1489. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1490. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1491. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1492. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1493. @code{/tmp/} directory by default, or by the directory specified by
  1494. the @code{STARPU_FXT_PREFIX} environment variable.
  1495. @node Gantt diagram
  1496. @subsection Creating a Gantt Diagram
  1497. When the FxT trace file @code{filename} has been generated, it is possible to
  1498. generate a trace in the Paje format by calling:
  1499. @example
  1500. % starpu_fxt_tool -i filename
  1501. @end example
  1502. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1503. to 1 before application execution will make StarPU do it automatically at
  1504. application shutdown.
  1505. This will create a @code{paje.trace} file in the current directory that can be
  1506. inspected with the ViTE trace visualizing open-source tool. More information
  1507. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1508. possible to open the @code{paje.trace} file with ViTE by using the following
  1509. command:
  1510. @example
  1511. % vite paje.trace
  1512. @end example
  1513. @node DAG
  1514. @subsection Creating a DAG with graphviz
  1515. When the FxT trace file @code{filename} has been generated, it is possible to
  1516. generate a task graph in the DOT format by calling:
  1517. @example
  1518. $ starpu_fxt_tool -i filename
  1519. @end example
  1520. This will create a @code{dag.dot} file in the current directory. This file is a
  1521. task graph described using the DOT language. It is possible to get a
  1522. graphical output of the graph by using the graphviz library:
  1523. @example
  1524. $ dot -Tpdf dag.dot -o output.pdf
  1525. @end example
  1526. @node starpu-top
  1527. @subsection Monitoring activity
  1528. When the FxT trace file @code{filename} has been generated, it is possible to
  1529. generate a activity trace by calling:
  1530. @example
  1531. $ starpu_fxt_tool -i filename
  1532. @end example
  1533. This will create an @code{activity.data} file in the current
  1534. directory. A profile of the application showing the activity of StarPU
  1535. during the execution of the program can be generated:
  1536. @example
  1537. $ starpu_top.sh activity.data
  1538. @end example
  1539. This will create a file named @code{activity.eps} in the current directory.
  1540. This picture is composed of two parts.
  1541. The first part shows the activity of the different workers. The green sections
  1542. indicate which proportion of the time was spent executed kernels on the
  1543. processing unit. The red sections indicate the proportion of time spent in
  1544. StartPU: an important overhead may indicate that the granularity may be too
  1545. low, and that bigger tasks may be appropriate to use the processing unit more
  1546. efficiently. The black sections indicate that the processing unit was blocked
  1547. because there was no task to process: this may indicate a lack of parallelism
  1548. which may be alleviated by creating more tasks when it is possible.
  1549. The second part of the @code{activity.eps} picture is a graph showing the
  1550. evolution of the number of tasks available in the system during the execution.
  1551. Ready tasks are shown in black, and tasks that are submitted but not
  1552. schedulable yet are shown in grey.
  1553. @node Codelet performance
  1554. @section Performance of codelets
  1555. The performance model of codelets can be examined by using the
  1556. @code{starpu_perfmodel_display} tool:
  1557. @example
  1558. $ starpu_perfmodel_display -l
  1559. file: <malloc_pinned.hannibal>
  1560. file: <starpu_slu_lu_model_21.hannibal>
  1561. file: <starpu_slu_lu_model_11.hannibal>
  1562. file: <starpu_slu_lu_model_22.hannibal>
  1563. file: <starpu_slu_lu_model_12.hannibal>
  1564. @end example
  1565. Here, the codelets of the lu example are available. We can examine the
  1566. performance of the 22 kernel:
  1567. @example
  1568. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1569. performance model for cpu
  1570. # hash size mean dev n
  1571. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1572. performance model for cuda_0
  1573. # hash size mean dev n
  1574. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1575. performance model for cuda_1
  1576. # hash size mean dev n
  1577. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1578. performance model for cuda_2
  1579. # hash size mean dev n
  1580. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1581. @end example
  1582. We can see that for the given size, over a sample of a few hundreds of
  1583. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1584. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1585. CPUs.
  1586. @c ---------------------------------------------------------------------
  1587. @c MPI support
  1588. @c ---------------------------------------------------------------------
  1589. @node StarPU MPI support
  1590. @chapter StarPU MPI support
  1591. The integration of MPI transfers within task parallelism is done in a
  1592. very natural way by the means of asynchronous interactions between the
  1593. application and StarPU. This is implemented in a separate libstarpumpi library
  1594. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1595. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1596. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1597. @menu
  1598. * The API::
  1599. * Simple Example::
  1600. * MPI Insert Task Utility::
  1601. * MPI Collective Operations::
  1602. @end menu
  1603. @node The API
  1604. @section The API
  1605. @subsection Initialisation
  1606. @deftypefun int starpu_mpi_initialize (void)
  1607. Initializes the starpumpi library. This must be called between calling
  1608. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1609. function does not call @code{MPI_Init}, it should be called beforehand.
  1610. @end deftypefun
  1611. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1612. Initializes the starpumpi library. This must be called between calling
  1613. @code{starpu_init} and other @code{starpu_mpi} functions.
  1614. This function calls @code{MPI_Init}, and therefore should be prefered
  1615. to the previous one for MPI implementations which are not thread-safe.
  1616. Returns the current MPI node rank and world size.
  1617. @end deftypefun
  1618. @deftypefun int starpu_mpi_shutdown (void)
  1619. Cleans the starpumpi library. This must be called between calling
  1620. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1621. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1622. by calling @code{starpu_mpi_initialize_extended}.
  1623. @end deftypefun
  1624. @subsection Communication
  1625. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1626. @end deftypefun
  1627. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1628. @end deftypefun
  1629. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1630. @end deftypefun
  1631. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1632. @end deftypefun
  1633. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1634. @end deftypefun
  1635. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1636. @end deftypefun
  1637. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1638. @end deftypefun
  1639. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1640. @end deftypefun
  1641. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1642. @end deftypefun
  1643. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1644. When the transfer is completed, the tag is unlocked
  1645. @end deftypefun
  1646. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1647. @end deftypefun
  1648. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1649. Asynchronously send an array of buffers, and unlocks the tag once all
  1650. of them are transmitted.
  1651. @end deftypefun
  1652. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1653. @end deftypefun
  1654. @page
  1655. @node Simple Example
  1656. @section Simple Example
  1657. @cartouche
  1658. @smallexample
  1659. void increment_token(void)
  1660. @{
  1661. struct starpu_task *task = starpu_task_create();
  1662. task->cl = &increment_cl;
  1663. task->buffers[0].handle = token_handle;
  1664. task->buffers[0].mode = STARPU_RW;
  1665. starpu_task_submit(task);
  1666. @}
  1667. @end smallexample
  1668. @end cartouche
  1669. @cartouche
  1670. @smallexample
  1671. int main(int argc, char **argv)
  1672. @{
  1673. int rank, size;
  1674. starpu_init(NULL);
  1675. starpu_mpi_initialize_extended(&rank, &size);
  1676. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1677. unsigned nloops = NITER;
  1678. unsigned loop;
  1679. unsigned last_loop = nloops - 1;
  1680. unsigned last_rank = size - 1;
  1681. @end smallexample
  1682. @end cartouche
  1683. @cartouche
  1684. @smallexample
  1685. for (loop = 0; loop < nloops; loop++) @{
  1686. int tag = loop*size + rank;
  1687. if (loop == 0 && rank == 0)
  1688. @{
  1689. token = 0;
  1690. fprintf(stdout, "Start with token value %d\n", token);
  1691. @}
  1692. else
  1693. @{
  1694. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1695. MPI_COMM_WORLD, NULL, NULL);
  1696. @}
  1697. increment_token();
  1698. if (loop == last_loop && rank == last_rank)
  1699. @{
  1700. starpu_data_acquire(token_handle, STARPU_R);
  1701. fprintf(stdout, "Finished : token value %d\n", token);
  1702. starpu_data_release(token_handle);
  1703. @}
  1704. else
  1705. @{
  1706. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1707. MPI_COMM_WORLD, NULL, NULL);
  1708. @}
  1709. @}
  1710. starpu_task_wait_for_all();
  1711. @end smallexample
  1712. @end cartouche
  1713. @cartouche
  1714. @smallexample
  1715. starpu_mpi_shutdown();
  1716. starpu_shutdown();
  1717. if (rank == last_rank)
  1718. @{
  1719. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1720. STARPU_ASSERT(token == nloops*size);
  1721. @}
  1722. @end smallexample
  1723. @end cartouche
  1724. @page
  1725. @node MPI Insert Task Utility
  1726. @section MPI Insert Task Utility
  1727. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1728. Create and submit a task corresponding to @var{cl} with the following
  1729. arguments. The argument list must be zero-terminated.
  1730. The arguments following the codelets are the same types as for the
  1731. function @code{starpu_insert_task} defined in @ref{Insert Task
  1732. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  1733. integer allows to specify the node to execute the codelet. It is also
  1734. possible to specify that the node owning a specific data will execute
  1735. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  1736. handle.
  1737. The algorithm is as follows:
  1738. @enumerate
  1739. @item Find out whether we are to execute the codelet because we own the
  1740. data to be written to. If different tasks own data to be written to,
  1741. the argument @code{STARPU_EXECUTE_ON_NODE} or
  1742. @code{STARPU_EXECUTE_ON_DATA} should be used to specify the executing
  1743. task @code{ET}.
  1744. @item Send and receive data as requested. Tasks owning data which need
  1745. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1746. @item Execute the codelet. This is done by the task selected in the
  1747. 1st step of the algorithm.
  1748. @item In the case when different tasks own data to be written to, send
  1749. W data back to their owners.
  1750. @end enumerate
  1751. The algorithm also includes a cache mechanism that allows not to send
  1752. data twice to the same task, unless the data has been modified.
  1753. @end deftypefun
  1754. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1755. @end deftypefun
  1756. @page
  1757. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1758. first needs to define a distribution function which specifies the
  1759. locality of the data. Note that that distribution information needs to
  1760. be given to StarPU by calling @code{starpu_data_set_rank}.
  1761. @cartouche
  1762. @smallexample
  1763. /* Returns the MPI node number where data is */
  1764. int my_distrib(int x, int y, int nb_nodes) @{
  1765. /* Cyclic distrib */
  1766. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1767. // /* Linear distrib */
  1768. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1769. @}
  1770. @end smallexample
  1771. @end cartouche
  1772. Now the data can be registered within StarPU. Data which are not
  1773. owned but will be needed for computations can be registered through
  1774. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1775. StarPU will automatically allocate the memory when it is used for the
  1776. first time.
  1777. @cartouche
  1778. @smallexample
  1779. unsigned matrix[X][Y];
  1780. starpu_data_handle data_handles[X][Y];
  1781. for(x = 0; x < X; x++) @{
  1782. for (y = 0; y < Y; y++) @{
  1783. int mpi_rank = my_distrib(x, y, size);
  1784. if (mpi_rank == rank)
  1785. /* Owning data */
  1786. starpu_variable_data_register(&data_handles[x][y], 0,
  1787. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1788. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1789. /* I don't own that index, but will need it for my computations */
  1790. starpu_variable_data_register(&data_handles[x][y], -1,
  1791. (uintptr_t)NULL, sizeof(unsigned));
  1792. else
  1793. /* I know it's useless to allocate anything for this */
  1794. data_handles[x][y] = NULL;
  1795. if (data_handles[x][y])
  1796. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1797. @}
  1798. @}
  1799. @end smallexample
  1800. @end cartouche
  1801. Now @code{starpu_mpi_insert_task()} can be called for the different
  1802. steps of the application.
  1803. @cartouche
  1804. @smallexample
  1805. for(loop=0 ; loop<niter; loop++)
  1806. for (x = 1; x < X-1; x++)
  1807. for (y = 1; y < Y-1; y++)
  1808. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1809. STARPU_RW, data_handles[x][y],
  1810. STARPU_R, data_handles[x-1][y],
  1811. STARPU_R, data_handles[x+1][y],
  1812. STARPU_R, data_handles[x][y-1],
  1813. STARPU_R, data_handles[x][y+1],
  1814. 0);
  1815. starpu_task_wait_for_all();
  1816. @end smallexample
  1817. @end cartouche
  1818. @node MPI Collective Operations
  1819. @section MPI Collective Operations
  1820. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1821. Scatter data among processes of the communicator based on the ownership of
  1822. the data. For each data of the array @var{data_handles}, the
  1823. process @var{root} sends the data to the process owning this data.
  1824. Processes receiving data must have valid data handles to receive them.
  1825. @end deftypefun
  1826. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1827. Gather data from the different processes of the communicator onto the
  1828. process @var{root}. Each process owning data handle in the array
  1829. @var{data_handles} will send them to the process @var{root}. The
  1830. process @var{root} must have valid data handles to receive the data.
  1831. @end deftypefun
  1832. @page
  1833. @cartouche
  1834. @smallexample
  1835. if (rank == root)
  1836. @{
  1837. /* Allocate the vector */
  1838. vector = malloc(nblocks * sizeof(float *));
  1839. for(x=0 ; x<nblocks ; x++)
  1840. @{
  1841. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  1842. @}
  1843. @}
  1844. /* Allocate data handles and register data to StarPU */
  1845. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  1846. for(x = 0; x < nblocks ; x++)
  1847. @{
  1848. int mpi_rank = my_distrib(x, nodes);
  1849. if (rank == root) @{
  1850. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  1851. blocks_size, sizeof(float));
  1852. @}
  1853. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  1854. /* I own that index, or i will need it for my computations */
  1855. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  1856. block_size, sizeof(float));
  1857. @}
  1858. else @{
  1859. /* I know it's useless to allocate anything for this */
  1860. data_handles[x] = NULL;
  1861. @}
  1862. if (data_handles[x]) @{
  1863. starpu_data_set_rank(data_handles[x], mpi_rank);
  1864. @}
  1865. @}
  1866. /* Scatter the matrix among the nodes */
  1867. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  1868. /* Calculation */
  1869. for(x = 0; x < nblocks ; x++) @{
  1870. if (data_handles[x]) @{
  1871. int owner = starpu_data_get_rank(data_handles[x]);
  1872. if (owner == rank) @{
  1873. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  1874. @}
  1875. @}
  1876. @}
  1877. /* Gather the matrix on main node */
  1878. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  1879. @end smallexample
  1880. @end cartouche
  1881. @c ---------------------------------------------------------------------
  1882. @c Configuration options
  1883. @c ---------------------------------------------------------------------
  1884. @node Configuring StarPU
  1885. @chapter Configuring StarPU
  1886. @menu
  1887. * Compilation configuration::
  1888. * Execution configuration through environment variables::
  1889. @end menu
  1890. @node Compilation configuration
  1891. @section Compilation configuration
  1892. The following arguments can be given to the @code{configure} script.
  1893. @menu
  1894. * Common configuration::
  1895. * Configuring workers::
  1896. * Advanced configuration::
  1897. @end menu
  1898. @node Common configuration
  1899. @subsection Common configuration
  1900. @menu
  1901. * --enable-debug::
  1902. * --enable-fast::
  1903. * --enable-verbose::
  1904. * --enable-coverage::
  1905. @end menu
  1906. @node --enable-debug
  1907. @subsubsection @code{--enable-debug}
  1908. @table @asis
  1909. @item @emph{Description}:
  1910. Enable debugging messages.
  1911. @end table
  1912. @node --enable-fast
  1913. @subsubsection @code{--enable-fast}
  1914. @table @asis
  1915. @item @emph{Description}:
  1916. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1917. @end table
  1918. @node --enable-verbose
  1919. @subsubsection @code{--enable-verbose}
  1920. @table @asis
  1921. @item @emph{Description}:
  1922. Augment the verbosity of the debugging messages. This can be disabled
  1923. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1924. any value.
  1925. @smallexample
  1926. % STARPU_SILENT=1 ./vector_scal
  1927. @end smallexample
  1928. @end table
  1929. @node --enable-coverage
  1930. @subsubsection @code{--enable-coverage}
  1931. @table @asis
  1932. @item @emph{Description}:
  1933. Enable flags for the @code{gcov} coverage tool.
  1934. @end table
  1935. @node Configuring workers
  1936. @subsection Configuring workers
  1937. @menu
  1938. * --enable-nmaxcpus::
  1939. * --disable-cpu::
  1940. * --enable-maxcudadev::
  1941. * --disable-cuda::
  1942. * --with-cuda-dir::
  1943. * --with-cuda-include-dir::
  1944. * --with-cuda-lib-dir::
  1945. * --enable-maxopencldev::
  1946. * --disable-opencl::
  1947. * --with-opencl-dir::
  1948. * --with-opencl-include-dir::
  1949. * --with-opencl-lib-dir::
  1950. * --enable-gordon::
  1951. * --with-gordon-dir::
  1952. @end menu
  1953. @node --enable-nmaxcpus
  1954. @subsubsection @code{--enable-nmaxcpus=<number>}
  1955. @table @asis
  1956. @item @emph{Description}:
  1957. Defines the maximum number of CPU cores that StarPU will support, then
  1958. available as the @code{STARPU_NMAXCPUS} macro.
  1959. @end table
  1960. @node --disable-cpu
  1961. @subsubsection @code{--disable-cpu}
  1962. @table @asis
  1963. @item @emph{Description}:
  1964. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1965. @end table
  1966. @node --enable-maxcudadev
  1967. @subsubsection @code{--enable-maxcudadev=<number>}
  1968. @table @asis
  1969. @item @emph{Description}:
  1970. Defines the maximum number of CUDA devices that StarPU will support, then
  1971. available as the @code{STARPU_MAXCUDADEVS} macro.
  1972. @end table
  1973. @node --disable-cuda
  1974. @subsubsection @code{--disable-cuda}
  1975. @table @asis
  1976. @item @emph{Description}:
  1977. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1978. @end table
  1979. @node --with-cuda-dir
  1980. @subsubsection @code{--with-cuda-dir=<path>}
  1981. @table @asis
  1982. @item @emph{Description}:
  1983. Specify the directory where CUDA is installed. This directory should notably contain
  1984. @code{include/cuda.h}.
  1985. @end table
  1986. @node --with-cuda-include-dir
  1987. @subsubsection @code{--with-cuda-include-dir=<path>}
  1988. @table @asis
  1989. @item @emph{Description}:
  1990. Specify the directory where CUDA headers are installed. This directory should
  1991. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1992. value given to @code{--with-cuda-dir}.
  1993. @end table
  1994. @node --with-cuda-lib-dir
  1995. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1996. @table @asis
  1997. @item @emph{Description}:
  1998. Specify the directory where the CUDA library is installed. This directory should
  1999. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  2000. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  2001. @end table
  2002. @node --enable-maxopencldev
  2003. @subsubsection @code{--enable-maxopencldev=<number>}
  2004. @table @asis
  2005. @item @emph{Description}:
  2006. Defines the maximum number of OpenCL devices that StarPU will support, then
  2007. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  2008. @end table
  2009. @node --disable-opencl
  2010. @subsubsection @code{--disable-opencl}
  2011. @table @asis
  2012. @item @emph{Description}:
  2013. Disable the use of OpenCL, even if the SDK is detected.
  2014. @end table
  2015. @node --with-opencl-dir
  2016. @subsubsection @code{--with-opencl-dir=<path>}
  2017. @table @asis
  2018. @item @emph{Description}:
  2019. Specify the location of the OpenCL SDK. This directory should notably contain
  2020. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  2021. @end table
  2022. @node --with-opencl-include-dir
  2023. @subsubsection @code{--with-opencl-include-dir=<path>}
  2024. @table @asis
  2025. @item @emph{Description}:
  2026. Specify the location of OpenCL headers. This directory should notably contain
  2027. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  2028. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  2029. @end table
  2030. @node --with-opencl-lib-dir
  2031. @subsubsection @code{--with-opencl-lib-dir=<path>}
  2032. @table @asis
  2033. @item @emph{Description}:
  2034. Specify the location of the OpenCL library. This directory should notably
  2035. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  2036. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  2037. @end table
  2038. @node --enable-gordon
  2039. @subsubsection @code{--enable-gordon}
  2040. @table @asis
  2041. @item @emph{Description}:
  2042. Enable the use of the Gordon runtime for Cell SPUs.
  2043. @c TODO: rather default to enabled when detected
  2044. @end table
  2045. @node --with-gordon-dir
  2046. @subsubsection @code{--with-gordon-dir=<path>}
  2047. @table @asis
  2048. @item @emph{Description}:
  2049. Specify the location of the Gordon SDK.
  2050. @end table
  2051. @node Advanced configuration
  2052. @subsection Advanced configuration
  2053. @menu
  2054. * --enable-perf-debug::
  2055. * --enable-model-debug::
  2056. * --enable-stats::
  2057. * --enable-maxbuffers::
  2058. * --enable-allocation-cache::
  2059. * --enable-opengl-render::
  2060. * --enable-blas-lib::
  2061. * --with-magma::
  2062. * --with-fxt::
  2063. * --with-perf-model-dir::
  2064. * --with-mpicc::
  2065. * --with-goto-dir::
  2066. * --with-atlas-dir::
  2067. * --with-mkl-cflags::
  2068. * --with-mkl-ldflags::
  2069. @end menu
  2070. @node --enable-perf-debug
  2071. @subsubsection @code{--enable-perf-debug}
  2072. @table @asis
  2073. @item @emph{Description}:
  2074. Enable performance debugging through gprof.
  2075. @end table
  2076. @node --enable-model-debug
  2077. @subsubsection @code{--enable-model-debug}
  2078. @table @asis
  2079. @item @emph{Description}:
  2080. Enable performance model debugging.
  2081. @end table
  2082. @node --enable-stats
  2083. @subsubsection @code{--enable-stats}
  2084. @table @asis
  2085. @item @emph{Description}:
  2086. Enable statistics.
  2087. @end table
  2088. @node --enable-maxbuffers
  2089. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  2090. @table @asis
  2091. @item @emph{Description}:
  2092. Define the maximum number of buffers that tasks will be able to take
  2093. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  2094. @end table
  2095. @node --enable-allocation-cache
  2096. @subsubsection @code{--enable-allocation-cache}
  2097. @table @asis
  2098. @item @emph{Description}:
  2099. Enable the use of a data allocation cache to avoid the cost of it with
  2100. CUDA. Still experimental.
  2101. @end table
  2102. @node --enable-opengl-render
  2103. @subsubsection @code{--enable-opengl-render}
  2104. @table @asis
  2105. @item @emph{Description}:
  2106. Enable the use of OpenGL for the rendering of some examples.
  2107. @c TODO: rather default to enabled when detected
  2108. @end table
  2109. @node --enable-blas-lib
  2110. @subsubsection @code{--enable-blas-lib=<name>}
  2111. @table @asis
  2112. @item @emph{Description}:
  2113. Specify the blas library to be used by some of the examples. The
  2114. library has to be 'atlas' or 'goto'.
  2115. @end table
  2116. @node --with-magma
  2117. @subsubsection @code{--with-magma=<path>}
  2118. @table @asis
  2119. @item @emph{Description}:
  2120. Specify where magma is installed. This directory should notably contain
  2121. @code{include/magmablas.h}.
  2122. @end table
  2123. @node --with-fxt
  2124. @subsubsection @code{--with-fxt=<path>}
  2125. @table @asis
  2126. @item @emph{Description}:
  2127. Specify the location of FxT (for generating traces and rendering them
  2128. using ViTE). This directory should notably contain
  2129. @code{include/fxt/fxt.h}.
  2130. @c TODO add ref to other section
  2131. @end table
  2132. @node --with-perf-model-dir
  2133. @subsubsection @code{--with-perf-model-dir=<dir>}
  2134. @table @asis
  2135. @item @emph{Description}:
  2136. Specify where performance models should be stored (instead of defaulting to the
  2137. current user's home).
  2138. @end table
  2139. @node --with-mpicc
  2140. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2141. @table @asis
  2142. @item @emph{Description}:
  2143. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2144. @end table
  2145. @node --with-goto-dir
  2146. @subsubsection @code{--with-goto-dir=<dir>}
  2147. @table @asis
  2148. @item @emph{Description}:
  2149. Specify the location of GotoBLAS.
  2150. @end table
  2151. @node --with-atlas-dir
  2152. @subsubsection @code{--with-atlas-dir=<dir>}
  2153. @table @asis
  2154. @item @emph{Description}:
  2155. Specify the location of ATLAS. This directory should notably contain
  2156. @code{include/cblas.h}.
  2157. @end table
  2158. @node --with-mkl-cflags
  2159. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2160. @table @asis
  2161. @item @emph{Description}:
  2162. Specify the compilation flags for the MKL Library.
  2163. @end table
  2164. @node --with-mkl-ldflags
  2165. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2166. @table @asis
  2167. @item @emph{Description}:
  2168. Specify the linking flags for the MKL Library. Note that the
  2169. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2170. website provides a script to determine the linking flags.
  2171. @end table
  2172. @c ---------------------------------------------------------------------
  2173. @c Environment variables
  2174. @c ---------------------------------------------------------------------
  2175. @node Execution configuration through environment variables
  2176. @section Execution configuration through environment variables
  2177. @menu
  2178. * Workers:: Configuring workers
  2179. * Scheduling:: Configuring the Scheduling engine
  2180. * Misc:: Miscellaneous and debug
  2181. @end menu
  2182. Note: the values given in @code{starpu_conf} structure passed when
  2183. calling @code{starpu_init} will override the values of the environment
  2184. variables.
  2185. @node Workers
  2186. @subsection Configuring workers
  2187. @menu
  2188. * STARPU_NCPUS:: Number of CPU workers
  2189. * STARPU_NCUDA:: Number of CUDA workers
  2190. * STARPU_NOPENCL:: Number of OpenCL workers
  2191. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2192. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2193. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2194. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2195. @end menu
  2196. @node STARPU_NCPUS
  2197. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2198. @table @asis
  2199. @item @emph{Description}:
  2200. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2201. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2202. the accelerators.
  2203. @end table
  2204. @node STARPU_NCUDA
  2205. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2206. @table @asis
  2207. @item @emph{Description}:
  2208. Specify the number of CUDA devices that StarPU can use. If
  2209. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2210. possible to select which CUDA devices should be used by the means of the
  2211. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2212. create as many CUDA workers as there are CUDA devices.
  2213. @end table
  2214. @node STARPU_NOPENCL
  2215. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2216. @table @asis
  2217. @item @emph{Description}:
  2218. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2219. @end table
  2220. @node STARPU_NGORDON
  2221. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2222. @table @asis
  2223. @item @emph{Description}:
  2224. Specify the number of SPUs that StarPU can use.
  2225. @end table
  2226. @node STARPU_WORKERS_CPUID
  2227. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2228. @table @asis
  2229. @item @emph{Description}:
  2230. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2231. specifies on which logical CPU the different workers should be
  2232. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2233. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2234. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2235. determined by the OS, or provided by the @code{hwloc} library in case it is
  2236. available.
  2237. Note that the first workers correspond to the CUDA workers, then come the
  2238. OpenCL and the SPU, and finally the CPU workers. For example if
  2239. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2240. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2241. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2242. the logical CPUs #1 and #3 will be used by the CPU workers.
  2243. If the number of workers is larger than the array given in
  2244. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2245. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2246. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2247. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2248. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2249. @end table
  2250. @node STARPU_WORKERS_CUDAID
  2251. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2252. @table @asis
  2253. @item @emph{Description}:
  2254. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2255. possible to select which CUDA devices should be used by StarPU. On a machine
  2256. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2257. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2258. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2259. the one reported by CUDA).
  2260. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2261. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2262. @end table
  2263. @node STARPU_WORKERS_OPENCLID
  2264. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2265. @table @asis
  2266. @item @emph{Description}:
  2267. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2268. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2269. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2270. @end table
  2271. @node Scheduling
  2272. @subsection Configuring the Scheduling engine
  2273. @menu
  2274. * STARPU_SCHED:: Scheduling policy
  2275. * STARPU_CALIBRATE:: Calibrate performance models
  2276. * STARPU_PREFETCH:: Use data prefetch
  2277. * STARPU_SCHED_ALPHA:: Computation factor
  2278. * STARPU_SCHED_BETA:: Communication factor
  2279. @end menu
  2280. @node STARPU_SCHED
  2281. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2282. @table @asis
  2283. @item @emph{Description}:
  2284. This chooses between the different scheduling policies proposed by StarPU: work
  2285. random, stealing, greedy, with performance models, etc.
  2286. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2287. @end table
  2288. @node STARPU_CALIBRATE
  2289. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2290. @table @asis
  2291. @item @emph{Description}:
  2292. If this variable is set to 1, the performance models are calibrated during
  2293. the execution. If it is set to 2, the previous values are dropped to restart
  2294. calibration from scratch. Setting this variable to 0 disable calibration, this
  2295. is the default behaviour.
  2296. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2297. @end table
  2298. @node STARPU_PREFETCH
  2299. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2300. @table @asis
  2301. @item @emph{Description}:
  2302. This variable indicates whether data prefetching should be enabled (0 means
  2303. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2304. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2305. advance, so that data is already present on the GPU when the task starts. As a
  2306. result, computation and data transfers are overlapped.
  2307. Note that prefetching is enabled by default in StarPU.
  2308. @end table
  2309. @node STARPU_SCHED_ALPHA
  2310. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2311. @table @asis
  2312. @item @emph{Description}:
  2313. To estimate the cost of a task StarPU takes into account the estimated
  2314. computation time (obtained thanks to performance models). The alpha factor is
  2315. the coefficient to be applied to it before adding it to the communication part.
  2316. @end table
  2317. @node STARPU_SCHED_BETA
  2318. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2319. @table @asis
  2320. @item @emph{Description}:
  2321. To estimate the cost of a task StarPU takes into account the estimated
  2322. data transfer time (obtained thanks to performance models). The beta factor is
  2323. the coefficient to be applied to it before adding it to the computation part.
  2324. @end table
  2325. @node Misc
  2326. @subsection Miscellaneous and debug
  2327. @menu
  2328. * STARPU_SILENT:: Disable verbose mode
  2329. * STARPU_LOGFILENAME:: Select debug file name
  2330. * STARPU_FXT_PREFIX:: FxT trace location
  2331. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2332. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2333. @end menu
  2334. @node STARPU_SILENT
  2335. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2336. @table @asis
  2337. @item @emph{Description}:
  2338. This variable allows to disable verbose mode at runtime when StarPU
  2339. has been configured with the option @code{--enable-verbose}.
  2340. @end table
  2341. @node STARPU_LOGFILENAME
  2342. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2343. @table @asis
  2344. @item @emph{Description}:
  2345. This variable specifies in which file the debugging output should be saved to.
  2346. @end table
  2347. @node STARPU_FXT_PREFIX
  2348. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2349. @table @asis
  2350. @item @emph{Description}
  2351. This variable specifies in which directory to save the trace generated if FxT is enabled. It needs to have a trailing '/' character.
  2352. @end table
  2353. @node STARPU_LIMIT_GPU_MEM
  2354. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2355. @table @asis
  2356. @item @emph{Description}
  2357. This variable specifies the maximum number of megabytes that should be
  2358. available to the application on each GPUs. In case this value is smaller than
  2359. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2360. on the device. This variable is intended to be used for experimental purposes
  2361. as it emulates devices that have a limited amount of memory.
  2362. @end table
  2363. @node STARPU_GENERATE_TRACE
  2364. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2365. @table @asis
  2366. @item @emph{Description}
  2367. When set to 1, this variable indicates that StarPU should automatically
  2368. generate a Paje trace when starpu_shutdown is called.
  2369. @end table
  2370. @c ---------------------------------------------------------------------
  2371. @c StarPU API
  2372. @c ---------------------------------------------------------------------
  2373. @node StarPU API
  2374. @chapter StarPU API
  2375. @menu
  2376. * Initialization and Termination:: Initialization and Termination methods
  2377. * Workers' Properties:: Methods to enumerate workers' properties
  2378. * Data Library:: Methods to manipulate data
  2379. * Data Interfaces::
  2380. * Data Partition::
  2381. * Codelets and Tasks:: Methods to construct tasks
  2382. * Explicit Dependencies:: Explicit Dependencies
  2383. * Implicit Data Dependencies:: Implicit Data Dependencies
  2384. * Performance Model API::
  2385. * Profiling API:: Profiling API
  2386. * CUDA extensions:: CUDA extensions
  2387. * OpenCL extensions:: OpenCL extensions
  2388. * Cell extensions:: Cell extensions
  2389. * Miscellaneous helpers::
  2390. @end menu
  2391. @node Initialization and Termination
  2392. @section Initialization and Termination
  2393. @menu
  2394. * starpu_init:: Initialize StarPU
  2395. * struct starpu_conf:: StarPU runtime configuration
  2396. * starpu_conf_init:: Initialize starpu_conf structure
  2397. * starpu_shutdown:: Terminate StarPU
  2398. @end menu
  2399. @node starpu_init
  2400. @subsection @code{starpu_init} -- Initialize StarPU
  2401. @table @asis
  2402. @item @emph{Description}:
  2403. This is StarPU initialization method, which must be called prior to any other
  2404. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2405. policy, number of cores, ...) by passing a non-null argument. Default
  2406. configuration is used if the passed argument is @code{NULL}.
  2407. @item @emph{Return value}:
  2408. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2409. indicates that no worker was available (so that StarPU was not initialized).
  2410. @item @emph{Prototype}:
  2411. @code{int starpu_init(struct starpu_conf *conf);}
  2412. @end table
  2413. @node struct starpu_conf
  2414. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2415. @table @asis
  2416. @item @emph{Description}:
  2417. This structure is passed to the @code{starpu_init} function in order
  2418. to configure StarPU.
  2419. When the default value is used, StarPU automatically selects the number
  2420. of processing units and takes the default scheduling policy. This parameter
  2421. overwrites the equivalent environment variables.
  2422. @item @emph{Fields}:
  2423. @table @asis
  2424. @item @code{sched_policy_name} (default = NULL):
  2425. This is the name of the scheduling policy. This can also be specified with the
  2426. @code{STARPU_SCHED} environment variable.
  2427. @item @code{sched_policy} (default = NULL):
  2428. This is the definition of the scheduling policy. This field is ignored
  2429. if @code{sched_policy_name} is set.
  2430. @item @code{ncpus} (default = -1):
  2431. This is the number of CPU cores that StarPU can use. This can also be
  2432. specified with the @code{STARPU_NCPUS} environment variable.
  2433. @item @code{ncuda} (default = -1):
  2434. This is the number of CUDA devices that StarPU can use. This can also be
  2435. specified with the @code{STARPU_NCUDA} environment variable.
  2436. @item @code{nopencl} (default = -1):
  2437. This is the number of OpenCL devices that StarPU can use. This can also be
  2438. specified with the @code{STARPU_NOPENCL} environment variable.
  2439. @item @code{nspus} (default = -1):
  2440. This is the number of Cell SPUs that StarPU can use. This can also be
  2441. specified with the @code{STARPU_NGORDON} environment variable.
  2442. @item @code{use_explicit_workers_bindid} (default = 0)
  2443. If this flag is set, the @code{workers_bindid} array indicates where the
  2444. different workers are bound, otherwise StarPU automatically selects where to
  2445. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2446. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2447. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2448. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2449. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2450. where to bind the different workers. The i-th entry of the
  2451. @code{workers_bindid} indicates the logical identifier of the processor which
  2452. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2453. either determined by the OS, or provided by the @code{hwloc} library in case it
  2454. is available.
  2455. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2456. ignored.
  2457. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2458. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2459. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2460. CUDA devices in a round-robin fashion.
  2461. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2462. ignored.
  2463. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2464. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2465. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2466. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2467. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2468. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2469. OpenCL devices in a round-robin fashion.
  2470. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2471. @item @code{calibrate} (default = 0):
  2472. If this flag is set, StarPU will calibrate the performance models when
  2473. executing tasks. If this value is equal to -1, the default value is used. The
  2474. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2475. variable when it is set.
  2476. @end table
  2477. @end table
  2478. @node starpu_conf_init
  2479. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2480. @table @asis
  2481. This function initializes the @code{starpu_conf} structure passed as argument
  2482. with the default values. In case some configuration parameters are already
  2483. specified through environment variables, @code{starpu_conf_init} initializes
  2484. the fields of the structure according to the environment variables. For
  2485. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2486. @code{.ncuda} field of the structure passed as argument.
  2487. @item @emph{Return value}:
  2488. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2489. indicates that the argument was NULL.
  2490. @item @emph{Prototype}:
  2491. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2492. @end table
  2493. @node starpu_shutdown
  2494. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2495. @deftypefun void starpu_shutdown (void)
  2496. This is StarPU termination method. It must be called at the end of the
  2497. application: statistics and other post-mortem debugging information are not
  2498. guaranteed to be available until this method has been called.
  2499. @end deftypefun
  2500. @node Workers' Properties
  2501. @section Workers' Properties
  2502. @menu
  2503. * starpu_worker_get_count:: Get the number of processing units
  2504. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2505. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2506. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2507. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2508. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2509. * starpu_worker_get_id:: Get the identifier of the current worker
  2510. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2511. * starpu_worker_get_devid:: Get the device identifier of a worker
  2512. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2513. * starpu_worker_get_name:: Get the name of a worker
  2514. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2515. @end menu
  2516. @node starpu_worker_get_count
  2517. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2518. @deftypefun unsigned starpu_worker_get_count (void)
  2519. This function returns the number of workers (i.e. processing units executing
  2520. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2521. @end deftypefun
  2522. @node starpu_worker_get_count_by_type
  2523. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2524. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2525. Returns the number of workers of the type indicated by the argument. A positive
  2526. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2527. the type is not valid otherwise.
  2528. @end deftypefun
  2529. @node starpu_cpu_worker_get_count
  2530. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2531. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2532. This function returns the number of CPUs controlled by StarPU. The returned
  2533. value should be at most @code{STARPU_NMAXCPUS}.
  2534. @end deftypefun
  2535. @node starpu_cuda_worker_get_count
  2536. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2537. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2538. This function returns the number of CUDA devices controlled by StarPU. The returned
  2539. value should be at most @code{STARPU_MAXCUDADEVS}.
  2540. @end deftypefun
  2541. @node starpu_opencl_worker_get_count
  2542. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2543. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2544. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2545. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2546. @end deftypefun
  2547. @node starpu_spu_worker_get_count
  2548. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2549. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2550. This function returns the number of Cell SPUs controlled by StarPU.
  2551. @end deftypefun
  2552. @node starpu_worker_get_id
  2553. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2554. @deftypefun int starpu_worker_get_id (void)
  2555. This function returns the identifier of the worker associated to the calling
  2556. thread. The returned value is either -1 if the current context is not a StarPU
  2557. worker (i.e. when called from the application outside a task or a callback), or
  2558. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2559. @end deftypefun
  2560. @node starpu_worker_get_ids_by_type
  2561. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2562. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2563. Fill the workerids array with the identifiers of the workers that have the type
  2564. indicated in the first argument. The maxsize argument indicates the size of the
  2565. workids array. The returned value gives the number of identifiers that were put
  2566. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2567. workers with the appropriate type: in that case, the array is filled with the
  2568. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2569. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2570. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2571. @end deftypefun
  2572. @node starpu_worker_get_devid
  2573. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2574. @deftypefun int starpu_worker_get_devid (int @var{id})
  2575. This functions returns the device id of the worker associated to an identifier
  2576. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2577. CUDA worker, this device identifier is the logical device identifier exposed by
  2578. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2579. identifier of a CPU worker is the logical identifier of the core on which the
  2580. worker was bound; this identifier is either provided by the OS or by the
  2581. @code{hwloc} library in case it is available.
  2582. @end deftypefun
  2583. @node starpu_worker_get_type
  2584. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2585. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2586. This function returns the type of worker associated to an identifier (as
  2587. returned by the @code{starpu_worker_get_id} function). The returned value
  2588. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2589. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2590. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2591. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2592. identifier is unspecified.
  2593. @end deftypefun
  2594. @node starpu_worker_get_name
  2595. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2596. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2597. StarPU associates a unique human readable string to each processing unit. This
  2598. function copies at most the @var{maxlen} first bytes of the unique string
  2599. associated to a worker identified by its identifier @var{id} into the
  2600. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2601. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2602. function on an invalid identifier results in an unspecified behaviour.
  2603. @end deftypefun
  2604. @node starpu_worker_get_memory_node
  2605. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2606. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2607. This function returns the identifier of the memory node associated to the
  2608. worker identified by @var{workerid}.
  2609. @end deftypefun
  2610. @node Data Library
  2611. @section Data Library
  2612. This section describes the data management facilities provided by StarPU.
  2613. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2614. design their own data interfaces if required.
  2615. @menu
  2616. * starpu_malloc:: Allocate data and pin it
  2617. * starpu_access_mode:: Data access mode
  2618. * unsigned memory_node:: Memory node
  2619. * starpu_data_handle:: StarPU opaque data handle
  2620. * void *interface:: StarPU data interface
  2621. * starpu_data_register:: Register a piece of data to StarPU
  2622. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2623. * starpu_data_invalidate:: Invalidate all data replicates
  2624. * starpu_data_acquire:: Access registered data from the application
  2625. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2626. * starpu_data_release:: Release registered data from the application
  2627. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2628. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2629. @end menu
  2630. @node starpu_malloc
  2631. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2632. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2633. This function allocates data of the given size in main memory. It will also try to pin it in
  2634. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2635. thus permit data transfer and computation overlapping. The allocated buffer must
  2636. be freed thanks to the @code{starpu_free} function.
  2637. @end deftypefun
  2638. @node starpu_access_mode
  2639. @subsection @code{starpu_access_mode} -- Data access mode
  2640. This datatype describes a data access mode. The different available modes are:
  2641. @table @asis
  2642. @table @asis
  2643. @item @code{STARPU_R} read-only mode.
  2644. @item @code{STARPU_W} write-only mode.
  2645. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2646. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2647. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2648. @end table
  2649. @end table
  2650. @node unsigned memory_node
  2651. @subsection @code{unsigned memory_node} -- Memory node
  2652. @table @asis
  2653. @item @emph{Description}:
  2654. Every worker is associated to a memory node which is a logical abstraction of
  2655. the address space from which the processing unit gets its data. For instance,
  2656. the memory node associated to the different CPU workers represents main memory
  2657. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2658. Every memory node is identified by a logical index which is accessible from the
  2659. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2660. to StarPU, the specified memory node indicates where the piece of data
  2661. initially resides (we also call this memory node the home node of a piece of
  2662. data).
  2663. @end table
  2664. @node starpu_data_handle
  2665. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2666. @table @asis
  2667. @item @emph{Description}:
  2668. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2669. data. Once a piece of data has been registered to StarPU, it is associated to a
  2670. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2671. over the entire machine, so that we can maintain data consistency and locate
  2672. data replicates for instance.
  2673. @end table
  2674. @node void *interface
  2675. @subsection @code{void *interface} -- StarPU data interface
  2676. @table @asis
  2677. @item @emph{Description}:
  2678. Data management is done at a high-level in StarPU: rather than accessing a mere
  2679. list of contiguous buffers, the tasks may manipulate data that are described by
  2680. a high-level construct which we call data interface.
  2681. An example of data interface is the "vector" interface which describes a
  2682. contiguous data array on a spefic memory node. This interface is a simple
  2683. structure containing the number of elements in the array, the size of the
  2684. elements, and the address of the array in the appropriate address space (this
  2685. address may be invalid if there is no valid copy of the array in the memory
  2686. node). More informations on the data interfaces provided by StarPU are
  2687. given in @ref{Data Interfaces}.
  2688. When a piece of data managed by StarPU is used by a task, the task
  2689. implementation is given a pointer to an interface describing a valid copy of
  2690. the data that is accessible from the current processing unit.
  2691. @end table
  2692. @node starpu_data_register
  2693. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2694. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2695. Register a piece of data into the handle located at the @var{handleptr}
  2696. address. The @var{interface} buffer contains the initial description of the
  2697. data in the home node. The @var{ops} argument is a pointer to a structure
  2698. describing the different methods used to manipulate this type of interface. See
  2699. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2700. If @code{home_node} is -1, StarPU will automatically
  2701. allocate the memory when it is used for the
  2702. first time in write-only mode. Once such data handle has been automatically
  2703. allocated, it is possible to access it using any access mode.
  2704. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2705. matrix) which can be registered by the means of helper functions (e.g.
  2706. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2707. @end deftypefun
  2708. @node starpu_data_unregister
  2709. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2710. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2711. This function unregisters a data handle from StarPU. If the data was
  2712. automatically allocated by StarPU because the home node was -1, all
  2713. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2714. is put back into the home node in the buffer that was initially registered.
  2715. Using a data handle that has been unregistered from StarPU results in an
  2716. undefined behaviour.
  2717. @end deftypefun
  2718. @node starpu_data_invalidate
  2719. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2720. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2721. Destroy all replicates of the data handle. After data invalidation, the first
  2722. access to the handle must be performed in write-only mode. Accessing an
  2723. invalidated data in read-mode results in undefined behaviour.
  2724. @end deftypefun
  2725. @c TODO create a specific sections about user interaction with the DSM ?
  2726. @node starpu_data_acquire
  2727. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2728. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2729. The application must call this function prior to accessing registered data from
  2730. main memory outside tasks. StarPU ensures that the application will get an
  2731. up-to-date copy of the data in main memory located where the data was
  2732. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2733. be consistent with the access mode specified in the @var{mode} argument.
  2734. @code{starpu_data_release} must be called once the application does not need to
  2735. access the piece of data anymore. Note that implicit data
  2736. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2737. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2738. the data, unless that they have not been disabled explictly by calling
  2739. @code{starpu_data_set_default_sequential_consistency_flag} or
  2740. @code{starpu_data_set_sequential_consistency_flag}.
  2741. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2742. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2743. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2744. @end deftypefun
  2745. @node starpu_data_acquire_cb
  2746. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2747. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2748. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2749. @code{starpu_data_release}. When the data specified in the first argument is
  2750. available in the appropriate access mode, the callback function is executed.
  2751. The application may access the requested data during the execution of this
  2752. callback. The callback function must call @code{starpu_data_release} once the
  2753. application does not need to access the piece of data anymore.
  2754. Note that implicit data dependencies are also enforced by
  2755. @code{starpu_data_acquire_cb} in case they are enabled.
  2756. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2757. be called from task callbacks. Upon successful completion, this function
  2758. returns 0.
  2759. @end deftypefun
  2760. @node starpu_data_release
  2761. @subsection @code{starpu_data_release} -- Release registered data from the application
  2762. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2763. This function releases the piece of data acquired by the application either by
  2764. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2765. @end deftypefun
  2766. @node starpu_data_set_wt_mask
  2767. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2768. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2769. This function sets the write-through mask of a given data, i.e. a bitmask of
  2770. nodes where the data should be always replicated after modification.
  2771. @end deftypefun
  2772. @node starpu_data_prefetch_on_node
  2773. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2774. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2775. Issue a prefetch request for a given data to a given node, i.e.
  2776. requests that the data be replicated to the given node, so that it is available
  2777. there for tasks. If the @var{async} parameter is 0, the call will block until
  2778. the transfer is achieved, else the call will return as soon as the request is
  2779. scheduled (which may however have to wait for a task completion).
  2780. @end deftypefun
  2781. @node Data Interfaces
  2782. @section Data Interfaces
  2783. @menu
  2784. * Variable Interface::
  2785. * Vector Interface::
  2786. * Matrix Interface::
  2787. * 3D Matrix Interface::
  2788. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2789. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2790. @end menu
  2791. @node Variable Interface
  2792. @subsection Variable Interface
  2793. @table @asis
  2794. @item @emph{Description}:
  2795. This variant of @code{starpu_data_register} uses the variable interface,
  2796. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2797. and @code{elemsize} is the size of the variable.
  2798. @item @emph{Prototype}:
  2799. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2800. uint32_t home_node,
  2801. uintptr_t ptr, size_t elemsize);}
  2802. @item @emph{Example}:
  2803. @cartouche
  2804. @smallexample
  2805. float var;
  2806. starpu_data_handle var_handle;
  2807. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2808. @end smallexample
  2809. @end cartouche
  2810. @end table
  2811. @node Vector Interface
  2812. @subsection Vector Interface
  2813. @table @asis
  2814. @item @emph{Description}:
  2815. This variant of @code{starpu_data_register} uses the vector interface,
  2816. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2817. element in the home node. @code{nx} is the number of elements in the vector.
  2818. @code{elemsize} is the size of each element.
  2819. @item @emph{Prototype}:
  2820. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2821. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2822. @item @emph{Example}:
  2823. @cartouche
  2824. @smallexample
  2825. float vector[NX];
  2826. starpu_data_handle vector_handle;
  2827. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2828. sizeof(vector[0]));
  2829. @end smallexample
  2830. @end cartouche
  2831. @end table
  2832. @node Matrix Interface
  2833. @subsection Matrix Interface
  2834. @table @asis
  2835. @item @emph{Description}:
  2836. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2837. matrices of elements. @code{ptr} is the address of the first element in the home
  2838. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2839. of elements in a row (this can be different from @code{ld} if there are extra
  2840. elements for alignment for instance). @code{ny} is the number of rows.
  2841. @code{elemsize} is the size of each element.
  2842. @item @emph{Prototype}:
  2843. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2844. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2845. uint32_t ny, size_t elemsize);}
  2846. @item @emph{Example}:
  2847. @cartouche
  2848. @smallexample
  2849. float *matrix;
  2850. starpu_data_handle matrix_handle;
  2851. matrix = (float*)malloc(width * height * sizeof(float));
  2852. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2853. width, width, height, sizeof(float));
  2854. @end smallexample
  2855. @end cartouche
  2856. @end table
  2857. @node 3D Matrix Interface
  2858. @subsection 3D Matrix Interface
  2859. @table @asis
  2860. @item @emph{Description}:
  2861. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2862. @code{ptr} is the address of the array of first element in the home node.
  2863. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2864. of rows between z planes. @code{nx} is the number of elements in a row (this
  2865. can be different from @code{ldy} if there are extra elements for alignment
  2866. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2867. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2868. each element.
  2869. @item @emph{Prototype}:
  2870. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2871. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2872. uint32_t ny, uint32_t nz, size_t elemsize);}
  2873. @item @emph{Example}:
  2874. @cartouche
  2875. @smallexample
  2876. float *block;
  2877. starpu_data_handle block_handle;
  2878. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2879. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2880. nx, nx*ny, nx, ny, nz, sizeof(float));
  2881. @end smallexample
  2882. @end cartouche
  2883. @end table
  2884. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2885. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2886. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  2887. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2888. TODO
  2889. @end deftypefun
  2890. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2891. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2892. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  2893. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2894. TODO
  2895. @end deftypefun
  2896. @node Data Partition
  2897. @section Data Partition
  2898. @menu
  2899. * struct starpu_data_filter:: StarPU filter structure
  2900. * starpu_data_partition:: Partition Data
  2901. * starpu_data_unpartition:: Unpartition Data
  2902. * starpu_data_get_nb_children::
  2903. * starpu_data_get_sub_data::
  2904. * Predefined filter functions::
  2905. @end menu
  2906. @node struct starpu_data_filter
  2907. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2908. @table @asis
  2909. @item @emph{Description}:
  2910. The filter structure describes a data partitioning operation, to be given to the
  2911. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2912. @item @emph{Fields}:
  2913. @table @asis
  2914. @item @code{filter_func}:
  2915. This function fills the @code{child_interface} structure with interface
  2916. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2917. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2918. @item @code{nchildren}:
  2919. This is the number of parts to partition the data into.
  2920. @item @code{get_nchildren}:
  2921. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2922. children depends on the actual data (e.g. the number of blocks in a sparse
  2923. matrix).
  2924. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2925. @item @code{get_child_ops}:
  2926. In case the resulting children use a different data interface, this function
  2927. returns which interface is used by child number @code{id}.
  2928. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2929. @item @code{filter_arg}:
  2930. Some filters take an addition parameter, but this is usually unused.
  2931. @item @code{filter_arg_ptr}:
  2932. Some filters take an additional array parameter like the sizes of the parts, but
  2933. this is usually unused.
  2934. @end table
  2935. @end table
  2936. @node starpu_data_partition
  2937. @subsection starpu_data_partition -- Partition Data
  2938. @table @asis
  2939. @item @emph{Description}:
  2940. This requests partitioning one StarPU data @code{initial_handle} into several
  2941. subdata according to the filter @code{f}
  2942. @item @emph{Prototype}:
  2943. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2944. @item @emph{Example}:
  2945. @cartouche
  2946. @smallexample
  2947. struct starpu_data_filter f = @{
  2948. .filter_func = starpu_vertical_block_filter_func,
  2949. .nchildren = nslicesx,
  2950. .get_nchildren = NULL,
  2951. .get_child_ops = NULL
  2952. @};
  2953. starpu_data_partition(A_handle, &f);
  2954. @end smallexample
  2955. @end cartouche
  2956. @end table
  2957. @node starpu_data_unpartition
  2958. @subsection starpu_data_unpartition -- Unpartition data
  2959. @table @asis
  2960. @item @emph{Description}:
  2961. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2962. collected back into one big piece in the @code{gathering_node} (usually 0).
  2963. @item @emph{Prototype}:
  2964. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2965. @item @emph{Example}:
  2966. @cartouche
  2967. @smallexample
  2968. starpu_data_unpartition(A_handle, 0);
  2969. @end smallexample
  2970. @end cartouche
  2971. @end table
  2972. @node starpu_data_get_nb_children
  2973. @subsection starpu_data_get_nb_children
  2974. @table @asis
  2975. @item @emph{Description}:
  2976. This function returns the number of children.
  2977. @item @emph{Return value}:
  2978. The number of children.
  2979. @item @emph{Prototype}:
  2980. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2981. @end table
  2982. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2983. @node starpu_data_get_sub_data
  2984. @subsection starpu_data_get_sub_data
  2985. @table @asis
  2986. @item @emph{Description}:
  2987. After partitioning a StarPU data by applying a filter,
  2988. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2989. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2990. is the number of filters to traverse (in case several filters have been applied,
  2991. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2992. parameters are the indexes.
  2993. @item @emph{Return value}:
  2994. A handle to the subdata.
  2995. @item @emph{Prototype}:
  2996. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2997. @item @emph{Example}:
  2998. @cartouche
  2999. @smallexample
  3000. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  3001. @end smallexample
  3002. @end cartouche
  3003. @end table
  3004. @node Predefined filter functions
  3005. @subsection Predefined filter functions
  3006. @menu
  3007. * Partitioning BCSR Data::
  3008. * Partitioning BLAS interface::
  3009. * Partitioning Vector Data::
  3010. * Partitioning Block Data::
  3011. @end menu
  3012. This section gives a partial list of the predefined partitioning functions.
  3013. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  3014. list can be found in @code{starpu_data_filters.h} .
  3015. @node Partitioning BCSR Data
  3016. @subsubsection Partitioning BCSR Data
  3017. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3018. TODO
  3019. @end deftypefun
  3020. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3021. TODO
  3022. @end deftypefun
  3023. @node Partitioning BLAS interface
  3024. @subsubsection Partitioning BLAS interface
  3025. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3026. This partitions a dense Matrix into horizontal blocks.
  3027. @end deftypefun
  3028. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3029. This partitions a dense Matrix into vertical blocks.
  3030. @end deftypefun
  3031. @node Partitioning Vector Data
  3032. @subsubsection Partitioning Vector Data
  3033. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3034. This partitions a vector into blocks of the same size.
  3035. @end deftypefun
  3036. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3037. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  3038. @end deftypefun
  3039. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3040. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  3041. @end deftypefun
  3042. @node Partitioning Block Data
  3043. @subsubsection Partitioning Block Data
  3044. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3045. This partitions a 3D matrix along the X axis.
  3046. @end deftypefun
  3047. @node Codelets and Tasks
  3048. @section Codelets and Tasks
  3049. This section describes the interface to manipulate codelets and tasks.
  3050. @deftp {Data Type} {struct starpu_codelet}
  3051. The codelet structure describes a kernel that is possibly implemented on various
  3052. targets. For compatibility, make sure to initialize the whole structure to zero.
  3053. @table @asis
  3054. @item @code{where}
  3055. Indicates which types of processing units are able to execute the codelet.
  3056. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  3057. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  3058. indicates that it is only available on Cell SPUs.
  3059. @item @code{cpu_func} (optional)
  3060. Is a function pointer to the CPU implementation of the codelet. Its prototype
  3061. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  3062. argument being the array of data managed by the data management library, and
  3063. the second argument is a pointer to the argument passed from the @code{cl_arg}
  3064. field of the @code{starpu_task} structure.
  3065. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  3066. the @code{where} field, it must be non-null otherwise.
  3067. @item @code{cuda_func} (optional)
  3068. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  3069. must be a host-function written in the CUDA runtime API}. Its prototype must
  3070. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  3071. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  3072. field, it must be non-null otherwise.
  3073. @item @code{opencl_func} (optional)
  3074. Is a function pointer to the OpenCL implementation of the codelet. Its
  3075. prototype must be:
  3076. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  3077. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  3078. @code{where} field, it must be non-null otherwise.
  3079. @item @code{gordon_func} (optional)
  3080. This is the index of the Cell SPU implementation within the Gordon library.
  3081. See Gordon documentation for more details on how to register a kernel and
  3082. retrieve its index.
  3083. @item @code{nbuffers}
  3084. Specifies the number of arguments taken by the codelet. These arguments are
  3085. managed by the DSM and are accessed from the @code{void *buffers[]}
  3086. array. The constant argument passed with the @code{cl_arg} field of the
  3087. @code{starpu_task} structure is not counted in this number. This value should
  3088. not be above @code{STARPU_NMAXBUFS}.
  3089. @item @code{model} (optional)
  3090. This is a pointer to the task duration performance model associated to this
  3091. codelet. This optional field is ignored when set to @code{NULL}.
  3092. TODO
  3093. @item @code{power_model} (optional)
  3094. This is a pointer to the task power consumption performance model associated
  3095. to this codelet. This optional field is ignored when set to @code{NULL}.
  3096. In the case of parallel codelets, this has to account for all processing units
  3097. involved in the parallel execution.
  3098. TODO
  3099. @end table
  3100. @end deftp
  3101. @deftp {Data Type} {struct starpu_task}
  3102. The @code{starpu_task} structure describes a task that can be offloaded on the various
  3103. processing units managed by StarPU. It instantiates a codelet. It can either be
  3104. allocated dynamically with the @code{starpu_task_create} method, or declared
  3105. statically. In the latter case, the programmer has to zero the
  3106. @code{starpu_task} structure and to fill the different fields properly. The
  3107. indicated default values correspond to the configuration of a task allocated
  3108. with @code{starpu_task_create}.
  3109. @table @asis
  3110. @item @code{cl}
  3111. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3112. describes where the kernel should be executed, and supplies the appropriate
  3113. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3114. such empty tasks can be useful for synchronization purposes.
  3115. @item @code{buffers}
  3116. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3117. different pieces of data accessed by the task, and how they should be accessed.
  3118. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3119. @code{handle} field specifies the handle of the piece of data, and the
  3120. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3121. of entries in this array must be specified in the @code{nbuffers} field of the
  3122. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3123. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3124. option when configuring StarPU.
  3125. @item @code{cl_arg} (optional; default: @code{NULL})
  3126. This pointer is passed to the codelet through the second argument
  3127. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3128. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3129. argument.
  3130. @item @code{cl_arg_size} (optional, Cell-specific)
  3131. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3132. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3133. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3134. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3135. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3136. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3137. codelets, where the @code{cl_arg} pointer is given as such.
  3138. @item @code{callback_func} (optional) (default: @code{NULL})
  3139. This is a function pointer of prototype @code{void (*f)(void *)} which
  3140. specifies a possible callback. If this pointer is non-null, the callback
  3141. function is executed @emph{on the host} after the execution of the task. The
  3142. callback is passed the value contained in the @code{callback_arg} field. No
  3143. callback is executed if the field is set to @code{NULL}.
  3144. @item @code{callback_arg} (optional) (default: @code{NULL})
  3145. This is the pointer passed to the callback function. This field is ignored if
  3146. the @code{callback_func} is set to @code{NULL}.
  3147. @item @code{use_tag} (optional) (default: @code{0})
  3148. If set, this flag indicates that the task should be associated with the tag
  3149. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3150. with the task and to express task dependencies easily.
  3151. @item @code{tag_id}
  3152. This fields contains the tag associated to the task if the @code{use_tag} field
  3153. was set, it is ignored otherwise.
  3154. @item @code{synchronous}
  3155. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3156. returns only when the task has been executed (or if no worker is able to
  3157. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3158. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3159. This field indicates a level of priority for the task. This is an integer value
  3160. that must be set between the return values of the
  3161. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3162. and that of the @code{starpu_sched_get_max_priority} for the most important
  3163. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3164. are provided for convenience and respectively returns value of
  3165. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3166. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3167. order to allow static task initialization. Scheduling strategies that take
  3168. priorities into account can use this parameter to take better scheduling
  3169. decisions, but the scheduling policy may also ignore it.
  3170. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3171. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3172. task to the worker specified by the @code{workerid} field.
  3173. @item @code{workerid} (optional)
  3174. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3175. which is the identifier of the worker that should process this task (as
  3176. returned by @code{starpu_worker_get_id}). This field is ignored if
  3177. @code{execute_on_a_specific_worker} field is set to 0.
  3178. @item @code{detach} (optional) (default: @code{1})
  3179. If this flag is set, it is not possible to synchronize with the task
  3180. by the means of @code{starpu_task_wait} later on. Internal data structures
  3181. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3182. flag is not set.
  3183. @item @code{destroy} (optional) (default: @code{1})
  3184. If this flag is set, the task structure will automatically be freed, either
  3185. after the execution of the callback if the task is detached, or during
  3186. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3187. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3188. called explicitly. Setting this flag for a statically allocated task structure
  3189. will result in undefined behaviour.
  3190. @item @code{predicted} (output field)
  3191. Predicted duration of the task. This field is only set if the scheduling
  3192. strategy used performance models.
  3193. @end table
  3194. @end deftp
  3195. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3196. Initialize @var{task} with default values. This function is implicitly
  3197. called by @code{starpu_task_create}. By default, tasks initialized with
  3198. @code{starpu_task_init} must be deinitialized explicitly with
  3199. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3200. constant @code{STARPU_TASK_INITIALIZER}.
  3201. @end deftypefun
  3202. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3203. Allocate a task structure and initialize it with default values. Tasks
  3204. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3205. task is terminated. If the destroy flag is explicitly unset, the resources used
  3206. by the task are freed by calling
  3207. @code{starpu_task_destroy}.
  3208. @end deftypefun
  3209. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3210. Release all the structures automatically allocated to execute @var{task}. This is
  3211. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3212. freed. This should be used for statically allocated tasks for instance.
  3213. @end deftypefun
  3214. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3215. Free the resource allocated during @code{starpu_task_create} and
  3216. associated with @var{task}. This function can be called automatically
  3217. after the execution of a task by setting the @code{destroy} flag of the
  3218. @code{starpu_task} structure (default behaviour). Calling this function
  3219. on a statically allocated task results in an undefined behaviour.
  3220. @end deftypefun
  3221. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3222. This function blocks until @var{task} has been executed. It is not possible to
  3223. synchronize with a task more than once. It is not possible to wait for
  3224. synchronous or detached tasks.
  3225. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3226. indicates that the specified task was either synchronous or detached.
  3227. @end deftypefun
  3228. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3229. This function submits @var{task} to StarPU. Calling this function does
  3230. not mean that the task will be executed immediately as there can be data or task
  3231. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3232. scheduling this task with respect to such dependencies.
  3233. This function returns immediately if the @code{synchronous} field of the
  3234. @code{starpu_task} structure was set to 0, and block until the termination of
  3235. the task otherwise. It is also possible to synchronize the application with
  3236. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3237. function for instance.
  3238. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3239. means that there is no worker able to process this task (e.g. there is no GPU
  3240. available and this task is only implemented for CUDA devices).
  3241. @end deftypefun
  3242. @deftypefun int starpu_task_wait_for_all (void)
  3243. This function blocks until all the tasks that were submitted are terminated.
  3244. @end deftypefun
  3245. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3246. This function returns the task currently executed by the worker, or
  3247. NULL if it is called either from a thread that is not a task or simply
  3248. because there is no task being executed at the moment.
  3249. @end deftypefun
  3250. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3251. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3252. @end deftypefun
  3253. @c Callbacks : what can we put in callbacks ?
  3254. @node Explicit Dependencies
  3255. @section Explicit Dependencies
  3256. @menu
  3257. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3258. * starpu_tag_t:: Task logical identifier
  3259. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3260. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3261. * starpu_tag_wait:: Block until a Tag is terminated
  3262. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3263. * starpu_tag_remove:: Destroy a Tag
  3264. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3265. @end menu
  3266. @node starpu_task_declare_deps_array
  3267. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3268. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3269. Declare task dependencies between a @var{task} and an array of tasks of length
  3270. @var{ndeps}. This function must be called prior to the submission of the task,
  3271. but it may called after the submission or the execution of the tasks in the
  3272. array provided the tasks are still valid (ie. they were not automatically
  3273. destroyed). Calling this function on a task that was already submitted or with
  3274. an entry of @var{task_array} that is not a valid task anymore results in an
  3275. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3276. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3277. same task, in this case, the dependencies are added. It is possible to have
  3278. redundancy in the task dependencies.
  3279. @end deftypefun
  3280. @node starpu_tag_t
  3281. @subsection @code{starpu_tag_t} -- Task logical identifier
  3282. @table @asis
  3283. @item @emph{Description}:
  3284. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3285. dependencies between tasks by the means of those tags. To do so, fill the
  3286. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3287. be arbitrary) and set the @code{use_tag} field to 1.
  3288. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3289. not be started until the tasks which holds the declared dependency tags are
  3290. completed.
  3291. @end table
  3292. @node starpu_tag_declare_deps
  3293. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3294. @table @asis
  3295. @item @emph{Description}:
  3296. Specify the dependencies of the task identified by tag @code{id}. The first
  3297. argument specifies the tag which is configured, the second argument gives the
  3298. number of tag(s) on which @code{id} depends. The following arguments are the
  3299. tags which have to be terminated to unlock the task.
  3300. This function must be called before the associated task is submitted to StarPU
  3301. with @code{starpu_task_submit}.
  3302. @item @emph{Remark}
  3303. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3304. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3305. typically need to be explicitly casted. Using the
  3306. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3307. @item @emph{Prototype}:
  3308. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3309. @item @emph{Example}:
  3310. @cartouche
  3311. @example
  3312. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3313. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3314. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3315. @end example
  3316. @end cartouche
  3317. @end table
  3318. @node starpu_tag_declare_deps_array
  3319. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3320. @table @asis
  3321. @item @emph{Description}:
  3322. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3323. does not take a variable number of arguments but an array of tags of size
  3324. @code{ndeps}.
  3325. @item @emph{Prototype}:
  3326. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3327. @item @emph{Example}:
  3328. @cartouche
  3329. @example
  3330. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3331. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3332. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3333. @end example
  3334. @end cartouche
  3335. @end table
  3336. @node starpu_tag_wait
  3337. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3338. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3339. This function blocks until the task associated to tag @var{id} has been
  3340. executed. This is a blocking call which must therefore not be called within
  3341. tasks or callbacks, but only from the application directly. It is possible to
  3342. synchronize with the same tag multiple times, as long as the
  3343. @code{starpu_tag_remove} function is not called. Note that it is still
  3344. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3345. data structure was freed (e.g. if the @code{destroy} flag of the
  3346. @code{starpu_task} was enabled).
  3347. @end deftypefun
  3348. @node starpu_tag_wait_array
  3349. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3350. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3351. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3352. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3353. terminated.
  3354. @end deftypefun
  3355. @node starpu_tag_remove
  3356. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3357. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3358. This function releases the resources associated to tag @var{id}. It can be
  3359. called once the corresponding task has been executed and when there is
  3360. no other tag that depend on this tag anymore.
  3361. @end deftypefun
  3362. @node starpu_tag_notify_from_apps
  3363. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3364. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3365. This function explicitly unlocks tag @var{id}. It may be useful in the
  3366. case of applications which execute part of their computation outside StarPU
  3367. tasks (e.g. third-party libraries). It is also provided as a
  3368. convenient tool for the programmer, for instance to entirely construct the task
  3369. DAG before actually giving StarPU the opportunity to execute the tasks.
  3370. @end deftypefun
  3371. @node Implicit Data Dependencies
  3372. @section Implicit Data Dependencies
  3373. @menu
  3374. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3375. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3376. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3377. @end menu
  3378. In this section, we describe how StarPU makes it possible to insert implicit
  3379. task dependencies in order to enforce sequential data consistency. When this
  3380. data consistency is enabled on a specific data handle, any data access will
  3381. appear as sequentially consistent from the application. For instance, if the
  3382. application submits two tasks that access the same piece of data in read-only
  3383. mode, and then a third task that access it in write mode, dependencies will be
  3384. added between the two first tasks and the third one. Implicit data dependencies
  3385. are also inserted in the case of data accesses from the application.
  3386. @node starpu_data_set_default_sequential_consistency_flag
  3387. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3388. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3389. Set the default sequential consistency flag. If a non-zero value is passed, a
  3390. sequential data consistency will be enforced for all handles registered after
  3391. this function call, otherwise it is disabled. By default, StarPU enables
  3392. sequential data consistency. It is also possible to select the data consistency
  3393. mode of a specific data handle with the
  3394. @code{starpu_data_set_sequential_consistency_flag} function.
  3395. @end deftypefun
  3396. @node starpu_data_get_default_sequential_consistency_flag
  3397. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3398. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3399. This function returns the current default sequential consistency flag.
  3400. @end deftypefun
  3401. @node starpu_data_set_sequential_consistency_flag
  3402. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3403. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3404. Select the data consistency mode associated to a data handle. The consistency
  3405. mode set using this function has the priority over the default mode which can
  3406. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3407. @end deftypefun
  3408. @node Performance Model API
  3409. @section Performance Model API
  3410. @menu
  3411. * starpu_load_history_debug::
  3412. * starpu_perfmodel_debugfilepath::
  3413. * starpu_perfmodel_get_arch_name::
  3414. * starpu_force_bus_sampling::
  3415. @end menu
  3416. @node starpu_load_history_debug
  3417. @subsection @code{starpu_load_history_debug}
  3418. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3419. TODO
  3420. @end deftypefun
  3421. @node starpu_perfmodel_debugfilepath
  3422. @subsection @code{starpu_perfmodel_debugfilepath}
  3423. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3424. TODO
  3425. @end deftypefun
  3426. @node starpu_perfmodel_get_arch_name
  3427. @subsection @code{starpu_perfmodel_get_arch_name}
  3428. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3429. TODO
  3430. @end deftypefun
  3431. @node starpu_force_bus_sampling
  3432. @subsection @code{starpu_force_bus_sampling}
  3433. @deftypefun void starpu_force_bus_sampling (void)
  3434. This forces sampling the bus performance model again.
  3435. @end deftypefun
  3436. @node Profiling API
  3437. @section Profiling API
  3438. @menu
  3439. * starpu_profiling_status_set:: starpu_profiling_status_set
  3440. * starpu_profiling_status_get:: starpu_profiling_status_get
  3441. * struct starpu_task_profiling_info:: task profiling information
  3442. * struct starpu_worker_profiling_info:: worker profiling information
  3443. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3444. * struct starpu_bus_profiling_info:: bus profiling information
  3445. * starpu_bus_get_count::
  3446. * starpu_bus_get_id::
  3447. * starpu_bus_get_src::
  3448. * starpu_bus_get_dst::
  3449. * starpu_timing_timespec_delay_us::
  3450. * starpu_timing_timespec_to_us::
  3451. * starpu_bus_profiling_helper_display_summary::
  3452. * starpu_worker_profiling_helper_display_summary::
  3453. @end menu
  3454. @node starpu_profiling_status_set
  3455. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3456. @table @asis
  3457. @item @emph{Description}:
  3458. Thie function sets the profiling status. Profiling is activated by passing
  3459. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3460. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3461. resets all profiling measurements. When profiling is enabled, the
  3462. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3463. to a valid @code{struct starpu_task_profiling_info} structure containing
  3464. information about the execution of the task.
  3465. @item @emph{Return value}:
  3466. Negative return values indicate an error, otherwise the previous status is
  3467. returned.
  3468. @item @emph{Prototype}:
  3469. @code{int starpu_profiling_status_set(int status);}
  3470. @end table
  3471. @node starpu_profiling_status_get
  3472. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3473. @deftypefun int starpu_profiling_status_get (void)
  3474. Return the current profiling status or a negative value in case there was an error.
  3475. @end deftypefun
  3476. @node struct starpu_task_profiling_info
  3477. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3478. @table @asis
  3479. @item @emph{Description}:
  3480. This structure contains information about the execution of a task. It is
  3481. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3482. structure if profiling was enabled.
  3483. @item @emph{Fields}:
  3484. @table @asis
  3485. @item @code{submit_time}:
  3486. Date of task submission (relative to the initialization of StarPU).
  3487. @item @code{start_time}:
  3488. Date of task execution beginning (relative to the initialization of StarPU).
  3489. @item @code{end_time}:
  3490. Date of task execution termination (relative to the initialization of StarPU).
  3491. @item @code{workerid}:
  3492. Identifier of the worker which has executed the task.
  3493. @end table
  3494. @end table
  3495. @node struct starpu_worker_profiling_info
  3496. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3497. @table @asis
  3498. @item @emph{Description}:
  3499. This structure contains the profiling information associated to a worker.
  3500. @item @emph{Fields}:
  3501. @table @asis
  3502. @item @code{start_time}:
  3503. Starting date for the reported profiling measurements.
  3504. @item @code{total_time}:
  3505. Duration of the profiling measurement interval.
  3506. @item @code{executing_time}:
  3507. Time spent by the worker to execute tasks during the profiling measurement interval.
  3508. @item @code{sleeping_time}:
  3509. Time spent idling by the worker during the profiling measurement interval.
  3510. @item @code{executed_tasks}:
  3511. Number of tasks executed by the worker during the profiling measurement interval.
  3512. @end table
  3513. @end table
  3514. @node starpu_worker_get_profiling_info
  3515. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3516. @table @asis
  3517. @item @emph{Description}:
  3518. Get the profiling info associated to the worker identified by @code{workerid},
  3519. and reset the profiling measurements. If the @code{worker_info} argument is
  3520. NULL, only reset the counters associated to worker @code{workerid}.
  3521. @item @emph{Return value}:
  3522. Upon successful completion, this function returns 0. Otherwise, a negative
  3523. value is returned.
  3524. @item @emph{Prototype}:
  3525. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3526. @end table
  3527. @node struct starpu_bus_profiling_info
  3528. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3529. @table @asis
  3530. @item @emph{Description}:
  3531. TODO
  3532. @item @emph{Fields}:
  3533. @table @asis
  3534. @item @code{start_time}:
  3535. TODO
  3536. @item @code{total_time}:
  3537. TODO
  3538. @item @code{transferred_bytes}:
  3539. TODO
  3540. @item @code{transfer_count}:
  3541. TODO
  3542. @end table
  3543. @end table
  3544. @node starpu_bus_get_count
  3545. @subsection @code{starpu_bus_get_count}
  3546. @deftypefun int starpu_bus_get_count (void)
  3547. TODO
  3548. @end deftypefun
  3549. @node starpu_bus_get_id
  3550. @subsection @code{starpu_bus_get_id}
  3551. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3552. TODO
  3553. @end deftypefun
  3554. @node starpu_bus_get_src
  3555. @subsection @code{starpu_bus_get_src}
  3556. @deftypefun int starpu_bus_get_src (int @var{busid})
  3557. TODO
  3558. @end deftypefun
  3559. @node starpu_bus_get_dst
  3560. @subsection @code{starpu_bus_get_dst}
  3561. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3562. TODO
  3563. @end deftypefun
  3564. @node starpu_timing_timespec_delay_us
  3565. @subsection @code{starpu_timing_timespec_delay_us}
  3566. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3567. TODO
  3568. @end deftypefun
  3569. @node starpu_timing_timespec_to_us
  3570. @subsection @code{starpu_timing_timespec_to_us}
  3571. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3572. TODO
  3573. @end deftypefun
  3574. @node starpu_bus_profiling_helper_display_summary
  3575. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3576. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3577. TODO
  3578. @end deftypefun
  3579. @node starpu_worker_profiling_helper_display_summary
  3580. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3581. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3582. TODO
  3583. @end deftypefun
  3584. @node CUDA extensions
  3585. @section CUDA extensions
  3586. @c void starpu_malloc(float **A, size_t dim);
  3587. @menu
  3588. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3589. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3590. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3591. @end menu
  3592. @node starpu_cuda_get_local_stream
  3593. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3594. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3595. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3596. function is only provided for convenience so that programmers can easily use
  3597. asynchronous operations within codelets without having to create a stream by
  3598. hand. Note that the application is not forced to use the stream provided by
  3599. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3600. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3601. the likelihood of having all transfers overlapped.
  3602. @end deftypefun
  3603. @node starpu_helper_cublas_init
  3604. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3605. @deftypefun void starpu_helper_cublas_init (void)
  3606. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3607. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3608. controlled by StarPU. This call blocks until CUBLAS has been properly
  3609. initialized on every device.
  3610. @end deftypefun
  3611. @node starpu_helper_cublas_shutdown
  3612. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3613. @deftypefun void starpu_helper_cublas_shutdown (void)
  3614. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3615. @end deftypefun
  3616. @node OpenCL extensions
  3617. @section OpenCL extensions
  3618. @menu
  3619. * Enabling OpenCL:: Enabling OpenCL
  3620. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3621. * Loading OpenCL kernels:: Loading OpenCL kernels
  3622. * OpenCL statistics:: Collecting statistics from OpenCL
  3623. @end menu
  3624. @node Enabling OpenCL
  3625. @subsection Enabling OpenCL
  3626. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3627. enabled by default. To enable OpenCL, you need either to disable CUDA
  3628. when configuring StarPU:
  3629. @example
  3630. % ./configure --disable-cuda
  3631. @end example
  3632. or when running applications:
  3633. @example
  3634. % STARPU_NCUDA=0 ./application
  3635. @end example
  3636. OpenCL will automatically be started on any device not yet used by
  3637. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3638. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3639. so:
  3640. @example
  3641. % STARPU_NCUDA=2 ./application
  3642. @end example
  3643. @node Compiling OpenCL kernels
  3644. @subsection Compiling OpenCL kernels
  3645. Source codes for OpenCL kernels can be stored in a file or in a
  3646. string. StarPU provides functions to build the program executable for
  3647. each available OpenCL device as a @code{cl_program} object. This
  3648. program executable can then be loaded within a specific queue as
  3649. explained in the next section. These are only helpers, Applications
  3650. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3651. use (e.g. different programs on the different OpenCL devices, for
  3652. relocation purpose for instance).
  3653. @menu
  3654. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3655. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3656. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3657. @end menu
  3658. @node starpu_opencl_load_opencl_from_file
  3659. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3660. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3661. TODO
  3662. @end deftypefun
  3663. @node starpu_opencl_load_opencl_from_string
  3664. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3665. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3666. TODO
  3667. @end deftypefun
  3668. @node starpu_opencl_unload_opencl
  3669. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3670. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3671. TODO
  3672. @end deftypefun
  3673. @node Loading OpenCL kernels
  3674. @subsection Loading OpenCL kernels
  3675. @menu
  3676. * starpu_opencl_load_kernel:: Loading a kernel
  3677. * starpu_opencl_relase_kernel:: Releasing a kernel
  3678. @end menu
  3679. @node starpu_opencl_load_kernel
  3680. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3681. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3682. TODO
  3683. @end deftypefun
  3684. @node starpu_opencl_relase_kernel
  3685. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3686. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3687. TODO
  3688. @end deftypefun
  3689. @node OpenCL statistics
  3690. @subsection OpenCL statistics
  3691. @menu
  3692. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3693. @end menu
  3694. @node starpu_opencl_collect_stats
  3695. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3696. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3697. After termination of the kernels, the OpenCL codelet should call this function
  3698. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3699. collect statistics about the kernel execution (used cycles, consumed power).
  3700. @end deftypefun
  3701. @node Cell extensions
  3702. @section Cell extensions
  3703. nothing yet.
  3704. @node Miscellaneous helpers
  3705. @section Miscellaneous helpers
  3706. @menu
  3707. * starpu_data_cpy:: Copy a data handle into another data handle
  3708. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3709. @end menu
  3710. @node starpu_data_cpy
  3711. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3712. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3713. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3714. The @var{asynchronous} parameter indicates whether the function should
  3715. block or not. In the case of an asynchronous call, it is possible to
  3716. synchronize with the termination of this operation either by the means of
  3717. implicit dependencies (if enabled) or by calling
  3718. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3719. this callback function is executed after the handle has been copied, and it is
  3720. given the @var{callback_arg} pointer as argument.
  3721. @end deftypefun
  3722. @node starpu_execute_on_each_worker
  3723. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3724. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3725. When calling this method, the offloaded function specified by the first argument is
  3726. executed by every StarPU worker that may execute the function.
  3727. The second argument is passed to the offloaded function.
  3728. The last argument specifies on which types of processing units the function
  3729. should be executed. Similarly to the @var{where} field of the
  3730. @code{starpu_codelet} structure, it is possible to specify that the function
  3731. should be executed on every CUDA device and every CPU by passing
  3732. @code{STARPU_CPU|STARPU_CUDA}.
  3733. This function blocks until the function has been executed on every appropriate
  3734. processing units, so that it may not be called from a callback function for
  3735. instance.
  3736. @end deftypefun
  3737. @c ---------------------------------------------------------------------
  3738. @c Advanced Topics
  3739. @c ---------------------------------------------------------------------
  3740. @node Advanced Topics
  3741. @chapter Advanced Topics
  3742. @menu
  3743. * Defining a new data interface::
  3744. * Defining a new scheduling policy::
  3745. @end menu
  3746. @node Defining a new data interface
  3747. @section Defining a new data interface
  3748. @menu
  3749. * struct starpu_data_interface_ops_t:: Per-interface methods
  3750. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3751. * An example of data interface:: An example of data interface
  3752. @end menu
  3753. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3754. @node struct starpu_data_interface_ops_t
  3755. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3756. @table @asis
  3757. @item @emph{Description}:
  3758. TODO describe all the different fields
  3759. @end table
  3760. @node struct starpu_data_copy_methods
  3761. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3762. @table @asis
  3763. @item @emph{Description}:
  3764. TODO describe all the different fields
  3765. @end table
  3766. @node An example of data interface
  3767. @subsection An example of data interface
  3768. @table @asis
  3769. TODO
  3770. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  3771. @end table
  3772. @node Defining a new scheduling policy
  3773. @section Defining a new scheduling policy
  3774. TODO
  3775. A full example showing how to define a new scheduling policy is available in
  3776. the StarPU sources in the directory @code{examples/scheduler/}.
  3777. @menu
  3778. * struct starpu_sched_policy_s::
  3779. * starpu_worker_set_sched_condition::
  3780. * starpu_sched_set_min_priority:: Set the minimum priority level
  3781. * starpu_sched_set_max_priority:: Set the maximum priority level
  3782. * starpu_push_local_task:: Assign a task to a worker
  3783. * Source code::
  3784. @end menu
  3785. @node struct starpu_sched_policy_s
  3786. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3787. @table @asis
  3788. @item @emph{Description}:
  3789. This structure contains all the methods that implement a scheduling policy. An
  3790. application may specify which scheduling strategy in the @code{sched_policy}
  3791. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3792. function.
  3793. @item @emph{Fields}:
  3794. @table @asis
  3795. @item @code{init_sched}:
  3796. Initialize the scheduling policy.
  3797. @item @code{deinit_sched}:
  3798. Cleanup the scheduling policy.
  3799. @item @code{push_task}:
  3800. Insert a task into the scheduler.
  3801. @item @code{push_prio_task}:
  3802. Insert a priority task into the scheduler.
  3803. @item @code{push_prio_notify}:
  3804. Notify the scheduler that a task was pushed on the worker. This method is
  3805. called when a task that was explicitely assigned to a worker is scheduled. This
  3806. method therefore permits to keep the state of of the scheduler coherent even
  3807. when StarPU bypasses the scheduling strategy.
  3808. @item @code{pop_task}:
  3809. Get a task from the scheduler. The mutex associated to the worker is already
  3810. taken when this method is called. If this method is defined as @code{NULL}, the
  3811. worker will only execute tasks from its local queue. In this case, the
  3812. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3813. assign tasks to the different workers.
  3814. @item @code{pop_every_task}:
  3815. Remove all available tasks from the scheduler (tasks are chained by the means
  3816. of the prev and next fields of the starpu_task structure). The mutex associated
  3817. to the worker is already taken when this method is called.
  3818. @item @code{post_exec_hook} (optionnal):
  3819. This method is called every time a task has been executed.
  3820. @item @code{policy_name}:
  3821. Name of the policy (optionnal).
  3822. @item @code{policy_description}:
  3823. Description of the policy (optionnal).
  3824. @end table
  3825. @end table
  3826. @node starpu_worker_set_sched_condition
  3827. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3828. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3829. When there is no available task for a worker, StarPU blocks this worker on a
  3830. condition variable. This function specifies which condition variable (and the
  3831. associated mutex) should be used to block (and to wake up) a worker. Note that
  3832. multiple workers may use the same condition variable. For instance, in the case
  3833. of a scheduling strategy with a single task queue, the same condition variable
  3834. would be used to block and wake up all workers.
  3835. The initialization method of a scheduling strategy (@code{init_sched}) must
  3836. call this function once per worker.
  3837. @end deftypefun
  3838. @node starpu_sched_set_min_priority
  3839. @subsection @code{starpu_sched_set_min_priority}
  3840. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3841. Defines the minimum priority level supported by the scheduling policy. The
  3842. default minimum priority level is the same as the default priority level which
  3843. is 0 by convention. The application may access that value by calling the
  3844. @code{starpu_sched_get_min_priority} function. This function should only be
  3845. called from the initialization method of the scheduling policy, and should not
  3846. be used directly from the application.
  3847. @end deftypefun
  3848. @node starpu_sched_set_max_priority
  3849. @subsection @code{starpu_sched_set_max_priority}
  3850. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3851. Defines the maximum priority level supported by the scheduling policy. The
  3852. default maximum priority level is 1. The application may access that value by
  3853. calling the @code{starpu_sched_get_max_priority} function. This function should
  3854. only be called from the initialization method of the scheduling policy, and
  3855. should not be used directly from the application.
  3856. @end deftypefun
  3857. @node starpu_push_local_task
  3858. @subsection @code{starpu_push_local_task}
  3859. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3860. The scheduling policy may put tasks directly into a worker's local queue so
  3861. that it is not always necessary to create its own queue when the local queue
  3862. is sufficient. If "back" not null, the task is put at the back of the queue
  3863. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3864. a FIFO ordering.
  3865. @end deftypefun
  3866. @node Source code
  3867. @subsection Source code
  3868. @cartouche
  3869. @smallexample
  3870. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3871. .init_sched = init_dummy_sched,
  3872. .deinit_sched = deinit_dummy_sched,
  3873. .push_task = push_task_dummy,
  3874. .push_prio_task = NULL,
  3875. .pop_task = pop_task_dummy,
  3876. .post_exec_hook = NULL,
  3877. .pop_every_task = NULL,
  3878. .policy_name = "dummy",
  3879. .policy_description = "dummy scheduling strategy"
  3880. @};
  3881. @end smallexample
  3882. @end cartouche
  3883. @c ---------------------------------------------------------------------
  3884. @c Appendices
  3885. @c ---------------------------------------------------------------------
  3886. @c ---------------------------------------------------------------------
  3887. @c Full source code for the 'Scaling a Vector' example
  3888. @c ---------------------------------------------------------------------
  3889. @node Full source code for the 'Scaling a Vector' example
  3890. @appendix Full source code for the 'Scaling a Vector' example
  3891. @menu
  3892. * Main application::
  3893. * CPU Kernel::
  3894. * CUDA Kernel::
  3895. * OpenCL Kernel::
  3896. @end menu
  3897. @node Main application
  3898. @section Main application
  3899. @smallexample
  3900. @include vector_scal_c.texi
  3901. @end smallexample
  3902. @node CPU Kernel
  3903. @section CPU Kernel
  3904. @smallexample
  3905. @include vector_scal_cpu.texi
  3906. @end smallexample
  3907. @node CUDA Kernel
  3908. @section CUDA Kernel
  3909. @smallexample
  3910. @include vector_scal_cuda.texi
  3911. @end smallexample
  3912. @node OpenCL Kernel
  3913. @section OpenCL Kernel
  3914. @menu
  3915. * Invoking the kernel::
  3916. * Source of the kernel::
  3917. @end menu
  3918. @node Invoking the kernel
  3919. @subsection Invoking the kernel
  3920. @smallexample
  3921. @include vector_scal_opencl.texi
  3922. @end smallexample
  3923. @node Source of the kernel
  3924. @subsection Source of the kernel
  3925. @smallexample
  3926. @include vector_scal_opencl_codelet.texi
  3927. @end smallexample
  3928. @c
  3929. @c Indices.
  3930. @c
  3931. @node Function Index
  3932. @unnumbered Function Index
  3933. @printindex fn
  3934. @bye