| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 | /* dlaqp2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dlaqp2_(integer *m, integer *n, integer *offset, 	doublereal *a, integer *lda, integer *jpvt, doublereal *tau, 	doublereal *vn1, doublereal *vn2, doublereal *work){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, mn;    doublereal aii;    integer pvt;    doublereal temp;    extern doublereal dnrm2_(integer *, doublereal *, integer *);    doublereal temp2, tol3z;    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *);    integer offpi, itemp;    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal dlamch_(char *);    extern integer idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int dlarfp_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAQP2 computes a QR factorization with column pivoting of *//*  the block A(OFFSET+1:M,1:N). *//*  The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A. N >= 0. *//*  OFFSET  (input) INTEGER *//*          The number of rows of the matrix A that must be pivoted *//*          but no factorized. OFFSET >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is *//*          the triangular factor obtained; the elements in block *//*          A(OFFSET+1:M,1:N) below the diagonal, together with the *//*          array TAU, represent the orthogonal matrix Q as a product of *//*          elementary reflectors. Block A(1:OFFSET,1:N) has been *//*          accordingly pivoted, but no factorized. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  JPVT    (input/output) INTEGER array, dimension (N) *//*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted *//*          to the front of A*P (a leading column); if JPVT(i) = 0, *//*          the i-th column of A is a free column. *//*          On exit, if JPVT(i) = k, then the i-th column of A*P *//*          was the k-th column of A. *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors. *//*  VN1     (input/output) DOUBLE PRECISION array, dimension (N) *//*          The vector with the partial column norms. *//*  VN2     (input/output) DOUBLE PRECISION array, dimension (N) *//*          The vector with the exact column norms. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) *//*  Further Details *//*  =============== *//*  Based on contributions by *//*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain *//*    X. Sun, Computer Science Dept., Duke University, USA *//*  Partial column norm updating strategy modified by *//*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, *//*    University of Zagreb, Croatia. *//*    June 2006. *//*  For more details see LAPACK Working Note 176. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --jpvt;    --tau;    --vn1;    --vn2;    --work;    /* Function Body *//* Computing MIN */    i__1 = *m - *offset;    mn = min(i__1,*n);    tol3z = sqrt(dlamch_("Epsilon"));/*     Compute factorization. */    i__1 = mn;    for (i__ = 1; i__ <= i__1; ++i__) {	offpi = *offset + i__;/*        Determine ith pivot column and swap if necessary. */	i__2 = *n - i__ + 1;	pvt = i__ - 1 + idamax_(&i__2, &vn1[i__], &c__1);	if (pvt != i__) {	    dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &		    c__1);	    itemp = jpvt[pvt];	    jpvt[pvt] = jpvt[i__];	    jpvt[i__] = itemp;	    vn1[pvt] = vn1[i__];	    vn2[pvt] = vn2[i__];	}/*        Generate elementary reflector H(i). */	if (offpi < *m) {	    i__2 = *m - offpi + 1;	    dlarfp_(&i__2, &a[offpi + i__ * a_dim1], &a[offpi + 1 + i__ * 		    a_dim1], &c__1, &tau[i__]);	} else {	    dlarfp_(&c__1, &a[*m + i__ * a_dim1], &a[*m + i__ * a_dim1], &		    c__1, &tau[i__]);	}	if (i__ <= *n) {/*           Apply H(i)' to A(offset+i:m,i+1:n) from the left. */	    aii = a[offpi + i__ * a_dim1];	    a[offpi + i__ * a_dim1] = 1.;	    i__2 = *m - offpi + 1;	    i__3 = *n - i__;	    dlarf_("Left", &i__2, &i__3, &a[offpi + i__ * a_dim1], &c__1, &		    tau[i__], &a[offpi + (i__ + 1) * a_dim1], lda, &work[1]);	    a[offpi + i__ * a_dim1] = aii;	}/*        Update partial column norms. */	i__2 = *n;	for (j = i__ + 1; j <= i__2; ++j) {	    if (vn1[j] != 0.) {/*              NOTE: The following 4 lines follow from the analysis in *//*              Lapack Working Note 176. *//* Computing 2nd power */		d__2 = (d__1 = a[offpi + j * a_dim1], abs(d__1)) / vn1[j];		temp = 1. - d__2 * d__2;		temp = max(temp,0.);/* Computing 2nd power */		d__1 = vn1[j] / vn2[j];		temp2 = temp * (d__1 * d__1);		if (temp2 <= tol3z) {		    if (offpi < *m) {			i__3 = *m - offpi;			vn1[j] = dnrm2_(&i__3, &a[offpi + 1 + j * a_dim1], &				c__1);			vn2[j] = vn1[j];		    } else {			vn1[j] = 0.;			vn2[j] = 0.;		    }		} else {		    vn1[j] *= sqrt(temp);		}	    }/* L10: */	}/* L20: */    }    return 0;/*     End of DLAQP2 */} /* dlaqp2_ */
 |