| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | /* dsygs2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b6 = -1.;static integer c__1 = 1;static doublereal c_b27 = 1.;/* Subroutine */ int dsygs2_(integer *itype, char *uplo, integer *n, 	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *	info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;    doublereal d__1;    /* Local variables */    integer k;    doublereal ct, akk, bkk;    extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *), dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *, 	    doublereal *, integer *, doublereal *, integer *), dtrsv_(char *, char *, char *, integer *, doublereal *, 	    integer *, doublereal *, integer *), 	    xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYGS2 reduces a real symmetric-definite generalized eigenproblem *//*  to standard form. *//*  If ITYPE = 1, the problem is A*x = lambda*B*x, *//*  and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L') *//*  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or *//*  B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L. *//*  B must have been previously factorized as U'*U or L*L' by DPOTRF. *//*  Arguments *//*  ========= *//*  ITYPE   (input) INTEGER *//*          = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L'); *//*          = 2 or 3: compute U*A*U' or L'*A*L. *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored, and how B has been factorized. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          n by n upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n by n lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if INFO = 0, the transformed matrix, stored in the *//*          same format as A. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,N) *//*          The triangular factor from the Cholesky factorization of B, *//*          as returned by DPOTRF. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (*itype < 1 || *itype > 3) {	*info = -1;    } else if (! upper && ! lsame_(uplo, "L")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -7;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSYGS2", &i__1);	return 0;    }    if (*itype == 1) {	if (upper) {/*           Compute inv(U')*A*inv(U) */	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {/*              Update the upper triangle of A(k:n,k:n) */		akk = a[k + k * a_dim1];		bkk = b[k + k * b_dim1];/* Computing 2nd power */		d__1 = bkk;		akk /= d__1 * d__1;		a[k + k * a_dim1] = akk;		if (k < *n) {		    i__2 = *n - k;		    d__1 = 1. / bkk;		    dscal_(&i__2, &d__1, &a[k + (k + 1) * a_dim1], lda);		    ct = akk * -.5;		    i__2 = *n - k;		    daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + (			    k + 1) * a_dim1], lda);		    i__2 = *n - k;		    dsyr2_(uplo, &i__2, &c_b6, &a[k + (k + 1) * a_dim1], lda, 			    &b[k + (k + 1) * b_dim1], ldb, &a[k + 1 + (k + 1) 			    * a_dim1], lda);		    i__2 = *n - k;		    daxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + (			    k + 1) * a_dim1], lda);		    i__2 = *n - k;		    dtrsv_(uplo, "Transpose", "Non-unit", &i__2, &b[k + 1 + (			    k + 1) * b_dim1], ldb, &a[k + (k + 1) * a_dim1], 			    lda);		}/* L10: */	    }	} else {/*           Compute inv(L)*A*inv(L') */	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {/*              Update the lower triangle of A(k:n,k:n) */		akk = a[k + k * a_dim1];		bkk = b[k + k * b_dim1];/* Computing 2nd power */		d__1 = bkk;		akk /= d__1 * d__1;		a[k + k * a_dim1] = akk;		if (k < *n) {		    i__2 = *n - k;		    d__1 = 1. / bkk;		    dscal_(&i__2, &d__1, &a[k + 1 + k * a_dim1], &c__1);		    ct = akk * -.5;		    i__2 = *n - k;		    daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 			    1 + k * a_dim1], &c__1);		    i__2 = *n - k;		    dsyr2_(uplo, &i__2, &c_b6, &a[k + 1 + k * a_dim1], &c__1, 			    &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + (k + 1) 			    * a_dim1], lda);		    i__2 = *n - k;		    daxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 			    1 + k * a_dim1], &c__1);		    i__2 = *n - k;		    dtrsv_(uplo, "No transpose", "Non-unit", &i__2, &b[k + 1 			    + (k + 1) * b_dim1], ldb, &a[k + 1 + k * a_dim1], 			    &c__1);		}/* L20: */	    }	}    } else {	if (upper) {/*           Compute U*A*U' */	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {/*              Update the upper triangle of A(1:k,1:k) */		akk = a[k + k * a_dim1];		bkk = b[k + k * b_dim1];		i__2 = k - 1;		dtrmv_(uplo, "No transpose", "Non-unit", &i__2, &b[b_offset], 			ldb, &a[k * a_dim1 + 1], &c__1);		ct = akk * .5;		i__2 = k - 1;		daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 			1], &c__1);		i__2 = k - 1;		dsyr2_(uplo, &i__2, &c_b27, &a[k * a_dim1 + 1], &c__1, &b[k * 			b_dim1 + 1], &c__1, &a[a_offset], lda);		i__2 = k - 1;		daxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 			1], &c__1);		i__2 = k - 1;		dscal_(&i__2, &bkk, &a[k * a_dim1 + 1], &c__1);/* Computing 2nd power */		d__1 = bkk;		a[k + k * a_dim1] = akk * (d__1 * d__1);/* L30: */	    }	} else {/*           Compute L'*A*L */	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {/*              Update the lower triangle of A(1:k,1:k) */		akk = a[k + k * a_dim1];		bkk = b[k + k * b_dim1];		i__2 = k - 1;		dtrmv_(uplo, "Transpose", "Non-unit", &i__2, &b[b_offset], 			ldb, &a[k + a_dim1], lda);		ct = akk * .5;		i__2 = k - 1;		daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda);		i__2 = k - 1;		dsyr2_(uplo, &i__2, &c_b27, &a[k + a_dim1], lda, &b[k + 			b_dim1], ldb, &a[a_offset], lda);		i__2 = k - 1;		daxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda);		i__2 = k - 1;		dscal_(&i__2, &bkk, &a[k + a_dim1], lda);/* Computing 2nd power */		d__1 = bkk;		a[k + k * a_dim1] = akk * (d__1 * d__1);/* L40: */	    }	}    }    return 0;/*     End of DSYGS2 */} /* dsygs2_ */
 |