starpu.texi 163 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. The following step requires the availability of @code{autoconf} and
  195. @code{automake} to generate the @code{./configure} script. This is
  196. done by calling @code{./autogen.sh}. The required version for
  197. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * Insert Task Utility::
  338. * More examples:: More examples shipped with StarPU
  339. @end menu
  340. @node Compiling and linking options
  341. @section Compiling and linking options
  342. Let's suppose StarPU has been installed in the directory
  343. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  344. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  345. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  346. libraries at runtime.
  347. @example
  348. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  349. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  350. @end example
  351. The Makefile could for instance contain the following lines to define which
  352. options must be given to the compiler and to the linker:
  353. @cartouche
  354. @example
  355. CFLAGS += $$(pkg-config --cflags libstarpu)
  356. LDFLAGS += $$(pkg-config --libs libstarpu)
  357. @end example
  358. @end cartouche
  359. @node Hello World
  360. @section Hello World
  361. @menu
  362. * Required Headers::
  363. * Defining a Codelet::
  364. * Submitting a Task::
  365. * Execution of Hello World::
  366. @end menu
  367. In this section, we show how to implement a simple program that submits a task to StarPU.
  368. @node Required Headers
  369. @subsection Required Headers
  370. The @code{starpu.h} header should be included in any code using StarPU.
  371. @cartouche
  372. @smallexample
  373. #include <starpu.h>
  374. @end smallexample
  375. @end cartouche
  376. @node Defining a Codelet
  377. @subsection Defining a Codelet
  378. @cartouche
  379. @smallexample
  380. struct params @{
  381. int i;
  382. float f;
  383. @};
  384. void cpu_func(void *buffers[], void *cl_arg)
  385. @{
  386. struct params *params = cl_arg;
  387. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  388. @}
  389. starpu_codelet cl =
  390. @{
  391. .where = STARPU_CPU,
  392. .cpu_func = cpu_func,
  393. .nbuffers = 0
  394. @};
  395. @end smallexample
  396. @end cartouche
  397. A codelet is a structure that represents a computational kernel. Such a codelet
  398. may contain an implementation of the same kernel on different architectures
  399. (e.g. CUDA, Cell's SPU, x86, ...).
  400. The @code{nbuffers} field specifies the number of data buffers that are
  401. manipulated by the codelet: here the codelet does not access or modify any data
  402. that is controlled by our data management library. Note that the argument
  403. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  404. structure) does not count as a buffer since it is not managed by our data
  405. management library, but just contain trivial parameters.
  406. @c TODO need a crossref to the proper description of "where" see bla for more ...
  407. We create a codelet which may only be executed on the CPUs. The @code{where}
  408. field is a bitmask that defines where the codelet may be executed. Here, the
  409. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  410. (@pxref{Codelets and Tasks} for more details on this field).
  411. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  412. which @emph{must} have the following prototype:
  413. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  414. In this example, we can ignore the first argument of this function which gives a
  415. description of the input and output buffers (e.g. the size and the location of
  416. the matrices) since there is none.
  417. The second argument is a pointer to a buffer passed as an
  418. argument to the codelet by the means of the @code{cl_arg} field of the
  419. @code{starpu_task} structure.
  420. @c TODO rewrite so that it is a little clearer ?
  421. Be aware that this may be a pointer to a
  422. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  423. if the codelet modifies this buffer, there is no guarantee that the initial
  424. buffer will be modified as well: this for instance implies that the buffer
  425. cannot be used as a synchronization medium. If synchronization is needed, data
  426. has to be registered to StarPU, see @ref{Scaling a Vector}.
  427. @node Submitting a Task
  428. @subsection Submitting a Task
  429. @cartouche
  430. @smallexample
  431. void callback_func(void *callback_arg)
  432. @{
  433. printf("Callback function (arg %x)\n", callback_arg);
  434. @}
  435. int main(int argc, char **argv)
  436. @{
  437. /* @b{initialize StarPU} */
  438. starpu_init(NULL);
  439. struct starpu_task *task = starpu_task_create();
  440. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  441. struct params params = @{ 1, 2.0f @};
  442. task->cl_arg = &params;
  443. task->cl_arg_size = sizeof(params);
  444. task->callback_func = callback_func;
  445. task->callback_arg = 0x42;
  446. /* @b{starpu_task_submit will be a blocking call} */
  447. task->synchronous = 1;
  448. /* @b{submit the task to StarPU} */
  449. starpu_task_submit(task);
  450. /* @b{terminate StarPU} */
  451. starpu_shutdown();
  452. return 0;
  453. @}
  454. @end smallexample
  455. @end cartouche
  456. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  457. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  458. be submitted after the termination of StarPU by a call to
  459. @code{starpu_shutdown}.
  460. In the example above, a task structure is allocated by a call to
  461. @code{starpu_task_create}. This function only allocates and fills the
  462. corresponding structure with the default settings (@pxref{starpu_task_create}),
  463. but it does not submit the task to StarPU.
  464. @c not really clear ;)
  465. The @code{cl} field is a pointer to the codelet which the task will
  466. execute: in other words, the codelet structure describes which computational
  467. kernel should be offloaded on the different architectures, and the task
  468. structure is a wrapper containing a codelet and the piece of data on which the
  469. codelet should operate.
  470. The optional @code{cl_arg} field is a pointer to a buffer (of size
  471. @code{cl_arg_size}) with some parameters for the kernel
  472. described by the codelet. For instance, if a codelet implements a computational
  473. kernel that multiplies its input vector by a constant, the constant could be
  474. specified by the means of this buffer, instead of registering it as a StarPU
  475. data.
  476. Once a task has been executed, an optional callback function is be called.
  477. While the computational kernel could be offloaded on various architectures, the
  478. callback function is always executed on a CPU. The @code{callback_arg}
  479. pointer is passed as an argument of the callback. The prototype of a callback
  480. function must be:
  481. @code{void (*callback_function)(void *);}
  482. If the @code{synchronous} field is non-zero, task submission will be
  483. synchronous: the @code{starpu_task_submit} function will not return until the
  484. task was executed. Note that the @code{starpu_shutdown} method does not
  485. guarantee that asynchronous tasks have been executed before it returns,
  486. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  487. acquired (@code{starpu_data_acquire(vector_handle, STARPU_R);}), which will
  488. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  489. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  490. @code{starpu_data_set_sequential_consistency_flag}.
  491. @node Execution of Hello World
  492. @subsection Execution of Hello World
  493. @smallexample
  494. % make hello_world
  495. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  496. % ./hello_world
  497. Hello world (params = @{1, 2.000000@} )
  498. Callback function (arg 42)
  499. @end smallexample
  500. @node Scaling a Vector
  501. @section Manipulating Data: Scaling a Vector
  502. The previous example has shown how to submit tasks. In this section,
  503. we show how StarPU tasks can manipulate data. The full source code for
  504. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  505. @menu
  506. * Source code of Vector Scaling::
  507. * Execution of Vector Scaling::
  508. @end menu
  509. @node Source code of Vector Scaling
  510. @subsection Source code of Vector Scaling
  511. Programmers can describe the data layout of their application so that StarPU is
  512. responsible for enforcing data coherency and availability across the machine.
  513. Instead of handling complex (and non-portable) mechanisms to perform data
  514. movements, programmers only declare which piece of data is accessed and/or
  515. modified by a task, and StarPU makes sure that when a computational kernel
  516. starts somewhere (e.g. on a GPU), its data are available locally.
  517. Before submitting those tasks, the programmer first needs to declare the
  518. different pieces of data to StarPU using the @code{starpu_*_data_register}
  519. functions. To ease the development of applications for StarPU, it is possible
  520. to describe multiple types of data layout. A type of data layout is called an
  521. @b{interface}. There are different predefined interfaces available in StarPU:
  522. here we will consider the @b{vector interface}.
  523. The following lines show how to declare an array of @code{NX} elements of type
  524. @code{float} using the vector interface:
  525. @cartouche
  526. @smallexample
  527. float vector[NX];
  528. starpu_data_handle vector_handle;
  529. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  530. sizeof(vector[0]));
  531. @end smallexample
  532. @end cartouche
  533. The first argument, called the @b{data handle}, is an opaque pointer which
  534. designates the array in StarPU. This is also the structure which is used to
  535. describe which data is used by a task. The second argument is the node number
  536. where the data originally resides. Here it is 0 since the @code{vector} array is in
  537. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  538. the number of elements in the vector and the size of each element.
  539. The following shows how to construct a StarPU task that will manipulate the
  540. vector and a constant factor.
  541. @cartouche
  542. @smallexample
  543. float factor = 3.14;
  544. struct starpu_task *task = starpu_task_create();
  545. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  546. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  547. task->buffers[0].mode = STARPU_RW;
  548. task->cl_arg = &factor;
  549. task->cl_arg_size = sizeof(factor);
  550. task->synchronous = 1;
  551. starpu_task_submit(task);
  552. @end smallexample
  553. @end cartouche
  554. Since the factor is a mere constant float value parameter,
  555. it does not need a preliminary registration, and
  556. can just be passed through the @code{cl_arg} pointer like in the previous
  557. example. The vector parameter is described by its handle.
  558. There are two fields in each element of the @code{buffers} array.
  559. @code{handle} is the handle of the data, and @code{mode} specifies how the
  560. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  561. write-only and @code{STARPU_RW} for read and write access).
  562. The definition of the codelet can be written as follows:
  563. @cartouche
  564. @smallexample
  565. void scal_cpu_func(void *buffers[], void *cl_arg)
  566. @{
  567. unsigned i;
  568. float *factor = cl_arg;
  569. /* length of the vector */
  570. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  571. /* local copy of the vector pointer */
  572. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  573. for (i = 0; i < n; i++)
  574. val[i] *= *factor;
  575. @}
  576. starpu_codelet cl = @{
  577. .where = STARPU_CPU,
  578. .cpu_func = scal_cpu_func,
  579. .nbuffers = 1
  580. @};
  581. @end smallexample
  582. @end cartouche
  583. The first argument is an array that gives
  584. a description of all the buffers passed in the @code{task->buffers}@ array. The
  585. size of this array is given by the @code{nbuffers} field of the codelet
  586. structure. For the sake of genericity, this array contains pointers to the
  587. different interfaces describing each buffer. In the case of the @b{vector
  588. interface}, the location of the vector (resp. its length) is accessible in the
  589. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  590. read-write fashion, any modification will automatically affect future accesses
  591. to this vector made by other tasks.
  592. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  593. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  594. constant factor from this pointer.
  595. @node Execution of Vector Scaling
  596. @subsection Execution of Vector Scaling
  597. @smallexample
  598. % make vector_scal
  599. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  600. % ./vector_scal
  601. 0.000000 3.000000 6.000000 9.000000 12.000000
  602. @end smallexample
  603. @node Vector Scaling on an Hybrid CPU/GPU Machine
  604. @section Vector Scaling on an Hybrid CPU/GPU Machine
  605. Contrary to the previous examples, the task submitted in this example may not
  606. only be executed by the CPUs, but also by a CUDA device.
  607. @menu
  608. * Definition of the CUDA Kernel::
  609. * Definition of the OpenCL Kernel::
  610. * Definition of the Main Code::
  611. * Execution of Hybrid Vector Scaling::
  612. @end menu
  613. @node Definition of the CUDA Kernel
  614. @subsection Definition of the CUDA Kernel
  615. The CUDA implementation can be written as follows. It needs to be
  616. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  617. driver.
  618. @cartouche
  619. @smallexample
  620. #include <starpu.h>
  621. static __global__ void vector_mult_cuda(float *val, unsigned n,
  622. float factor)
  623. @{
  624. unsigned i;
  625. if (i < n)
  626. val[i] *= factor;
  627. @}
  628. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  629. @{
  630. float *factor = (float *)_args;
  631. /* length of the vector */
  632. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  633. /* local copy of the vector pointer */
  634. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  635. unsigned threads_per_block = 64;
  636. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  637. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  638. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  639. @}
  640. @end smallexample
  641. @end cartouche
  642. @node Definition of the OpenCL Kernel
  643. @subsection Definition of the OpenCL Kernel
  644. The OpenCL implementation can be written as follows. StarPU provides
  645. tools to compile a OpenCL kernel stored in a file.
  646. @cartouche
  647. @smallexample
  648. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  649. @{
  650. const int i = get_global_id(0);
  651. if (i < nx) @{
  652. val[i] *= factor;
  653. @}
  654. @}
  655. @end smallexample
  656. @end cartouche
  657. @cartouche
  658. @smallexample
  659. #include <starpu.h>
  660. @i{#include <starpu_opencl.h>}
  661. @i{extern struct starpu_opencl_program programs;}
  662. void scal_opencl_func(void *buffers[], void *_args)
  663. @{
  664. float *factor = _args;
  665. @i{ int id, devid, err;}
  666. @i{ cl_kernel kernel;}
  667. @i{ cl_command_queue queue;}
  668. @i{ cl_event event;}
  669. /* length of the vector */
  670. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  671. /* local copy of the vector pointer */
  672. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  673. @i{ id = starpu_worker_get_id();}
  674. @i{ devid = starpu_worker_get_devid(id);}
  675. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  676. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  677. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  678. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  679. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  680. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  681. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  682. @i{ @{}
  683. @i{ size_t global=1;}
  684. @i{ size_t local=1;}
  685. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  686. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  687. @i{ @}}
  688. @i{ clFinish(queue);}
  689. @i{ starpu_opencl_collect_stats(event);}
  690. @i{ clReleaseEvent(event);}
  691. @i{ starpu_opencl_release_kernel(kernel);}
  692. @}
  693. @end smallexample
  694. @end cartouche
  695. @node Definition of the Main Code
  696. @subsection Definition of the Main Code
  697. The CPU implementation is the same as in the previous section.
  698. Here is the source of the main application. You can notice the value of the
  699. field @code{where} for the codelet. We specify
  700. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  701. can be executed either on a CPU or on a CUDA or an OpenCL device.
  702. @cartouche
  703. @smallexample
  704. #include <starpu.h>
  705. #define NX 2048
  706. extern void scal_cuda_func(void *buffers[], void *_args);
  707. extern void scal_cpu_func(void *buffers[], void *_args);
  708. extern void scal_opencl_func(void *buffers[], void *_args);
  709. /* @b{Definition of the codelet} */
  710. static starpu_codelet cl = @{
  711. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  712. /* @b{on a CUDA device, or on an OpenCL device} */
  713. .cuda_func = scal_cuda_func;
  714. .cpu_func = scal_cpu_func;
  715. .opencl_func = scal_opencl_func;
  716. .nbuffers = 1;
  717. @}
  718. #ifdef STARPU_USE_OPENCL
  719. /* @b{The compiled version of the OpenCL program} */
  720. struct starpu_opencl_program programs;
  721. #endif
  722. int main(int argc, char **argv)
  723. @{
  724. float *vector;
  725. int i, ret;
  726. float factor=3.0;
  727. struct starpu_task *task;
  728. starpu_data_handle vector_handle;
  729. starpu_init(NULL); /* @b{Initialising StarPU} */
  730. #ifdef STARPU_USE_OPENCL
  731. starpu_opencl_load_opencl_from_file(
  732. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  733. #endif
  734. vector = malloc(NX*sizeof(vector[0]));
  735. assert(vector);
  736. for(i=0 ; i<NX ; i++) vector[i] = i;
  737. @end smallexample
  738. @end cartouche
  739. @cartouche
  740. @smallexample
  741. /* @b{Registering data within StarPU} */
  742. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  743. NX, sizeof(vector[0]));
  744. /* @b{Definition of the task} */
  745. task = starpu_task_create();
  746. task->cl = &cl;
  747. task->buffers[0].handle = vector_handle;
  748. task->buffers[0].mode = STARPU_RW;
  749. task->cl_arg = &factor;
  750. task->cl_arg_size = sizeof(factor);
  751. @end smallexample
  752. @end cartouche
  753. @cartouche
  754. @smallexample
  755. /* @b{Submitting the task} */
  756. ret = starpu_task_submit(task);
  757. if (ret == -ENODEV) @{
  758. fprintf(stderr, "No worker may execute this task\n");
  759. return 1;
  760. @}
  761. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  762. /* @b{Waiting for its termination} */
  763. starpu_task_wait_for_all();
  764. /* @b{Update the vector in RAM} */
  765. starpu_data_acquire(vector_handle, STARPU_R);
  766. @end smallexample
  767. @end cartouche
  768. @cartouche
  769. @smallexample
  770. /* @b{Access the data} */
  771. for(i=0 ; i<NX; i++) @{
  772. fprintf(stderr, "%f ", vector[i]);
  773. @}
  774. fprintf(stderr, "\n");
  775. /* @b{Release the data and shutdown StarPU} */
  776. starpu_data_release(vector_handle);
  777. starpu_shutdown();
  778. return 0;
  779. @}
  780. @end smallexample
  781. @end cartouche
  782. @node Execution of Hybrid Vector Scaling
  783. @subsection Execution of Hybrid Vector Scaling
  784. The Makefile given at the beginning of the section must be extended to
  785. give the rules to compile the CUDA source code. Note that the source
  786. file of the OpenCL kernel does not need to be compiled now, it will
  787. be compiled at run-time when calling the function
  788. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  789. @cartouche
  790. @smallexample
  791. CFLAGS += $(shell pkg-config --cflags libstarpu)
  792. LDFLAGS += $(shell pkg-config --libs libstarpu)
  793. CC = gcc
  794. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  795. %.o: %.cu
  796. nvcc $(CFLAGS) $< -c $@
  797. clean:
  798. rm -f vector_scal *.o
  799. @end smallexample
  800. @end cartouche
  801. @smallexample
  802. % make
  803. @end smallexample
  804. and to execute it, with the default configuration:
  805. @smallexample
  806. % ./vector_scal
  807. 0.000000 3.000000 6.000000 9.000000 12.000000
  808. @end smallexample
  809. or for example, by disabling CPU devices:
  810. @smallexample
  811. % STARPU_NCPUS=0 ./vector_scal
  812. 0.000000 3.000000 6.000000 9.000000 12.000000
  813. @end smallexample
  814. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  815. see @ref{Using accelerators}):
  816. @smallexample
  817. % STARPU_NCUDA=0 ./vector_scal
  818. 0.000000 3.000000 6.000000 9.000000 12.000000
  819. @end smallexample
  820. @node Task and Worker Profiling
  821. @section Task and Worker Profiling
  822. A full example showing how to use the profiling API is available in
  823. the StarPU sources in the directory @code{examples/profiling/}.
  824. @cartouche
  825. @smallexample
  826. struct starpu_task *task = starpu_task_create();
  827. task->cl = &cl;
  828. task->synchronous = 1;
  829. /* We will destroy the task structure by hand so that we can
  830. * query the profiling info before the task is destroyed. */
  831. task->destroy = 0;
  832. /* Submit and wait for completion (since synchronous was set to 1) */
  833. starpu_task_submit(task);
  834. /* The task is finished, get profiling information */
  835. struct starpu_task_profiling_info *info = task->profiling_info;
  836. /* How much time did it take before the task started ? */
  837. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  838. /* How long was the task execution ? */
  839. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  840. /* We don't need the task structure anymore */
  841. starpu_task_destroy(task);
  842. @end smallexample
  843. @end cartouche
  844. @cartouche
  845. @smallexample
  846. /* Display the occupancy of all workers during the test */
  847. int worker;
  848. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  849. @{
  850. struct starpu_worker_profiling_info worker_info;
  851. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  852. STARPU_ASSERT(!ret);
  853. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  854. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  855. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  856. float executing_ratio = 100.0*executing_time/total_time;
  857. float sleeping_ratio = 100.0*sleeping_time/total_time;
  858. char workername[128];
  859. starpu_worker_get_name(worker, workername, 128);
  860. fprintf(stderr, "Worker %s:\n", workername);
  861. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  862. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  863. executing_ratio);
  864. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  865. sleeping_ratio);
  866. @}
  867. @end smallexample
  868. @end cartouche
  869. @node Partitioning Data
  870. @section Partitioning Data
  871. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  872. @cartouche
  873. @smallexample
  874. int vector[NX];
  875. starpu_data_handle handle;
  876. /* Declare data to StarPU */
  877. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  878. /* Partition the vector in PARTS sub-vectors */
  879. starpu_filter f =
  880. @{
  881. .filter_func = starpu_block_filter_func_vector,
  882. .nchildren = PARTS,
  883. .get_nchildren = NULL,
  884. .get_child_ops = NULL
  885. @};
  886. starpu_data_partition(handle, &f);
  887. @end smallexample
  888. @end cartouche
  889. @cartouche
  890. @smallexample
  891. /* Submit a task on each sub-vector */
  892. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  893. /* Get subdata number i (there is only 1 dimension) */
  894. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  895. struct starpu_task *task = starpu_task_create();
  896. task->buffers[0].handle = sub_handle;
  897. task->buffers[0].mode = STARPU_RW;
  898. task->cl = &cl;
  899. task->synchronous = 1;
  900. task->cl_arg = &factor;
  901. task->cl_arg_size = sizeof(factor);
  902. starpu_task_submit(task);
  903. @}
  904. @end smallexample
  905. @end cartouche
  906. Partitioning can be applied several times, see
  907. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  908. @node Performance model example
  909. @section Performance model example
  910. To achieve good scheduling, StarPU scheduling policies need to be able to
  911. estimate in advance the duration of a task. This is done by giving to codelets a
  912. performance model. There are several kinds of performance models.
  913. @itemize
  914. @item
  915. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  916. see for instance
  917. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  918. @item
  919. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  920. given set of data input/output sizes, the performance will always be about the
  921. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  922. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  923. few different sets of data input/output sizes. StarPU will then keep record of
  924. the average time of previous executions on the various processing units, and use
  925. it as an estimation. History is done per task size, by using a hash of the input
  926. and ouput sizes as an index.
  927. It will also save it in @code{~/.starpu/sampling/codelets}
  928. for further executions, and can be observed by using the
  929. @code{starpu_perfmodel_display} command. The following is a small code example.
  930. @cartouche
  931. @smallexample
  932. static struct starpu_perfmodel_t mult_perf_model = @{
  933. .type = STARPU_HISTORY_BASED,
  934. .symbol = "mult_perf_model"
  935. @};
  936. starpu_codelet cl = @{
  937. .where = STARPU_CPU,
  938. .cpu_func = cpu_mult,
  939. .nbuffers = 3,
  940. /* for the scheduling policy to be able to use performance models */
  941. .model = &mult_perf_model
  942. @};
  943. @end smallexample
  944. @end cartouche
  945. @item
  946. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  947. type). This still assumes performance regularity, but can work with various data
  948. input sizes, by applying a*n^b+c regression over observed execution times.
  949. @end itemize
  950. The same can be done for task power consumption estimation, by setting the
  951. @code{power_model} field the same way as the @code{model} field. Note: for
  952. now, the application has to give to the power consumption performance model
  953. a different name.
  954. @node Theoretical lower bound on execution time
  955. @section Theoretical lower bound on execution time
  956. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  957. bound for the execution time of a whole set of tasks. See for
  958. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  959. call @code{starpu_bound_start}, and after complete execution, call
  960. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  961. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  962. problem corresponding to the schedule of your tasks. Run it through
  963. @code{lp_solve} or any other linear programming solver, and that will give you a
  964. lower bound for the total execution time of your tasks. If StarPU was compiled
  965. with the glpk library installed, @code{starpu_bound_compute} can be used to
  966. solve it immediately and get the optimized minimum. Its @code{integer}
  967. parameter allows to decide whether integer resolution should be computed
  968. and returned.
  969. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  970. dependencies into account. It must be understood that the linear programming
  971. problem size is quadratic with the number of tasks and thus the time to solve it
  972. will be very long, it could be minutes for just a few dozen tasks. You should
  973. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  974. problem to MPS format and then use a better solver, @code{glpsol} might be
  975. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  976. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  977. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  978. of @code{lp_solve}. For instance, we often just use
  979. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  980. the @code{-gr} option can also be quite useful.
  981. Setting @code{deps} to 0 will only take into account the actual computations
  982. on processing units. It however still properly takes into account the varying
  983. performances of kernels and processing units, which is quite more accurate than
  984. just comparing StarPU performances with the fastest of the kernels being used.
  985. The @code{prio} parameter tells StarPU whether to simulate taking into account
  986. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  987. tasks before less prioritized tasks, to check to which extend this results
  988. to a less optimal solution. This increases even more computation time.
  989. Note that for simplicity, all this however doesn't take into account data
  990. transfers, which are assumed to be completely overlapped.
  991. @node Insert Task Utility
  992. @section Insert Task Utility
  993. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  994. the creation and submission of tasks.
  995. @emph{Prototype}:
  996. @code{int starpu_insert_task(starpu_codelet *cl, ...);}
  997. The arguments following the codelets can be of the following types:
  998. @itemize
  999. @item
  1000. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  1001. @item
  1002. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1003. the size of the constant;
  1004. @item
  1005. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1006. @item
  1007. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1008. argument to the callback function;
  1009. @item
  1010. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1011. @end itemize
  1012. A call to @code{starpu_insert_task} will create and submit the task
  1013. based on the given arguments. The list of varying arguments has to be
  1014. ended by the value @code{0}.
  1015. Parameters to be passed to the codelet implementation are defined
  1016. through the type @code{STARPU_VALUE}. The function
  1017. @code{starpu_unpack_cl_args} must be called within the codelet
  1018. implementation to retrieve them.
  1019. Here the implementation of the codelet:
  1020. @smallexample
  1021. void func_cpu(void *descr[], void *_args)
  1022. @{
  1023. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1024. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1025. int ifactor;
  1026. float ffactor;
  1027. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1028. *x0 = *x0 * ifactor;
  1029. *x1 = *x1 * ffactor;
  1030. @}
  1031. starpu_codelet mycodelet = @{
  1032. .where = STARPU_CPU,
  1033. .cpu_func = func_cpu,
  1034. .nbuffers = 2
  1035. @};
  1036. @end smallexample
  1037. And the call to the @code{starpu_insert_task} wrapper:
  1038. @smallexample
  1039. starpu_insert_task(&mycodelet,
  1040. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1041. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1042. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1043. 0);
  1044. @end smallexample
  1045. The call to @code{starpu_insert_task} is equivalent to the following
  1046. code:
  1047. @smallexample
  1048. struct starpu_task *task = starpu_task_create();
  1049. task->cl = &mycodelet;
  1050. task->buffers[0].handle = data_handles[0];
  1051. task->buffers[0].mode = STARPU_RW;
  1052. task->buffers[1].handle = data_handles[1];
  1053. task->buffers[1].mode = STARPU_RW;
  1054. char *arg_buffer;
  1055. size_t arg_buffer_size;
  1056. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1057. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1058. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1059. 0);
  1060. task->cl_arg = arg_buffer;
  1061. task->cl_arg_size = arg_buffer_size;
  1062. int ret = starpu_task_submit(task);
  1063. @end smallexample
  1064. @node More examples
  1065. @section More examples
  1066. More examples are available in the StarPU sources in the @code{examples/}
  1067. directory. Simple examples include:
  1068. @table @asis
  1069. @item @code{incrementer/}:
  1070. Trivial incrementation test.
  1071. @item @code{basic_examples/}:
  1072. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1073. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1074. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1075. interface, and an example using the variable data interface.
  1076. @item @code{matvecmult/}:
  1077. OpenCL example from NVidia, adapted to StarPU.
  1078. @item @code{axpy/}:
  1079. AXPY CUBLAS operation adapted to StarPU.
  1080. @item @code{fortran/}:
  1081. Example of Fortran bindings.
  1082. @end table
  1083. More advanced examples include:
  1084. @table @asis
  1085. @item @code{filters/}:
  1086. Examples using filters, as shown in @ref{Partitioning Data}.
  1087. @item @code{lu/}:
  1088. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1089. @item @code{cholesky/}:
  1090. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1091. @end table
  1092. @c ---------------------------------------------------------------------
  1093. @c Performance options
  1094. @c ---------------------------------------------------------------------
  1095. @node Performance optimization
  1096. @chapter How to optimize performance with StarPU
  1097. TODO: improve!
  1098. @menu
  1099. * Data management::
  1100. * Task submission::
  1101. * Task priorities::
  1102. * Task scheduling policy::
  1103. * Task distribution vs Data transfer::
  1104. * Power-based scheduling::
  1105. * Profiling::
  1106. * CUDA-specific optimizations::
  1107. @end menu
  1108. Simply encapsulating application kernels into tasks already permits to
  1109. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1110. few additional changes are needed.
  1111. @node Data management
  1112. @section Data management
  1113. By default, StarPU does not enable data prefetching, because CUDA does
  1114. not announce when too many data transfers were scheduled and can thus block
  1115. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1116. .
  1117. By default, StarPU leaves replicates of data wherever they were used, in case they
  1118. will be re-used by other tasks, thus saving the data transfer time. When some
  1119. task modifies some data, all the other replicates are invalidated, and only the
  1120. processing unit will have a valid replicate of the data. If the application knows
  1121. that this data will not be re-used by further tasks, it should advise StarPU to
  1122. immediately replicate it to a desired list of memory nodes (given through a
  1123. bitmask). This can be understood like the write-through mode of CPU caches.
  1124. @example
  1125. starpu_data_set_wt_mask(img_handle, 1<<0);
  1126. @end example
  1127. will for instance request to always transfer a replicate into the main memory (node
  1128. 0), as bit 0 of the write-through bitmask is being set.
  1129. When the application allocates data, whenever possible it should use the
  1130. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1131. OpenCL to make the allocation itself and pin the corresponding allocated
  1132. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1133. transfer to overlap with computations.
  1134. @node Task submission
  1135. @section Task submission
  1136. To let StarPU make online optimizations, tasks should be submitted
  1137. asynchronously as much as possible. Ideally, all the tasks should be
  1138. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1139. @code{starpu_data_acquire} be done to wait for
  1140. termination. StarPU will then be able to rework the whole schedule, overlap
  1141. computation with communication, manage accelerator local memory usage, etc.
  1142. @node Task priorities
  1143. @section Task priorities
  1144. By default, StarPU will consider the tasks in the order they are submitted by
  1145. the application. If the application programmer knows that some tasks should
  1146. be performed in priority (for instance because their output is needed by many
  1147. other tasks and may thus be a bottleneck if not executed early enough), the
  1148. @code{priority} field of the task structure should be set to transmit the
  1149. priority information to StarPU.
  1150. @node Task scheduling policy
  1151. @section Task scheduling policy
  1152. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1153. because it provides correct load balance even if the application codelets do not
  1154. have performance models. If your application codelets have performance models,
  1155. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1156. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1157. the list of available schedulers.
  1158. Most schedulers are based on an estimation of codelet duration on each kind
  1159. of processing unit. For this to be possible, the application programmer needs
  1160. to configure a performance model for the codelets of the application (see
  1161. @ref{Performance model example} for instance). History-based performance models
  1162. use on-line calibration. StarPU will automatically calibrate codelets
  1163. which have never been calibrated yet. To force continuing calibration, use
  1164. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1165. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1166. Note: due to CUDA limitations, to be able to measure kernel duration,
  1167. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1168. disables data transfer / computation overlapping, and should thus not be used
  1169. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1170. only if a performance-model-based scheduler is chosen.
  1171. @node Task distribution vs Data transfer
  1172. @section Task distribution vs Data transfer
  1173. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1174. thus needs to find a balance between both. The target function that the
  1175. @code{dmda} scheduler of StarPU
  1176. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1177. @code{T_execution} is the estimated execution time of the codelet (usually
  1178. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1179. latter is however estimated based on bus calibration before execution start,
  1180. i.e. with an idle machine. You can force bus re-calibration by running
  1181. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1182. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1183. This is of course imprecise, but in practice, a rough estimation already gives
  1184. the good results that a precise estimation would give.
  1185. @node Power-based scheduling
  1186. @section Power-based scheduling
  1187. If the application can provide some power performance model (through
  1188. the @code{power_model} field of the codelet structure), StarPU will
  1189. take it into account when distributing tasks. The target function that
  1190. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1191. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1192. is the estimated task consumption in Joules. To tune this parameter, use
  1193. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1194. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1195. alpha and beta to zero permits to only take into account power consumption.
  1196. This is however not sufficient to correctly optimize power: the scheduler would
  1197. simply tend to run all computations on the most energy-conservative processing
  1198. unit. To account for the consumption of the whole machine (including idle
  1199. processing units), the idle power of the machine should be given by setting
  1200. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1201. be obtained from the machine power supplier.
  1202. The power actually consumed by the total execution can be displayed by setting
  1203. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1204. @node Profiling
  1205. @section Profiling
  1206. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1207. calling @code{starpu_profiling_status_set} from the source code.
  1208. Statistics on the execution can then be obtained by using @code{export
  1209. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1210. stats will include an approximation of the number of executed tasks even if
  1211. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1212. execution did happen on accelerators without penalizing performance with
  1213. the profiling overhead. More details on performance feedback are provided by the
  1214. next chapter.
  1215. @node CUDA-specific optimizations
  1216. @section CUDA-specific optimizations
  1217. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1218. communications and the codelet computations if the application does not use a
  1219. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1220. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1221. operations. For instance:
  1222. @example
  1223. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1224. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1225. @end example
  1226. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1227. kernels. That will lower the potential for overlapping.
  1228. @c ---------------------------------------------------------------------
  1229. @c Performance feedback
  1230. @c ---------------------------------------------------------------------
  1231. @node Performance feedback
  1232. @chapter Performance feedback
  1233. @menu
  1234. * On-line:: On-line performance feedback
  1235. * Off-line:: Off-line performance feedback
  1236. * Codelet performance:: Performance of codelets
  1237. @end menu
  1238. @node On-line
  1239. @section On-line performance feedback
  1240. @menu
  1241. * Enabling monitoring:: Enabling on-line performance monitoring
  1242. * Task feedback:: Per-task feedback
  1243. * Codelet feedback:: Per-codelet feedback
  1244. * Worker feedback:: Per-worker feedback
  1245. * Bus feedback:: Bus-related feedback
  1246. @end menu
  1247. @node Enabling monitoring
  1248. @subsection Enabling on-line performance monitoring
  1249. In order to enable online performance monitoring, the application can call
  1250. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1251. detect whether monitoring is already enabled or not by calling
  1252. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1253. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1254. can also be set to 1 to achieve the same effect.
  1255. Likewise, performance monitoring is stopped by calling
  1256. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1257. does not reset the performance counters so that the application may consult
  1258. them later on.
  1259. More details about the performance monitoring API are available in section
  1260. @ref{Profiling API}.
  1261. @node Task feedback
  1262. @subsection Per-task feedback
  1263. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1264. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1265. structure when a task terminates.
  1266. This structure is automatically destroyed when the task structure is destroyed,
  1267. either automatically or by calling @code{starpu_task_destroy}.
  1268. The @code{starpu_task_profiling_info} structure indicates the date when the
  1269. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1270. terminated (@code{end_time}), relative to the initialization of
  1271. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1272. that has executed the task (@code{workerid}).
  1273. These date are stored as @code{timespec} structures which the user may convert
  1274. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1275. function.
  1276. It it worth noting that the application may directly access this structure from
  1277. the callback executed at the end of the task. The @code{starpu_task} structure
  1278. associated to the callback currently being executed is indeed accessible with
  1279. the @code{starpu_get_current_task()} function.
  1280. @node Codelet feedback
  1281. @subsection Per-codelet feedback
  1282. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1283. an array of counters. The i-th entry of the array is incremented every time a
  1284. task implementing the codelet is executed on the i-th worker.
  1285. This array is not reinitialized when profiling is enabled or disabled.
  1286. @node Worker feedback
  1287. @subsection Per-worker feedback
  1288. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1289. function is a @code{starpu_worker_profiling_info} structure that gives
  1290. statistics about the specified worker. This structure specifies when StarPU
  1291. started collecting profiling information for that worker (@code{start_time}),
  1292. the duration of the profiling measurement interval (@code{total_time}), the
  1293. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1294. because there is no task to execute at all (@code{sleeping_time}), and the
  1295. number of tasks that were executed while profiling was enabled.
  1296. These values give an estimation of the proportion of time spent do real work,
  1297. and the time spent either sleeping because there are not enough executable
  1298. tasks or simply wasted in pure StarPU overhead.
  1299. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1300. information associated to a worker.
  1301. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1302. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1303. generate a graphic showing the evolution of these values during the time, for
  1304. the different workers.
  1305. @node Bus feedback
  1306. @subsection Bus-related feedback
  1307. TODO
  1308. @c how to enable/disable performance monitoring
  1309. @c what kind of information do we get ?
  1310. @node Off-line
  1311. @section Off-line performance feedback
  1312. @menu
  1313. * Generating traces:: Generating traces with FxT
  1314. * Gantt diagram:: Creating a Gantt Diagram
  1315. * DAG:: Creating a DAG with graphviz
  1316. * starpu-top:: Monitoring activity
  1317. @end menu
  1318. @node Generating traces
  1319. @subsection Generating traces with FxT
  1320. StarPU can use the FxT library (see
  1321. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1322. with a limited runtime overhead.
  1323. You can either get the FxT library from CVS (autotools are required):
  1324. @example
  1325. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1326. % ./bootstrap
  1327. @end example
  1328. If autotools are not available on your machine, or if you prefer to do so,
  1329. FxT's code is also available as a tarball:
  1330. @example
  1331. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1332. @end example
  1333. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1334. done following the standard procedure:
  1335. @example
  1336. % ./configure --prefix=$FXTDIR
  1337. % make
  1338. % make install
  1339. @end example
  1340. In order to have StarPU to generate traces, StarPU should be configured with
  1341. the @code{--with-fxt} option:
  1342. @example
  1343. $ ./configure --with-fxt=$FXTDIR
  1344. @end example
  1345. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1346. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1347. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1348. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1349. @code{/tmp/} directory by default, or by the directory specified by
  1350. the @code{STARPU_FXT_PREFIX} environment variable.
  1351. @node Gantt diagram
  1352. @subsection Creating a Gantt Diagram
  1353. When the FxT trace file @code{filename} has been generated, it is possible to
  1354. generate a trace in the Paje format by calling:
  1355. @example
  1356. % starpu_fxt_tool -i filename
  1357. @end example
  1358. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1359. to 1 before application execution will make StarPU do it automatically at
  1360. application shutdown.
  1361. This will create a @code{paje.trace} file in the current directory that can be
  1362. inspected with the ViTE trace visualizing open-source tool. More information
  1363. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1364. possible to open the @code{paje.trace} file with ViTE by using the following
  1365. command:
  1366. @example
  1367. % vite paje.trace
  1368. @end example
  1369. @node DAG
  1370. @subsection Creating a DAG with graphviz
  1371. When the FxT trace file @code{filename} has been generated, it is possible to
  1372. generate a task graph in the DOT format by calling:
  1373. @example
  1374. $ starpu_fxt_tool -i filename
  1375. @end example
  1376. This will create a @code{dag.dot} file in the current directory. This file is a
  1377. task graph described using the DOT language. It is possible to get a
  1378. graphical output of the graph by using the graphviz library:
  1379. @example
  1380. $ dot -Tpdf dag.dot -o output.pdf
  1381. @end example
  1382. @node starpu-top
  1383. @subsection Monitoring activity
  1384. When the FxT trace file @code{filename} has been generated, it is possible to
  1385. generate a activity trace by calling:
  1386. @example
  1387. $ starpu_fxt_tool -i filename
  1388. @end example
  1389. This will create an @code{activity.data} file in the current
  1390. directory. A profile of the application showing the activity of StarPU
  1391. during the execution of the program can be generated:
  1392. @example
  1393. $ starpu_top.sh activity.data
  1394. @end example
  1395. This will create a file named @code{activity.eps} in the current directory.
  1396. This picture is composed of two parts.
  1397. The first part shows the activity of the different workers. The green sections
  1398. indicate which proportion of the time was spent executed kernels on the
  1399. processing unit. The red sections indicate the proportion of time spent in
  1400. StartPU: an important overhead may indicate that the granularity may be too
  1401. low, and that bigger tasks may be appropriate to use the processing unit more
  1402. efficiently. The black sections indicate that the processing unit was blocked
  1403. because there was no task to process: this may indicate a lack of parallelism
  1404. which may be alleviated by creating more tasks when it is possible.
  1405. The second part of the @code{activity.eps} picture is a graph showing the
  1406. evolution of the number of tasks available in the system during the execution.
  1407. Ready tasks are shown in black, and tasks that are submitted but not
  1408. schedulable yet are shown in grey.
  1409. @node Codelet performance
  1410. @section Performance of codelets
  1411. The performance model of codelets can be examined by using the
  1412. @code{starpu_perfmodel_display} tool:
  1413. @example
  1414. $ starpu_perfmodel_display -l
  1415. file: <malloc_pinned.hannibal>
  1416. file: <starpu_slu_lu_model_21.hannibal>
  1417. file: <starpu_slu_lu_model_11.hannibal>
  1418. file: <starpu_slu_lu_model_22.hannibal>
  1419. file: <starpu_slu_lu_model_12.hannibal>
  1420. @end example
  1421. Here, the codelets of the lu example are available. We can examine the
  1422. performance of the 22 kernel:
  1423. @example
  1424. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1425. performance model for cpu
  1426. # hash size mean dev n
  1427. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1428. performance model for cuda_0
  1429. # hash size mean dev n
  1430. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1431. performance model for cuda_1
  1432. # hash size mean dev n
  1433. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1434. performance model for cuda_2
  1435. # hash size mean dev n
  1436. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1437. @end example
  1438. We can see that for the given size, over a sample of a few hundreds of
  1439. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1440. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1441. CPUs.
  1442. @c ---------------------------------------------------------------------
  1443. @c MPI support
  1444. @c ---------------------------------------------------------------------
  1445. @node StarPU MPI support
  1446. @chapter StarPU MPI support
  1447. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1448. @c ---------------------------------------------------------------------
  1449. @c Configuration options
  1450. @c ---------------------------------------------------------------------
  1451. @node Configuring StarPU
  1452. @chapter Configuring StarPU
  1453. @menu
  1454. * Compilation configuration::
  1455. * Execution configuration through environment variables::
  1456. @end menu
  1457. @node Compilation configuration
  1458. @section Compilation configuration
  1459. The following arguments can be given to the @code{configure} script.
  1460. @menu
  1461. * Common configuration::
  1462. * Configuring workers::
  1463. * Advanced configuration::
  1464. @end menu
  1465. @node Common configuration
  1466. @subsection Common configuration
  1467. @menu
  1468. * --enable-debug::
  1469. * --enable-fast::
  1470. * --enable-verbose::
  1471. * --enable-coverage::
  1472. @end menu
  1473. @node --enable-debug
  1474. @subsubsection @code{--enable-debug}
  1475. @table @asis
  1476. @item @emph{Description}:
  1477. Enable debugging messages.
  1478. @end table
  1479. @node --enable-fast
  1480. @subsubsection @code{--enable-fast}
  1481. @table @asis
  1482. @item @emph{Description}:
  1483. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1484. @end table
  1485. @node --enable-verbose
  1486. @subsubsection @code{--enable-verbose}
  1487. @table @asis
  1488. @item @emph{Description}:
  1489. Augment the verbosity of the debugging messages. This can be disabled
  1490. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1491. any value.
  1492. @smallexample
  1493. % STARPU_SILENT=1 ./vector_scal
  1494. @end smallexample
  1495. @end table
  1496. @node --enable-coverage
  1497. @subsubsection @code{--enable-coverage}
  1498. @table @asis
  1499. @item @emph{Description}:
  1500. Enable flags for the @code{gcov} coverage tool.
  1501. @end table
  1502. @node Configuring workers
  1503. @subsection Configuring workers
  1504. @menu
  1505. * --enable-nmaxcpus::
  1506. * --disable-cpu::
  1507. * --enable-maxcudadev::
  1508. * --disable-cuda::
  1509. * --with-cuda-dir::
  1510. * --with-cuda-include-dir::
  1511. * --with-cuda-lib-dir::
  1512. * --enable-maxopencldev::
  1513. * --disable-opencl::
  1514. * --with-opencl-dir::
  1515. * --with-opencl-include-dir::
  1516. * --with-opencl-lib-dir::
  1517. * --enable-gordon::
  1518. * --with-gordon-dir::
  1519. @end menu
  1520. @node --enable-nmaxcpus
  1521. @subsubsection @code{--enable-nmaxcpus=<number>}
  1522. @table @asis
  1523. @item @emph{Description}:
  1524. Defines the maximum number of CPU cores that StarPU will support, then
  1525. available as the @code{STARPU_NMAXCPUS} macro.
  1526. @end table
  1527. @node --disable-cpu
  1528. @subsubsection @code{--disable-cpu}
  1529. @table @asis
  1530. @item @emph{Description}:
  1531. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1532. @end table
  1533. @node --enable-maxcudadev
  1534. @subsubsection @code{--enable-maxcudadev=<number>}
  1535. @table @asis
  1536. @item @emph{Description}:
  1537. Defines the maximum number of CUDA devices that StarPU will support, then
  1538. available as the @code{STARPU_MAXCUDADEVS} macro.
  1539. @end table
  1540. @node --disable-cuda
  1541. @subsubsection @code{--disable-cuda}
  1542. @table @asis
  1543. @item @emph{Description}:
  1544. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1545. @end table
  1546. @node --with-cuda-dir
  1547. @subsubsection @code{--with-cuda-dir=<path>}
  1548. @table @asis
  1549. @item @emph{Description}:
  1550. Specify the directory where CUDA is installed. This directory should notably contain
  1551. @code{include/cuda.h}.
  1552. @end table
  1553. @node --with-cuda-include-dir
  1554. @subsubsection @code{--with-cuda-include-dir=<path>}
  1555. @table @asis
  1556. @item @emph{Description}:
  1557. Specify the directory where CUDA headers are installed. This directory should
  1558. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1559. value given to @code{--with-cuda-dir}.
  1560. @end table
  1561. @node --with-cuda-lib-dir
  1562. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1563. @table @asis
  1564. @item @emph{Description}:
  1565. Specify the directory where the CUDA library is installed. This directory should
  1566. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1567. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1568. @end table
  1569. @node --enable-maxopencldev
  1570. @subsubsection @code{--enable-maxopencldev=<number>}
  1571. @table @asis
  1572. @item @emph{Description}:
  1573. Defines the maximum number of OpenCL devices that StarPU will support, then
  1574. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1575. @end table
  1576. @node --disable-opencl
  1577. @subsubsection @code{--disable-opencl}
  1578. @table @asis
  1579. @item @emph{Description}:
  1580. Disable the use of OpenCL, even if the SDK is detected.
  1581. @end table
  1582. @node --with-opencl-dir
  1583. @subsubsection @code{--with-opencl-dir=<path>}
  1584. @table @asis
  1585. @item @emph{Description}:
  1586. Specify the location of the OpenCL SDK. This directory should notably contain
  1587. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1588. @end table
  1589. @node --with-opencl-include-dir
  1590. @subsubsection @code{--with-opencl-include-dir=<path>}
  1591. @table @asis
  1592. @item @emph{Description}:
  1593. Specify the location of OpenCL headers. This directory should notably contain
  1594. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1595. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1596. @end table
  1597. @node --with-opencl-lib-dir
  1598. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1599. @table @asis
  1600. @item @emph{Description}:
  1601. Specify the location of the OpenCL library. This directory should notably
  1602. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1603. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1604. @end table
  1605. @node --enable-gordon
  1606. @subsubsection @code{--enable-gordon}
  1607. @table @asis
  1608. @item @emph{Description}:
  1609. Enable the use of the Gordon runtime for Cell SPUs.
  1610. @c TODO: rather default to enabled when detected
  1611. @end table
  1612. @node --with-gordon-dir
  1613. @subsubsection @code{--with-gordon-dir=<path>}
  1614. @table @asis
  1615. @item @emph{Description}:
  1616. Specify the location of the Gordon SDK.
  1617. @end table
  1618. @node Advanced configuration
  1619. @subsection Advanced configuration
  1620. @menu
  1621. * --enable-perf-debug::
  1622. * --enable-model-debug::
  1623. * --enable-stats::
  1624. * --enable-maxbuffers::
  1625. * --enable-allocation-cache::
  1626. * --enable-opengl-render::
  1627. * --enable-blas-lib::
  1628. * --with-magma::
  1629. * --with-fxt::
  1630. * --with-perf-model-dir::
  1631. * --with-mpicc::
  1632. * --with-goto-dir::
  1633. * --with-atlas-dir::
  1634. * --with-mkl-cflags::
  1635. * --with-mkl-ldflags::
  1636. @end menu
  1637. @node --enable-perf-debug
  1638. @subsubsection @code{--enable-perf-debug}
  1639. @table @asis
  1640. @item @emph{Description}:
  1641. Enable performance debugging.
  1642. @end table
  1643. @node --enable-model-debug
  1644. @subsubsection @code{--enable-model-debug}
  1645. @table @asis
  1646. @item @emph{Description}:
  1647. Enable performance model debugging.
  1648. @end table
  1649. @node --enable-stats
  1650. @subsubsection @code{--enable-stats}
  1651. @table @asis
  1652. @item @emph{Description}:
  1653. Enable statistics.
  1654. @end table
  1655. @node --enable-maxbuffers
  1656. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1657. @table @asis
  1658. @item @emph{Description}:
  1659. Define the maximum number of buffers that tasks will be able to take
  1660. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1661. @end table
  1662. @node --enable-allocation-cache
  1663. @subsubsection @code{--enable-allocation-cache}
  1664. @table @asis
  1665. @item @emph{Description}:
  1666. Enable the use of a data allocation cache to avoid the cost of it with
  1667. CUDA. Still experimental.
  1668. @end table
  1669. @node --enable-opengl-render
  1670. @subsubsection @code{--enable-opengl-render}
  1671. @table @asis
  1672. @item @emph{Description}:
  1673. Enable the use of OpenGL for the rendering of some examples.
  1674. @c TODO: rather default to enabled when detected
  1675. @end table
  1676. @node --enable-blas-lib
  1677. @subsubsection @code{--enable-blas-lib=<name>}
  1678. @table @asis
  1679. @item @emph{Description}:
  1680. Specify the blas library to be used by some of the examples. The
  1681. library has to be 'atlas' or 'goto'.
  1682. @end table
  1683. @node --with-magma
  1684. @subsubsection @code{--with-magma=<path>}
  1685. @table @asis
  1686. @item @emph{Description}:
  1687. Specify where magma is installed. This directory should notably contain
  1688. @code{include/magmablas.h}.
  1689. @end table
  1690. @node --with-fxt
  1691. @subsubsection @code{--with-fxt=<path>}
  1692. @table @asis
  1693. @item @emph{Description}:
  1694. Specify the location of FxT (for generating traces and rendering them
  1695. using ViTE). This directory should notably contain
  1696. @code{include/fxt/fxt.h}.
  1697. @c TODO add ref to other section
  1698. @end table
  1699. @node --with-perf-model-dir
  1700. @subsubsection @code{--with-perf-model-dir=<dir>}
  1701. @table @asis
  1702. @item @emph{Description}:
  1703. Specify where performance models should be stored (instead of defaulting to the
  1704. current user's home).
  1705. @end table
  1706. @node --with-mpicc
  1707. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1708. @table @asis
  1709. @item @emph{Description}:
  1710. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1711. @end table
  1712. @node --with-goto-dir
  1713. @subsubsection @code{--with-goto-dir=<dir>}
  1714. @table @asis
  1715. @item @emph{Description}:
  1716. Specify the location of GotoBLAS.
  1717. @end table
  1718. @node --with-atlas-dir
  1719. @subsubsection @code{--with-atlas-dir=<dir>}
  1720. @table @asis
  1721. @item @emph{Description}:
  1722. Specify the location of ATLAS. This directory should notably contain
  1723. @code{include/cblas.h}.
  1724. @end table
  1725. @node --with-mkl-cflags
  1726. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1727. @table @asis
  1728. @item @emph{Description}:
  1729. Specify the compilation flags for the MKL Library.
  1730. @end table
  1731. @node --with-mkl-ldflags
  1732. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1733. @table @asis
  1734. @item @emph{Description}:
  1735. Specify the linking flags for the MKL Library. Note that the
  1736. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1737. website provides a script to determine the linking flags.
  1738. @end table
  1739. @c ---------------------------------------------------------------------
  1740. @c Environment variables
  1741. @c ---------------------------------------------------------------------
  1742. @node Execution configuration through environment variables
  1743. @section Execution configuration through environment variables
  1744. @menu
  1745. * Workers:: Configuring workers
  1746. * Scheduling:: Configuring the Scheduling engine
  1747. * Misc:: Miscellaneous and debug
  1748. @end menu
  1749. Note: the values given in @code{starpu_conf} structure passed when
  1750. calling @code{starpu_init} will override the values of the environment
  1751. variables.
  1752. @node Workers
  1753. @subsection Configuring workers
  1754. @menu
  1755. * STARPU_NCPUS:: Number of CPU workers
  1756. * STARPU_NCUDA:: Number of CUDA workers
  1757. * STARPU_NOPENCL:: Number of OpenCL workers
  1758. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1759. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1760. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1761. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1762. @end menu
  1763. @node STARPU_NCPUS
  1764. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1765. @table @asis
  1766. @item @emph{Description}:
  1767. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1768. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1769. the accelerators.
  1770. @end table
  1771. @node STARPU_NCUDA
  1772. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1773. @table @asis
  1774. @item @emph{Description}:
  1775. Specify the number of CUDA devices that StarPU can use. If
  1776. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1777. possible to select which CUDA devices should be used by the means of the
  1778. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1779. create as many CUDA workers as there are CUDA devices.
  1780. @end table
  1781. @node STARPU_NOPENCL
  1782. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1783. @table @asis
  1784. @item @emph{Description}:
  1785. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1786. @end table
  1787. @node STARPU_NGORDON
  1788. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1789. @table @asis
  1790. @item @emph{Description}:
  1791. Specify the number of SPUs that StarPU can use.
  1792. @end table
  1793. @node STARPU_WORKERS_CPUID
  1794. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1795. @table @asis
  1796. @item @emph{Description}:
  1797. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1798. specifies on which logical CPU the different workers should be
  1799. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1800. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1801. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1802. determined by the OS, or provided by the @code{hwloc} library in case it is
  1803. available.
  1804. Note that the first workers correspond to the CUDA workers, then come the
  1805. OpenCL and the SPU, and finally the CPU workers. For example if
  1806. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1807. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1808. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1809. the logical CPUs #1 and #3 will be used by the CPU workers.
  1810. If the number of workers is larger than the array given in
  1811. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1812. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1813. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1814. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1815. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1816. @end table
  1817. @node STARPU_WORKERS_CUDAID
  1818. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1819. @table @asis
  1820. @item @emph{Description}:
  1821. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1822. possible to select which CUDA devices should be used by StarPU. On a machine
  1823. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1824. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1825. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1826. the one reported by CUDA).
  1827. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1828. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1829. @end table
  1830. @node STARPU_WORKERS_OPENCLID
  1831. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1832. @table @asis
  1833. @item @emph{Description}:
  1834. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1835. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1836. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1837. @end table
  1838. @node Scheduling
  1839. @subsection Configuring the Scheduling engine
  1840. @menu
  1841. * STARPU_SCHED:: Scheduling policy
  1842. * STARPU_CALIBRATE:: Calibrate performance models
  1843. * STARPU_PREFETCH:: Use data prefetch
  1844. * STARPU_SCHED_ALPHA:: Computation factor
  1845. * STARPU_SCHED_BETA:: Communication factor
  1846. @end menu
  1847. @node STARPU_SCHED
  1848. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1849. @table @asis
  1850. @item @emph{Description}:
  1851. This chooses between the different scheduling policies proposed by StarPU: work
  1852. random, stealing, greedy, with performance models, etc.
  1853. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1854. @end table
  1855. @node STARPU_CALIBRATE
  1856. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1857. @table @asis
  1858. @item @emph{Description}:
  1859. If this variable is set to 1, the performance models are calibrated during
  1860. the execution. If it is set to 2, the previous values are dropped to restart
  1861. calibration from scratch. Setting this variable to 0 disable calibration, this
  1862. is the default behaviour.
  1863. Note: this currently only applies to dm and dmda scheduling policies.
  1864. @end table
  1865. @node STARPU_PREFETCH
  1866. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1867. @table @asis
  1868. @item @emph{Description}:
  1869. This variable indicates whether data prefetching should be enabled (0 means
  1870. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1871. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1872. advance, so that data is already present on the GPU when the task starts. As a
  1873. result, computation and data transfers are overlapped.
  1874. @end table
  1875. @node STARPU_SCHED_ALPHA
  1876. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1877. @table @asis
  1878. @item @emph{Description}:
  1879. To estimate the cost of a task StarPU takes into account the estimated
  1880. computation time (obtained thanks to performance models). The alpha factor is
  1881. the coefficient to be applied to it before adding it to the communication part.
  1882. @end table
  1883. @node STARPU_SCHED_BETA
  1884. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1885. @table @asis
  1886. @item @emph{Description}:
  1887. To estimate the cost of a task StarPU takes into account the estimated
  1888. data transfer time (obtained thanks to performance models). The beta factor is
  1889. the coefficient to be applied to it before adding it to the computation part.
  1890. @end table
  1891. @node Misc
  1892. @subsection Miscellaneous and debug
  1893. @menu
  1894. * STARPU_SILENT:: Disable verbose mode
  1895. * STARPU_LOGFILENAME:: Select debug file name
  1896. * STARPU_FXT_PREFIX:: FxT trace location
  1897. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1898. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1899. @end menu
  1900. @node STARPU_SILENT
  1901. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1902. @table @asis
  1903. @item @emph{Description}:
  1904. This variable allows to disable verbose mode at runtime when StarPU
  1905. has been configured with the option @code{--enable-verbose}.
  1906. @end table
  1907. @node STARPU_LOGFILENAME
  1908. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1909. @table @asis
  1910. @item @emph{Description}:
  1911. This variable specifies in which file the debugging output should be saved to.
  1912. @end table
  1913. @node STARPU_FXT_PREFIX
  1914. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1915. @table @asis
  1916. @item @emph{Description}
  1917. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1918. @end table
  1919. @node STARPU_LIMIT_GPU_MEM
  1920. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1921. @table @asis
  1922. @item @emph{Description}
  1923. This variable specifies the maximum number of megabytes that should be
  1924. available to the application on each GPUs. In case this value is smaller than
  1925. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1926. on the device. This variable is intended to be used for experimental purposes
  1927. as it emulates devices that have a limited amount of memory.
  1928. @end table
  1929. @node STARPU_GENERATE_TRACE
  1930. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1931. @table @asis
  1932. @item @emph{Description}
  1933. When set to 1, this variable indicates that StarPU should automatically
  1934. generate a Paje trace when starpu_shutdown is called.
  1935. @end table
  1936. @c ---------------------------------------------------------------------
  1937. @c StarPU API
  1938. @c ---------------------------------------------------------------------
  1939. @node StarPU API
  1940. @chapter StarPU API
  1941. @menu
  1942. * Initialization and Termination:: Initialization and Termination methods
  1943. * Workers' Properties:: Methods to enumerate workers' properties
  1944. * Data Library:: Methods to manipulate data
  1945. * Data Interfaces::
  1946. * Data Partition::
  1947. * Codelets and Tasks:: Methods to construct tasks
  1948. * Explicit Dependencies:: Explicit Dependencies
  1949. * Implicit Data Dependencies:: Implicit Data Dependencies
  1950. * Performance Model API::
  1951. * Profiling API:: Profiling API
  1952. * CUDA extensions:: CUDA extensions
  1953. * OpenCL extensions:: OpenCL extensions
  1954. * Cell extensions:: Cell extensions
  1955. * Miscellaneous helpers::
  1956. @end menu
  1957. @node Initialization and Termination
  1958. @section Initialization and Termination
  1959. @menu
  1960. * starpu_init:: Initialize StarPU
  1961. * struct starpu_conf:: StarPU runtime configuration
  1962. * starpu_conf_init:: Initialize starpu_conf structure
  1963. * starpu_shutdown:: Terminate StarPU
  1964. @end menu
  1965. @node starpu_init
  1966. @subsection @code{starpu_init} -- Initialize StarPU
  1967. @table @asis
  1968. @item @emph{Description}:
  1969. This is StarPU initialization method, which must be called prior to any other
  1970. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1971. policy, number of cores, ...) by passing a non-null argument. Default
  1972. configuration is used if the passed argument is @code{NULL}.
  1973. @item @emph{Return value}:
  1974. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1975. indicates that no worker was available (so that StarPU was not initialized).
  1976. @item @emph{Prototype}:
  1977. @code{int starpu_init(struct starpu_conf *conf);}
  1978. @end table
  1979. @node struct starpu_conf
  1980. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1981. @table @asis
  1982. @item @emph{Description}:
  1983. This structure is passed to the @code{starpu_init} function in order
  1984. to configure StarPU.
  1985. When the default value is used, StarPU automatically selects the number
  1986. of processing units and takes the default scheduling policy. This parameter
  1987. overwrites the equivalent environment variables.
  1988. @item @emph{Fields}:
  1989. @table @asis
  1990. @item @code{sched_policy_name} (default = NULL):
  1991. This is the name of the scheduling policy. This can also be specified with the
  1992. @code{STARPU_SCHED} environment variable.
  1993. @item @code{sched_policy} (default = NULL):
  1994. This is the definition of the scheduling policy. This field is ignored
  1995. if @code{sched_policy_name} is set.
  1996. @item @code{ncpus} (default = -1):
  1997. This is the number of CPU cores that StarPU can use. This can also be
  1998. specified with the @code{STARPU_NCPUS} environment variable.
  1999. @item @code{ncuda} (default = -1):
  2000. This is the number of CUDA devices that StarPU can use. This can also be
  2001. specified with the @code{STARPU_NCUDA} environment variable.
  2002. @item @code{nopencl} (default = -1):
  2003. This is the number of OpenCL devices that StarPU can use. This can also be
  2004. specified with the @code{STARPU_NOPENCL} environment variable.
  2005. @item @code{nspus} (default = -1):
  2006. This is the number of Cell SPUs that StarPU can use. This can also be
  2007. specified with the @code{STARPU_NGORDON} environment variable.
  2008. @item @code{use_explicit_workers_bindid} (default = 0)
  2009. If this flag is set, the @code{workers_bindid} array indicates where the
  2010. different workers are bound, otherwise StarPU automatically selects where to
  2011. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2012. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2013. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2014. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2015. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2016. where to bind the different workers. The i-th entry of the
  2017. @code{workers_bindid} indicates the logical identifier of the processor which
  2018. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2019. either determined by the OS, or provided by the @code{hwloc} library in case it
  2020. is available.
  2021. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2022. ignored.
  2023. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2024. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2025. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2026. CUDA devices in a round-robin fashion.
  2027. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2028. ignored.
  2029. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2030. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2031. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2032. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2033. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2034. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2035. OpenCL devices in a round-robin fashion.
  2036. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2037. @item @code{calibrate} (default = 0):
  2038. If this flag is set, StarPU will calibrate the performance models when
  2039. executing tasks. If this value is equal to -1, the default value is used. The
  2040. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2041. variable when it is set.
  2042. @end table
  2043. @end table
  2044. @node starpu_conf_init
  2045. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2046. @table @asis
  2047. This function initializes the @code{starpu_conf} structure passed as argument
  2048. with the default values. In case some configuration parameters are already
  2049. specified through environment variables, @code{starpu_conf_init} initializes
  2050. the fields of the structure according to the environment variables. For
  2051. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2052. @code{.ncuda} field of the structure passed as argument.
  2053. @item @emph{Return value}:
  2054. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2055. indicates that the argument was NULL.
  2056. @item @emph{Prototype}:
  2057. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2058. @end table
  2059. @node starpu_shutdown
  2060. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2061. @table @asis
  2062. @item @emph{Description}:
  2063. This is StarPU termination method. It must be called at the end of the
  2064. application: statistics and other post-mortem debugging information are not
  2065. guaranteed to be available until this method has been called.
  2066. @item @emph{Prototype}:
  2067. @code{void starpu_shutdown(void);}
  2068. @end table
  2069. @node Workers' Properties
  2070. @section Workers' Properties
  2071. @menu
  2072. * starpu_worker_get_count:: Get the number of processing units
  2073. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2074. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2075. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2076. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2077. * starpu_worker_get_id:: Get the identifier of the current worker
  2078. * starpu_worker_get_devid:: Get the device identifier of a worker
  2079. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2080. * starpu_worker_get_name:: Get the name of a worker
  2081. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2082. @end menu
  2083. @node starpu_worker_get_count
  2084. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2085. @table @asis
  2086. @item @emph{Description}:
  2087. This function returns the number of workers (i.e. processing units executing
  2088. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2089. @item @emph{Prototype}:
  2090. @code{unsigned starpu_worker_get_count(void);}
  2091. @end table
  2092. @node starpu_cpu_worker_get_count
  2093. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2094. @table @asis
  2095. @item @emph{Description}:
  2096. This function returns the number of CPUs controlled by StarPU. The returned
  2097. value should be at most @code{STARPU_NMAXCPUS}.
  2098. @item @emph{Prototype}:
  2099. @code{unsigned starpu_cpu_worker_get_count(void);}
  2100. @end table
  2101. @node starpu_cuda_worker_get_count
  2102. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2103. @table @asis
  2104. @item @emph{Description}:
  2105. This function returns the number of CUDA devices controlled by StarPU. The returned
  2106. value should be at most @code{STARPU_MAXCUDADEVS}.
  2107. @item @emph{Prototype}:
  2108. @code{unsigned starpu_cuda_worker_get_count(void);}
  2109. @end table
  2110. @node starpu_opencl_worker_get_count
  2111. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2112. @table @asis
  2113. @item @emph{Description}:
  2114. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2115. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2116. @item @emph{Prototype}:
  2117. @code{unsigned starpu_opencl_worker_get_count(void);}
  2118. @end table
  2119. @node starpu_spu_worker_get_count
  2120. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2121. @table @asis
  2122. @item @emph{Description}:
  2123. This function returns the number of Cell SPUs controlled by StarPU.
  2124. @item @emph{Prototype}:
  2125. @code{unsigned starpu_opencl_worker_get_count(void);}
  2126. @end table
  2127. @node starpu_worker_get_id
  2128. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2129. @table @asis
  2130. @item @emph{Description}:
  2131. This function returns the identifier of the worker associated to the calling
  2132. thread. The returned value is either -1 if the current context is not a StarPU
  2133. worker (i.e. when called from the application outside a task or a callback), or
  2134. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2135. @item @emph{Prototype}:
  2136. @code{int starpu_worker_get_id(void);}
  2137. @end table
  2138. @node starpu_worker_get_devid
  2139. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2140. @table @asis
  2141. @item @emph{Description}:
  2142. This functions returns the device id of the worker associated to an identifier
  2143. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2144. CUDA worker, this device identifier is the logical device identifier exposed by
  2145. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2146. identifier of a CPU worker is the logical identifier of the core on which the
  2147. worker was bound; this identifier is either provided by the OS or by the
  2148. @code{hwloc} library in case it is available.
  2149. @item @emph{Prototype}:
  2150. @code{int starpu_worker_get_devid(int id);}
  2151. @end table
  2152. @node starpu_worker_get_type
  2153. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2154. @table @asis
  2155. @item @emph{Description}:
  2156. This function returns the type of worker associated to an identifier (as
  2157. returned by the @code{starpu_worker_get_id} function). The returned value
  2158. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2159. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2160. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2161. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2162. identifier is unspecified.
  2163. @item @emph{Prototype}:
  2164. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2165. @end table
  2166. @node starpu_worker_get_name
  2167. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2168. @table @asis
  2169. @item @emph{Description}:
  2170. StarPU associates a unique human readable string to each processing unit. This
  2171. function copies at most the @code{maxlen} first bytes of the unique string
  2172. associated to a worker identified by its identifier @code{id} into the
  2173. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2174. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2175. function on an invalid identifier results in an unspecified behaviour.
  2176. @item @emph{Prototype}:
  2177. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2178. @end table
  2179. @node starpu_worker_get_memory_node
  2180. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2181. @table @asis
  2182. @item @emph{Description}:
  2183. This function returns the identifier of the memory node associated to the
  2184. worker identified by @code{workerid}.
  2185. @item @emph{Prototype}:
  2186. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2187. @end table
  2188. @node Data Library
  2189. @section Data Library
  2190. This section describes the data management facilities provided by StarPU.
  2191. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2192. design their own data interfaces if required.
  2193. @menu
  2194. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2195. * starpu_access_mode:: Data access mode
  2196. * unsigned memory_node:: Memory node
  2197. * starpu_data_handle:: StarPU opaque data handle
  2198. * void *interface:: StarPU data interface
  2199. * starpu_data_register:: Register a piece of data to StarPU
  2200. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2201. * starpu_data_invalidate:: Invalidate all data replicates
  2202. * starpu_data_acquire:: Access registered data from the application
  2203. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2204. * starpu_data_release:: Release registered data from the application
  2205. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2206. @end menu
  2207. @node starpu_data_malloc_pinned_if_possible
  2208. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2209. @table @asis
  2210. @item @emph{Description}:
  2211. This function allocates data of the given size. It will also try to pin it in
  2212. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2213. thus permit data transfer and computation overlapping. The allocated buffer must
  2214. be freed thanks to the @code{starpu_data_free_pinned_if_possible} function.
  2215. @item @emph{Prototype}:
  2216. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2217. @end table
  2218. @node starpu_access_mode
  2219. @subsection @code{starpu_access_mode} -- Data access mode
  2220. This datatype describes a data access mode. The different available modes are:
  2221. @table @asis
  2222. @table @asis
  2223. @item @code{STARPU_R} read-only mode.
  2224. @item @code{STARPU_W} write-only mode.
  2225. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2226. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2227. @end table
  2228. @end table
  2229. @node unsigned memory_node
  2230. @subsection @code{unsigned memory_node} -- Memory node
  2231. @table @asis
  2232. @item @emph{Description}:
  2233. Every worker is associated to a memory node which is a logical abstraction of
  2234. the address space from which the processing unit gets its data. For instance,
  2235. the memory node associated to the different CPU workers represents main memory
  2236. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2237. Every memory node is identified by a logical index which is accessible from the
  2238. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2239. to StarPU, the specified memory node indicates where the piece of data
  2240. initially resides (we also call this memory node the home node of a piece of
  2241. data).
  2242. @end table
  2243. @node starpu_data_handle
  2244. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2245. @table @asis
  2246. @item @emph{Description}:
  2247. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2248. data. Once a piece of data has been registered to StarPU, it is associated to a
  2249. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2250. over the entire machine, so that we can maintain data consistency and locate
  2251. data replicates for instance.
  2252. @end table
  2253. @node void *interface
  2254. @subsection @code{void *interface} -- StarPU data interface
  2255. @table @asis
  2256. @item @emph{Description}:
  2257. Data management is done at a high-level in StarPU: rather than accessing a mere
  2258. list of contiguous buffers, the tasks may manipulate data that are described by
  2259. a high-level construct which we call data interface.
  2260. An example of data interface is the "vector" interface which describes a
  2261. contiguous data array on a spefic memory node. This interface is a simple
  2262. structure containing the number of elements in the array, the size of the
  2263. elements, and the address of the array in the appropriate address space (this
  2264. address may be invalid if there is no valid copy of the array in the memory
  2265. node). More informations on the data interfaces provided by StarPU are
  2266. given in @ref{Data Interfaces}.
  2267. When a piece of data managed by StarPU is used by a task, the task
  2268. implementation is given a pointer to an interface describing a valid copy of
  2269. the data that is accessible from the current processing unit.
  2270. @end table
  2271. @node starpu_data_register
  2272. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2273. @table @asis
  2274. @item @emph{Description}:
  2275. Register a piece of data into the handle located at the @code{handleptr}
  2276. address. The @code{interface} buffer contains the initial description of the
  2277. data in the home node. The @code{ops} argument is a pointer to a structure
  2278. describing the different methods used to manipulate this type of interface. See
  2279. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2280. If @code{home_node} is -1, StarPU will automatically
  2281. allocate the memory when it is used for the
  2282. first time in write-only mode. Once such data handle has been automatically
  2283. allocated, it is possible to access it using any access mode.
  2284. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2285. matrix) which can be registered by the means of helper functions (e.g.
  2286. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2287. @item @emph{Prototype}:
  2288. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2289. uint32_t home_node,
  2290. void *interface,
  2291. struct starpu_data_interface_ops_t *ops);}
  2292. @end table
  2293. @node starpu_data_unregister
  2294. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2295. @table @asis
  2296. @item @emph{Description}:
  2297. This function unregisters a data handle from StarPU. If the data was
  2298. automatically allocated by StarPU because the home node was -1, all
  2299. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2300. is put back into the home node in the buffer that was initially registered.
  2301. Using a data handle that has been unregistered from StarPU results in an
  2302. undefined behaviour.
  2303. @item @emph{Prototype}:
  2304. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2305. @end table
  2306. @node starpu_data_invalidate
  2307. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2308. @table @asis
  2309. @item @emph{Description}:
  2310. Destroy all replicates of the data handle. After data invalidation, the first
  2311. access to the handle must be performed in write-only mode. Accessing an
  2312. invalidated data in read-mode results in undefined behaviour.
  2313. @item @emph{Prototype}:
  2314. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2315. @end table
  2316. @c TODO create a specific sections about user interaction with the DSM ?
  2317. @node starpu_data_acquire
  2318. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2319. @table @asis
  2320. @item @emph{Description}:
  2321. The application must call this function prior to accessing registered data from
  2322. main memory outside tasks. StarPU ensures that the application will get an
  2323. up-to-date copy of the data in main memory located where the data was
  2324. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2325. be consistent with the access mode specified in the @code{mode} argument.
  2326. @code{starpu_data_release} must be called once the application does not need to
  2327. access the piece of data anymore. Note that implicit data
  2328. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2329. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2330. the data, unless that they have not been disabled explictly by calling
  2331. @code{starpu_data_set_default_sequential_consistency_flag} or
  2332. @code{starpu_data_set_sequential_consistency_flag}.
  2333. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2334. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2335. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2336. @item @emph{Prototype}:
  2337. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2338. @end table
  2339. @node starpu_data_acquire_cb
  2340. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2341. @table @asis
  2342. @item @emph{Description}:
  2343. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2344. @code{starpu_data_release}. When the data specified in the first argument is
  2345. available in the appropriate access mode, the callback function is executed.
  2346. The application may access the requested data during the execution of this
  2347. callback. The callback function must call @code{starpu_data_release} once the
  2348. application does not need to access the piece of data anymore.
  2349. Note that implicit data dependencies are also enforced by
  2350. @code{starpu_data_acquire_cb} in case they are enabled.
  2351. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2352. be called from task callbacks. Upon successful completion, this function
  2353. returns 0.
  2354. @item @emph{Prototype}:
  2355. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2356. @end table
  2357. @node starpu_data_release
  2358. @subsection @code{starpu_data_release} -- Release registered data from the application
  2359. @table @asis
  2360. @item @emph{Description}:
  2361. This function releases the piece of data acquired by the application either by
  2362. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2363. @item @emph{Prototype}:
  2364. @code{void starpu_data_release(starpu_data_handle handle);}
  2365. @end table
  2366. @node starpu_data_set_wt_mask
  2367. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2368. @table @asis
  2369. @item @emph{Description}:
  2370. This function sets the write-through mask of a given data, i.e. a bitmask of
  2371. nodes where the data should be always replicated after modification.
  2372. @item @emph{Prototype}:
  2373. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2374. @end table
  2375. @node Data Interfaces
  2376. @section Data Interfaces
  2377. @menu
  2378. * Variable Interface::
  2379. * Vector Interface::
  2380. * Matrix Interface::
  2381. * 3D Matrix Interface::
  2382. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2383. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2384. @end menu
  2385. @node Variable Interface
  2386. @subsection Variable Interface
  2387. @table @asis
  2388. @item @emph{Description}:
  2389. This variant of @code{starpu_data_register} uses the variable interface,
  2390. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2391. and @code{elemsize} is the size of the variable.
  2392. @item @emph{Prototype}:
  2393. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2394. uint32_t home_node,
  2395. uintptr_t ptr, size_t elemsize);}
  2396. @item @emph{Example}:
  2397. @cartouche
  2398. @smallexample
  2399. float var;
  2400. starpu_data_handle var_handle;
  2401. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2402. @end smallexample
  2403. @end cartouche
  2404. @end table
  2405. @node Vector Interface
  2406. @subsection Vector Interface
  2407. @table @asis
  2408. @item @emph{Description}:
  2409. This variant of @code{starpu_data_register} uses the vector interface,
  2410. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2411. element in the home node. @code{nx} is the number of elements in the vector.
  2412. @code{elemsize} is the size of each element.
  2413. @item @emph{Prototype}:
  2414. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2415. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2416. @item @emph{Example}:
  2417. @cartouche
  2418. @smallexample
  2419. float vector[NX];
  2420. starpu_data_handle vector_handle;
  2421. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2422. sizeof(vector[0]));
  2423. @end smallexample
  2424. @end cartouche
  2425. @end table
  2426. @node Matrix Interface
  2427. @subsection Matrix Interface
  2428. @table @asis
  2429. @item @emph{Description}:
  2430. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2431. matrices of elements. @code{ptr} is the address of the first element in the home
  2432. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2433. of elements in a row (this can be different from @code{ld} if there are extra
  2434. elements for alignment for instance). @code{ny} is the number of rows.
  2435. @code{elemsize} is the size of each element.
  2436. @item @emph{Prototype}:
  2437. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2438. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2439. uint32_t ny, size_t elemsize);}
  2440. @item @emph{Example}:
  2441. @cartouche
  2442. @smallexample
  2443. float *matrix;
  2444. starpu_data_handle matrix_handle;
  2445. matrix = (float*)malloc(width * height * sizeof(float));
  2446. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2447. width, width, height, sizeof(float));
  2448. @end smallexample
  2449. @end cartouche
  2450. @end table
  2451. @node 3D Matrix Interface
  2452. @subsection 3D Matrix Interface
  2453. @table @asis
  2454. @item @emph{Description}:
  2455. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2456. @code{ptr} is the address of the array of first element in the home node.
  2457. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2458. of rows between z planes. @code{nx} is the number of elements in a row (this
  2459. can be different from @code{ldy} if there are extra elements for alignment
  2460. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2461. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2462. each element.
  2463. @item @emph{Prototype}:
  2464. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2465. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2466. uint32_t ny, uint32_t nz, size_t elemsize);}
  2467. @item @emph{Example}:
  2468. @cartouche
  2469. @smallexample
  2470. float *block;
  2471. starpu_data_handle block_handle;
  2472. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2473. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2474. nx, nx*ny, nx, ny, nz, sizeof(float));
  2475. @end smallexample
  2476. @end cartouche
  2477. @end table
  2478. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2479. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2480. @table @asis
  2481. @item @emph{Description}:
  2482. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2483. TODO
  2484. @item @emph{Prototype}:
  2485. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2486. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2487. @item @emph{Example}:
  2488. @cartouche
  2489. @smallexample
  2490. @end smallexample
  2491. @end cartouche
  2492. @end table
  2493. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2494. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2495. @table @asis
  2496. @item @emph{Description}:
  2497. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2498. TODO
  2499. @item @emph{Prototype}:
  2500. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2501. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2502. @item @emph{Example}:
  2503. @cartouche
  2504. @smallexample
  2505. @end smallexample
  2506. @end cartouche
  2507. @end table
  2508. @node Data Partition
  2509. @section Data Partition
  2510. @menu
  2511. * struct starpu_data_filter:: StarPU filter structure
  2512. * starpu_data_partition:: Partition Data
  2513. * starpu_data_unpartition:: Unpartition Data
  2514. * starpu_data_get_nb_children::
  2515. * starpu_data_get_sub_data::
  2516. * Predefined filter functions::
  2517. @end menu
  2518. @node struct starpu_data_filter
  2519. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2520. @table @asis
  2521. @item @emph{Description}:
  2522. The filter structure describes a data partitioning operation, to be given to the
  2523. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2524. @item @emph{Fields}:
  2525. @table @asis
  2526. @item @code{filter_func}:
  2527. This function fills the @code{child_interface} structure with interface
  2528. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2529. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2530. @item @code{nchildren}:
  2531. This is the number of parts to partition the data into.
  2532. @item @code{get_nchildren}:
  2533. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2534. children depends on the actual data (e.g. the number of blocks in a sparse
  2535. matrix).
  2536. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2537. @item @code{get_child_ops}:
  2538. In case the resulting children use a different data interface, this function
  2539. returns which interface is used by child number @code{id}.
  2540. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2541. @item @code{filter_arg}:
  2542. Some filters take an addition parameter, but this is usually unused.
  2543. @item @code{filter_arg_ptr}:
  2544. Some filters take an additional array parameter like the sizes of the parts, but
  2545. this is usually unused.
  2546. @end table
  2547. @end table
  2548. @node starpu_data_partition
  2549. @subsection starpu_data_partition -- Partition Data
  2550. @table @asis
  2551. @item @emph{Description}:
  2552. This requests partitioning one StarPU data @code{initial_handle} into several
  2553. subdata according to the filter @code{f}
  2554. @item @emph{Prototype}:
  2555. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2556. @item @emph{Example}:
  2557. @cartouche
  2558. @smallexample
  2559. struct starpu_data_filter f = @{
  2560. .filter_func = starpu_vertical_block_filter_func,
  2561. .nchildren = nslicesx,
  2562. .get_nchildren = NULL,
  2563. .get_child_ops = NULL
  2564. @};
  2565. starpu_data_partition(A_handle, &f);
  2566. @end smallexample
  2567. @end cartouche
  2568. @end table
  2569. @node starpu_data_unpartition
  2570. @subsection starpu_data_unpartition -- Unpartition data
  2571. @table @asis
  2572. @item @emph{Description}:
  2573. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2574. collected back into one big piece in the @code{gathering_node} (usually 0).
  2575. @item @emph{Prototype}:
  2576. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2577. @item @emph{Example}:
  2578. @cartouche
  2579. @smallexample
  2580. starpu_data_unpartition(A_handle, 0);
  2581. @end smallexample
  2582. @end cartouche
  2583. @end table
  2584. @node starpu_data_get_nb_children
  2585. @subsection starpu_data_get_nb_children
  2586. @table @asis
  2587. @item @emph{Description}:
  2588. This function returns the number of children.
  2589. @item @emph{Return value}:
  2590. The number of children.
  2591. @item @emph{Prototype}:
  2592. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2593. @end table
  2594. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2595. @node starpu_data_get_sub_data
  2596. @subsection starpu_data_get_sub_data
  2597. @table @asis
  2598. @item @emph{Description}:
  2599. After partitioning a StarPU data by applying a filter,
  2600. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2601. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2602. is the number of filters to traverse (in case several filters have been applied,
  2603. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2604. parameters are the indexes.
  2605. @item @emph{Return value}:
  2606. A handle to the subdata.
  2607. @item @emph{Prototype}:
  2608. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2609. @item @emph{Example}:
  2610. @cartouche
  2611. @smallexample
  2612. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2613. @end smallexample
  2614. @end cartouche
  2615. @end table
  2616. @node Predefined filter functions
  2617. @subsection Predefined filter functions
  2618. @menu
  2619. * Partitioning BCSR Data::
  2620. * Partitioning BLAS interface::
  2621. * Partitioning Vector Data::
  2622. * Partitioning Block Data::
  2623. @end menu
  2624. This section gives a partial list of the predefined partitioning functions.
  2625. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2626. list can be found in @code{starpu_data_filters.h} .
  2627. @node Partitioning BCSR Data
  2628. @subsubsection Partitioning BCSR Data
  2629. @table @asis
  2630. @item @emph{Description}:
  2631. TODO
  2632. @item @emph{Prototype}:
  2633. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2634. @end table
  2635. @table @asis
  2636. @item @emph{Description}:
  2637. TODO
  2638. @item @emph{Prototype}:
  2639. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2640. @end table
  2641. @node Partitioning BLAS interface
  2642. @subsubsection Partitioning BLAS interface
  2643. @table @asis
  2644. @item @emph{Description}:
  2645. This partitions a dense Matrix into horizontal blocks.
  2646. @item @emph{Prototype}:
  2647. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2648. @end table
  2649. @table @asis
  2650. @item @emph{Description}:
  2651. This partitions a dense Matrix into vertical blocks.
  2652. @item @emph{Prototype}:
  2653. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2654. @end table
  2655. @node Partitioning Vector Data
  2656. @subsubsection Partitioning Vector Data
  2657. @table @asis
  2658. @item @emph{Description}:
  2659. This partitions a vector into blocks of the same size.
  2660. @item @emph{Prototype}:
  2661. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2662. @end table
  2663. @table @asis
  2664. @item @emph{Description}:
  2665. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2666. @item @emph{Prototype}:
  2667. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2668. @end table
  2669. @table @asis
  2670. @item @emph{Description}:
  2671. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2672. @item @emph{Prototype}:
  2673. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2674. @end table
  2675. @node Partitioning Block Data
  2676. @subsubsection Partitioning Block Data
  2677. @table @asis
  2678. @item @emph{Description}:
  2679. This partitions a 3D matrix along the X axis.
  2680. @item @emph{Prototype}:
  2681. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2682. @end table
  2683. @node Codelets and Tasks
  2684. @section Codelets and Tasks
  2685. @menu
  2686. * struct starpu_codelet:: StarPU codelet structure
  2687. * struct starpu_task:: StarPU task structure
  2688. * starpu_task_init:: Initialize a Task
  2689. * starpu_task_create:: Allocate and Initialize a Task
  2690. * starpu_task_deinit:: Release all the resources used by a Task
  2691. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2692. * starpu_task_wait:: Wait for the termination of a Task
  2693. * starpu_task_submit:: Submit a Task
  2694. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2695. * starpu_get_current_task:: Return the task currently executed by the worker
  2696. * starpu_display_codelet_stats:: Display statistics
  2697. @end menu
  2698. @node struct starpu_codelet
  2699. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2700. @table @asis
  2701. @item @emph{Description}:
  2702. The codelet structure describes a kernel that is possibly implemented on various
  2703. targets. For compatibility, make sure to initialize the whole structure to zero.
  2704. @item @emph{Fields}:
  2705. @table @asis
  2706. @item @code{where}:
  2707. Indicates which types of processing units are able to execute the codelet.
  2708. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2709. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2710. indicates that it is only available on Cell SPUs.
  2711. @item @code{cpu_func} (optional):
  2712. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2713. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2714. argument being the array of data managed by the data management library, and
  2715. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2716. field of the @code{starpu_task} structure.
  2717. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2718. the @code{where} field, it must be non-null otherwise.
  2719. @item @code{cuda_func} (optional):
  2720. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2721. must be a host-function written in the CUDA runtime API}. Its prototype must
  2722. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2723. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2724. field, it must be non-null otherwise.
  2725. @item @code{opencl_func} (optional):
  2726. Is a function pointer to the OpenCL implementation of the codelet. Its
  2727. prototype must be:
  2728. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2729. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2730. @code{where} field, it must be non-null otherwise.
  2731. @item @code{gordon_func} (optional):
  2732. This is the index of the Cell SPU implementation within the Gordon library.
  2733. See Gordon documentation for more details on how to register a kernel and
  2734. retrieve its index.
  2735. @item @code{nbuffers}:
  2736. Specifies the number of arguments taken by the codelet. These arguments are
  2737. managed by the DSM and are accessed from the @code{void *buffers[]}
  2738. array. The constant argument passed with the @code{cl_arg} field of the
  2739. @code{starpu_task} structure is not counted in this number. This value should
  2740. not be above @code{STARPU_NMAXBUFS}.
  2741. @item @code{model} (optional):
  2742. This is a pointer to the task duration performance model associated to this
  2743. codelet. This optional field is ignored when set to @code{NULL}.
  2744. TODO
  2745. @item @code{power_model} (optional):
  2746. This is a pointer to the task power consumption performance model associated
  2747. to this codelet. This optional field is ignored when set to @code{NULL}.
  2748. In the case of parallel codelets, this has to account for all processing units
  2749. involved in the parallel execution.
  2750. TODO
  2751. @end table
  2752. @end table
  2753. @node struct starpu_task
  2754. @subsection @code{struct starpu_task} -- StarPU task structure
  2755. @table @asis
  2756. @item @emph{Description}:
  2757. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2758. processing units managed by StarPU. It instantiates a codelet. It can either be
  2759. allocated dynamically with the @code{starpu_task_create} method, or declared
  2760. statically. In the latter case, the programmer has to zero the
  2761. @code{starpu_task} structure and to fill the different fields properly. The
  2762. indicated default values correspond to the configuration of a task allocated
  2763. with @code{starpu_task_create}.
  2764. @item @emph{Fields}:
  2765. @table @asis
  2766. @item @code{cl}:
  2767. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2768. describes where the kernel should be executed, and supplies the appropriate
  2769. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2770. such empty tasks can be useful for synchronization purposes.
  2771. @item @code{buffers}:
  2772. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2773. different pieces of data accessed by the task, and how they should be accessed.
  2774. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2775. @code{handle} field specifies the handle of the piece of data, and the
  2776. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2777. of entries in this array must be specified in the @code{nbuffers} field of the
  2778. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2779. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2780. option when configuring StarPU.
  2781. @item @code{cl_arg} (optional) (default = NULL):
  2782. This pointer is passed to the codelet through the second argument
  2783. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2784. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2785. argument.
  2786. @item @code{cl_arg_size} (optional, Cell specific):
  2787. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2788. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2789. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2790. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2791. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2792. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2793. codelets.
  2794. @item @code{callback_func} (optional) (default = @code{NULL}):
  2795. This is a function pointer of prototype @code{void (*f)(void *)} which
  2796. specifies a possible callback. If this pointer is non-null, the callback
  2797. function is executed @emph{on the host} after the execution of the task. The
  2798. callback is passed the value contained in the @code{callback_arg} field. No
  2799. callback is executed if the field is set to @code{NULL}.
  2800. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2801. This is the pointer passed to the callback function. This field is ignored if
  2802. the @code{callback_func} is set to @code{NULL}.
  2803. @item @code{use_tag} (optional) (default = 0):
  2804. If set, this flag indicates that the task should be associated with the tag
  2805. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2806. with the task and to express task dependencies easily.
  2807. @item @code{tag_id}:
  2808. This fields contains the tag associated to the task if the @code{use_tag} field
  2809. was set, it is ignored otherwise.
  2810. @item @code{synchronous}:
  2811. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2812. returns only when the task has been executed (or if no worker is able to
  2813. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2814. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2815. This field indicates a level of priority for the task. This is an integer value
  2816. that must be set between the return values of the
  2817. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2818. and that of the @code{starpu_sched_get_max_priority} for the most important
  2819. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2820. are provided for convenience and respectively returns value of
  2821. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2822. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2823. order to allow static task initialization. Scheduling strategies that take
  2824. priorities into account can use this parameter to take better scheduling
  2825. decisions, but the scheduling policy may also ignore it.
  2826. @item @code{execute_on_a_specific_worker} (default = 0):
  2827. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2828. task to the worker specified by the @code{workerid} field.
  2829. @item @code{workerid} (optional):
  2830. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2831. which is the identifier of the worker that should process this task (as
  2832. returned by @code{starpu_worker_get_id}). This field is ignored if
  2833. @code{execute_on_a_specific_worker} field is set to 0.
  2834. @item @code{detach} (optional) (default = 1):
  2835. If this flag is set, it is not possible to synchronize with the task
  2836. by the means of @code{starpu_task_wait} later on. Internal data structures
  2837. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2838. flag is not set.
  2839. @item @code{destroy} (optional) (default = 1):
  2840. If this flag is set, the task structure will automatically be freed, either
  2841. after the execution of the callback if the task is detached, or during
  2842. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2843. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2844. called explicitly. Setting this flag for a statically allocated task structure
  2845. will result in undefined behaviour.
  2846. @item @code{predicted} (output field):
  2847. Predicted duration of the task. This field is only set if the scheduling
  2848. strategy used performance models.
  2849. @end table
  2850. @end table
  2851. @node starpu_task_init
  2852. @subsection @code{starpu_task_init} -- Initialize a Task
  2853. @table @asis
  2854. @item @emph{Description}:
  2855. Initialize a task structure with default values. This function is implicitly
  2856. called by @code{starpu_task_create}. By default, tasks initialized with
  2857. @code{starpu_task_init} must be deinitialized explicitly with
  2858. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2859. constant @code{STARPU_TASK_INITIALIZER}.
  2860. @item @emph{Prototype}:
  2861. @code{void starpu_task_init(struct starpu_task *task);}
  2862. @end table
  2863. @node starpu_task_create
  2864. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2865. @table @asis
  2866. @item @emph{Description}:
  2867. Allocate a task structure and initialize it with default values. Tasks
  2868. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2869. task is terminated. If the destroy flag is explicitly unset, the resources used
  2870. by the task are freed by calling
  2871. @code{starpu_task_destroy}.
  2872. @item @emph{Prototype}:
  2873. @code{struct starpu_task *starpu_task_create(void);}
  2874. @end table
  2875. @node starpu_task_deinit
  2876. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2877. @table @asis
  2878. @item @emph{Description}:
  2879. Release all the structures automatically allocated to execute the task. This is
  2880. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2881. freed. This should be used for statically allocated tasks for instance.
  2882. @item @emph{Prototype}:
  2883. @code{void starpu_task_deinit(struct starpu_task *task);}
  2884. @end table
  2885. @node starpu_task_destroy
  2886. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2887. @table @asis
  2888. @item @emph{Description}:
  2889. Free the resource allocated during @code{starpu_task_create}. This function can be
  2890. called automatically after the execution of a task by setting the
  2891. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2892. Calling this function on a statically allocated task results in an undefined
  2893. behaviour.
  2894. @item @emph{Prototype}:
  2895. @code{void starpu_task_destroy(struct starpu_task *task);}
  2896. @end table
  2897. @node starpu_task_wait
  2898. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2899. @table @asis
  2900. @item @emph{Description}:
  2901. This function blocks until the task has been executed. It is not possible to
  2902. synchronize with a task more than once. It is not possible to wait for
  2903. synchronous or detached tasks.
  2904. @item @emph{Return value}:
  2905. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2906. indicates that the specified task was either synchronous or detached.
  2907. @item @emph{Prototype}:
  2908. @code{int starpu_task_wait(struct starpu_task *task);}
  2909. @end table
  2910. @node starpu_task_submit
  2911. @subsection @code{starpu_task_submit} -- Submit a Task
  2912. @table @asis
  2913. @item @emph{Description}:
  2914. This function submits a task to StarPU. Calling this function does
  2915. not mean that the task will be executed immediately as there can be data or task
  2916. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2917. scheduling this task with respect to such dependencies.
  2918. This function returns immediately if the @code{synchronous} field of the
  2919. @code{starpu_task} structure was set to 0, and block until the termination of
  2920. the task otherwise. It is also possible to synchronize the application with
  2921. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2922. function for instance.
  2923. @item @emph{Return value}:
  2924. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2925. means that there is no worker able to process this task (e.g. there is no GPU
  2926. available and this task is only implemented for CUDA devices).
  2927. @item @emph{Prototype}:
  2928. @code{int starpu_task_submit(struct starpu_task *task);}
  2929. @end table
  2930. @node starpu_task_wait_for_all
  2931. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2932. @table @asis
  2933. @item @emph{Description}:
  2934. This function blocks until all the tasks that were submitted are terminated.
  2935. @item @emph{Prototype}:
  2936. @code{void starpu_task_wait_for_all(void);}
  2937. @end table
  2938. @node starpu_get_current_task
  2939. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2940. @table @asis
  2941. @item @emph{Description}:
  2942. This function returns the task currently executed by the worker, or
  2943. NULL if it is called either from a thread that is not a task or simply
  2944. because there is no task being executed at the moment.
  2945. @item @emph{Prototype}:
  2946. @code{struct starpu_task *starpu_get_current_task(void);}
  2947. @end table
  2948. @node starpu_display_codelet_stats
  2949. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2950. @table @asis
  2951. @item @emph{Description}:
  2952. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2953. @item @emph{Prototype}:
  2954. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2955. @end table
  2956. @c Callbacks : what can we put in callbacks ?
  2957. @node Explicit Dependencies
  2958. @section Explicit Dependencies
  2959. @menu
  2960. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2961. * starpu_tag_t:: Task logical identifier
  2962. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2963. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2964. * starpu_tag_wait:: Block until a Tag is terminated
  2965. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2966. * starpu_tag_remove:: Destroy a Tag
  2967. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2968. @end menu
  2969. @node starpu_task_declare_deps_array
  2970. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2971. @table @asis
  2972. @item @emph{Description}:
  2973. Declare task dependencies between a @code{task} and an array of tasks of length
  2974. @code{ndeps}. This function must be called prior to the submission of the task,
  2975. but it may called after the submission or the execution of the tasks in the
  2976. array provided the tasks are still valid (ie. they were not automatically
  2977. destroyed). Calling this function on a task that was already submitted or with
  2978. an entry of @code{task_array} that is not a valid task anymore results in an
  2979. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2980. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2981. same task, in this case, the dependencies are added. It is possible to have
  2982. redundancy in the task dependencies.
  2983. @item @emph{Prototype}:
  2984. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2985. @end table
  2986. @node starpu_tag_t
  2987. @subsection @code{starpu_tag_t} -- Task logical identifier
  2988. @table @asis
  2989. @item @emph{Description}:
  2990. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2991. dependencies between tasks by the means of those tags. To do so, fill the
  2992. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2993. be arbitrary) and set the @code{use_tag} field to 1.
  2994. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2995. not be started until the tasks which holds the declared dependency tags are
  2996. completed.
  2997. @end table
  2998. @node starpu_tag_declare_deps
  2999. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3000. @table @asis
  3001. @item @emph{Description}:
  3002. Specify the dependencies of the task identified by tag @code{id}. The first
  3003. argument specifies the tag which is configured, the second argument gives the
  3004. number of tag(s) on which @code{id} depends. The following arguments are the
  3005. tags which have to be terminated to unlock the task.
  3006. This function must be called before the associated task is submitted to StarPU
  3007. with @code{starpu_task_submit}.
  3008. @item @emph{Remark}
  3009. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3010. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3011. typically need to be explicitly casted. Using the
  3012. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3013. @item @emph{Prototype}:
  3014. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3015. @item @emph{Example}:
  3016. @cartouche
  3017. @example
  3018. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3019. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3020. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3021. @end example
  3022. @end cartouche
  3023. @end table
  3024. @node starpu_tag_declare_deps_array
  3025. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3026. @table @asis
  3027. @item @emph{Description}:
  3028. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3029. does not take a variable number of arguments but an array of tags of size
  3030. @code{ndeps}.
  3031. @item @emph{Prototype}:
  3032. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3033. @item @emph{Example}:
  3034. @cartouche
  3035. @example
  3036. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3037. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3038. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3039. @end example
  3040. @end cartouche
  3041. @end table
  3042. @node starpu_tag_wait
  3043. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3044. @table @asis
  3045. @item @emph{Description}:
  3046. This function blocks until the task associated to tag @code{id} has been
  3047. executed. This is a blocking call which must therefore not be called within
  3048. tasks or callbacks, but only from the application directly. It is possible to
  3049. synchronize with the same tag multiple times, as long as the
  3050. @code{starpu_tag_remove} function is not called. Note that it is still
  3051. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3052. data structure was freed (e.g. if the @code{destroy} flag of the
  3053. @code{starpu_task} was enabled).
  3054. @item @emph{Prototype}:
  3055. @code{void starpu_tag_wait(starpu_tag_t id);}
  3056. @end table
  3057. @node starpu_tag_wait_array
  3058. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3059. @table @asis
  3060. @item @emph{Description}:
  3061. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3062. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3063. terminated.
  3064. @item @emph{Prototype}:
  3065. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3066. @end table
  3067. @node starpu_tag_remove
  3068. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3069. @table @asis
  3070. @item @emph{Description}:
  3071. This function releases the resources associated to tag @code{id}. It can be
  3072. called once the corresponding task has been executed and when there is
  3073. no other tag that depend on this tag anymore.
  3074. @item @emph{Prototype}:
  3075. @code{void starpu_tag_remove(starpu_tag_t id);}
  3076. @end table
  3077. @node starpu_tag_notify_from_apps
  3078. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3079. @table @asis
  3080. @item @emph{Description}:
  3081. This function explicitly unlocks tag @code{id}. It may be useful in the
  3082. case of applications which execute part of their computation outside StarPU
  3083. tasks (e.g. third-party libraries). It is also provided as a
  3084. convenient tool for the programmer, for instance to entirely construct the task
  3085. DAG before actually giving StarPU the opportunity to execute the tasks.
  3086. @item @emph{Prototype}:
  3087. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3088. @end table
  3089. @node Implicit Data Dependencies
  3090. @section Implicit Data Dependencies
  3091. @menu
  3092. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3093. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3094. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3095. @end menu
  3096. In this section, we describe how StarPU makes it possible to insert implicit
  3097. task dependencies in order to enforce sequential data consistency. When this
  3098. data consistency is enabled on a specific data handle, any data access will
  3099. appear as sequentially consistent from the application. For instance, if the
  3100. application submits two tasks that access the same piece of data in read-only
  3101. mode, and then a third task that access it in write mode, dependencies will be
  3102. added between the two first tasks and the third one. Implicit data dependencies
  3103. are also inserted in the case of data accesses from the application.
  3104. @node starpu_data_set_default_sequential_consistency_flag
  3105. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3106. @table @asis
  3107. @item @emph{Description}:
  3108. Set the default sequential consistency flag. If a non-zero value is passed, a
  3109. sequential data consistency will be enforced for all handles registered after
  3110. this function call, otherwise it is disabled. By default, StarPU enables
  3111. sequential data consistency. It is also possible to select the data consistency
  3112. mode of a specific data handle with the
  3113. @code{starpu_data_set_sequential_consistency_flag} function.
  3114. @item @emph{Prototype}:
  3115. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3116. @end table
  3117. @node starpu_data_get_default_sequential_consistency_flag
  3118. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3119. @table @asis
  3120. @item @emph{Description}:
  3121. This function returns the current default sequential consistency flag.
  3122. @item @emph{Prototype}:
  3123. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3124. @end table
  3125. @node starpu_data_set_sequential_consistency_flag
  3126. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3127. @table @asis
  3128. @item @emph{Description}:
  3129. Select the data consistency mode associated to a data handle. The consistency
  3130. mode set using this function has the priority over the default mode which can
  3131. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3132. @item @emph{Prototype}:
  3133. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3134. @end table
  3135. @node Performance Model API
  3136. @section Performance Model API
  3137. @menu
  3138. * starpu_load_history_debug::
  3139. * starpu_perfmodel_debugfilepath::
  3140. * starpu_perfmodel_get_arch_name::
  3141. * starpu_force_bus_sampling::
  3142. @end menu
  3143. @node starpu_load_history_debug
  3144. @subsection @code{starpu_load_history_debug}
  3145. @table @asis
  3146. @item @emph{Description}:
  3147. TODO
  3148. @item @emph{Prototype}:
  3149. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3150. @end table
  3151. @node starpu_perfmodel_debugfilepath
  3152. @subsection @code{starpu_perfmodel_debugfilepath}
  3153. @table @asis
  3154. @item @emph{Description}:
  3155. TODO
  3156. @item @emph{Prototype}:
  3157. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3158. @end table
  3159. @node starpu_perfmodel_get_arch_name
  3160. @subsection @code{starpu_perfmodel_get_arch_name}
  3161. @table @asis
  3162. @item @emph{Description}:
  3163. TODO
  3164. @item @emph{Prototype}:
  3165. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3166. @end table
  3167. @node starpu_force_bus_sampling
  3168. @subsection @code{starpu_force_bus_sampling}
  3169. @table @asis
  3170. @item @emph{Description}:
  3171. This forces sampling the bus performance model again.
  3172. @item @emph{Prototype}:
  3173. @code{void starpu_force_bus_sampling(void);}
  3174. @end table
  3175. @node Profiling API
  3176. @section Profiling API
  3177. @menu
  3178. * starpu_profiling_status_set:: starpu_profiling_status_set
  3179. * starpu_profiling_status_get:: starpu_profiling_status_get
  3180. * struct starpu_task_profiling_info:: task profiling information
  3181. * struct starpu_worker_profiling_info:: worker profiling information
  3182. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3183. * struct starpu_bus_profiling_info:: bus profiling information
  3184. * starpu_bus_get_count::
  3185. * starpu_bus_get_id::
  3186. * starpu_bus_get_src::
  3187. * starpu_bus_get_dst::
  3188. * starpu_timing_timespec_delay_us::
  3189. * starpu_timing_timespec_to_us::
  3190. * starpu_bus_profiling_helper_display_summary::
  3191. * starpu_worker_profiling_helper_display_summary::
  3192. @end menu
  3193. @node starpu_profiling_status_set
  3194. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3195. @table @asis
  3196. @item @emph{Description}:
  3197. Thie function sets the profiling status. Profiling is activated by passing
  3198. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3199. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3200. resets all profiling measurements. When profiling is enabled, the
  3201. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3202. to a valid @code{struct starpu_task_profiling_info} structure containing
  3203. information about the execution of the task.
  3204. @item @emph{Return value}:
  3205. Negative return values indicate an error, otherwise the previous status is
  3206. returned.
  3207. @item @emph{Prototype}:
  3208. @code{int starpu_profiling_status_set(int status);}
  3209. @end table
  3210. @node starpu_profiling_status_get
  3211. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3212. @table @asis
  3213. @item @emph{Description}:
  3214. Return the current profiling status or a negative value in case there was an error.
  3215. @item @emph{Prototype}:
  3216. @code{int starpu_profiling_status_get(void);}
  3217. @end table
  3218. @node struct starpu_task_profiling_info
  3219. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3220. @table @asis
  3221. @item @emph{Description}:
  3222. This structure contains information about the execution of a task. It is
  3223. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3224. structure if profiling was enabled.
  3225. @item @emph{Fields}:
  3226. @table @asis
  3227. @item @code{submit_time}:
  3228. Date of task submission (relative to the initialization of StarPU).
  3229. @item @code{start_time}:
  3230. Date of task execution beginning (relative to the initialization of StarPU).
  3231. @item @code{end_time}:
  3232. Date of task execution termination (relative to the initialization of StarPU).
  3233. @item @code{workerid}:
  3234. Identifier of the worker which has executed the task.
  3235. @end table
  3236. @end table
  3237. @node struct starpu_worker_profiling_info
  3238. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3239. @table @asis
  3240. @item @emph{Description}:
  3241. This structure contains the profiling information associated to a worker.
  3242. @item @emph{Fields}:
  3243. @table @asis
  3244. @item @code{start_time}:
  3245. Starting date for the reported profiling measurements.
  3246. @item @code{total_time}:
  3247. Duration of the profiling measurement interval.
  3248. @item @code{executing_time}:
  3249. Time spent by the worker to execute tasks during the profiling measurement interval.
  3250. @item @code{sleeping_time}:
  3251. Time spent idling by the worker during the profiling measurement interval.
  3252. @item @code{executed_tasks}:
  3253. Number of tasks executed by the worker during the profiling measurement interval.
  3254. @end table
  3255. @end table
  3256. @node starpu_worker_get_profiling_info
  3257. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3258. @table @asis
  3259. @item @emph{Description}:
  3260. Get the profiling info associated to the worker identified by @code{workerid},
  3261. and reset the profiling measurements. If the @code{worker_info} argument is
  3262. NULL, only reset the counters associated to worker @code{workerid}.
  3263. @item @emph{Return value}:
  3264. Upon successful completion, this function returns 0. Otherwise, a negative
  3265. value is returned.
  3266. @item @emph{Prototype}:
  3267. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3268. @end table
  3269. @node struct starpu_bus_profiling_info
  3270. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3271. @table @asis
  3272. @item @emph{Description}:
  3273. TODO
  3274. @item @emph{Fields}:
  3275. @table @asis
  3276. @item @code{start_time}:
  3277. TODO
  3278. @item @code{total_time}:
  3279. TODO
  3280. @item @code{transferred_bytes}:
  3281. TODO
  3282. @item @code{transfer_count}:
  3283. TODO
  3284. @end table
  3285. @end table
  3286. @node starpu_bus_get_count
  3287. @subsection @code{starpu_bus_get_count}
  3288. @table @asis
  3289. @item @emph{Description}:
  3290. TODO
  3291. @item @emph{Prototype}:
  3292. @code{int starpu_bus_get_count(void);}
  3293. @end table
  3294. @node starpu_bus_get_id
  3295. @subsection @code{starpu_bus_get_id}
  3296. @table @asis
  3297. @item @emph{Description}:
  3298. TODO
  3299. @item @emph{Prototype}:
  3300. @code{int starpu_bus_get_id(int src, int dst);}
  3301. @end table
  3302. @node starpu_bus_get_src
  3303. @subsection @code{starpu_bus_get_src}
  3304. @table @asis
  3305. @item @emph{Description}:
  3306. TODO
  3307. @item @emph{Prototype}:
  3308. @code{int starpu_bus_get_src(int busid);}
  3309. @end table
  3310. @node starpu_bus_get_dst
  3311. @subsection @code{starpu_bus_get_dst}
  3312. @table @asis
  3313. @item @emph{Description}:
  3314. TODO
  3315. @item @emph{Prototype}:
  3316. @code{int starpu_bus_get_dst(int busid);}
  3317. @end table
  3318. @node starpu_timing_timespec_delay_us
  3319. @subsection @code{starpu_timing_timespec_delay_us}
  3320. @table @asis
  3321. @item @emph{Description}:
  3322. TODO
  3323. @item @emph{Prototype}:
  3324. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3325. @end table
  3326. @node starpu_timing_timespec_to_us
  3327. @subsection @code{starpu_timing_timespec_to_us}
  3328. @table @asis
  3329. @item @emph{Description}:
  3330. TODO
  3331. @item @emph{Prototype}:
  3332. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3333. @end table
  3334. @node starpu_bus_profiling_helper_display_summary
  3335. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3336. @table @asis
  3337. @item @emph{Description}:
  3338. TODO
  3339. @item @emph{Prototype}:
  3340. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3341. @end table
  3342. @node starpu_worker_profiling_helper_display_summary
  3343. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3344. @table @asis
  3345. @item @emph{Description}:
  3346. TODO
  3347. @item @emph{Prototype}:
  3348. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3349. @end table
  3350. @node CUDA extensions
  3351. @section CUDA extensions
  3352. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3353. @menu
  3354. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3355. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3356. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3357. @end menu
  3358. @node starpu_cuda_get_local_stream
  3359. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3360. @table @asis
  3361. @item @emph{Description}:
  3362. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3363. function is only provided for convenience so that programmers can easily use
  3364. asynchronous operations within codelets without having to create a stream by
  3365. hand. Note that the application is not forced to use the stream provided by
  3366. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3367. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3368. the likelihood of having all transfers overlapped.
  3369. @item @emph{Prototype}:
  3370. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3371. @end table
  3372. @node starpu_helper_cublas_init
  3373. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3374. @table @asis
  3375. @item @emph{Description}:
  3376. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3377. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3378. controlled by StarPU. This call blocks until CUBLAS has been properly
  3379. initialized on every device.
  3380. @item @emph{Prototype}:
  3381. @code{void starpu_helper_cublas_init(void);}
  3382. @end table
  3383. @node starpu_helper_cublas_shutdown
  3384. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3385. @table @asis
  3386. @item @emph{Description}:
  3387. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3388. @item @emph{Prototype}:
  3389. @code{void starpu_helper_cublas_shutdown(void);}
  3390. @end table
  3391. @node OpenCL extensions
  3392. @section OpenCL extensions
  3393. @menu
  3394. * Enabling OpenCL:: Enabling OpenCL
  3395. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3396. * Loading OpenCL kernels:: Loading OpenCL kernels
  3397. * OpenCL statistics:: Collecting statistics from OpenCL
  3398. @end menu
  3399. @node Enabling OpenCL
  3400. @subsection Enabling OpenCL
  3401. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3402. enabled by default. To enable OpenCL, you need either to disable CUDA
  3403. when configuring StarPU:
  3404. @example
  3405. % ./configure --disable-cuda
  3406. @end example
  3407. or when running applications:
  3408. @example
  3409. % STARPU_NCUDA=0 ./application
  3410. @end example
  3411. OpenCL will automatically be started on any device not yet used by
  3412. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3413. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3414. so:
  3415. @example
  3416. % STARPU_NCUDA=2 ./application
  3417. @end example
  3418. @node Compiling OpenCL kernels
  3419. @subsection Compiling OpenCL kernels
  3420. Source codes for OpenCL kernels can be stored in a file or in a
  3421. string. StarPU provides functions to build the program executable for
  3422. each available OpenCL device as a @code{cl_program} object. This
  3423. program executable can then be loaded within a specific queue as
  3424. explained in the next section. These are only helpers, Applications
  3425. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3426. use (e.g. different programs on the different OpenCL devices, for
  3427. relocation purpose for instance).
  3428. @menu
  3429. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3430. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3431. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3432. @end menu
  3433. @node starpu_opencl_load_opencl_from_file
  3434. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3435. @table @asis
  3436. @item @emph{Description}:
  3437. TODO
  3438. @item @emph{Prototype}:
  3439. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3440. @end table
  3441. @node starpu_opencl_load_opencl_from_string
  3442. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3443. @table @asis
  3444. @item @emph{Description}:
  3445. TODO
  3446. @item @emph{Prototype}:
  3447. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3448. @end table
  3449. @node starpu_opencl_unload_opencl
  3450. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3451. @table @asis
  3452. @item @emph{Description}:
  3453. TODO
  3454. @item @emph{Prototype}:
  3455. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3456. @end table
  3457. @node Loading OpenCL kernels
  3458. @subsection Loading OpenCL kernels
  3459. @menu
  3460. * starpu_opencl_load_kernel:: Loading a kernel
  3461. * starpu_opencl_relase_kernel:: Releasing a kernel
  3462. @end menu
  3463. @node starpu_opencl_load_kernel
  3464. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3465. @table @asis
  3466. @item @emph{Description}:
  3467. TODO
  3468. @item @emph{Prototype}:
  3469. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3470. }
  3471. @end table
  3472. @node starpu_opencl_relase_kernel
  3473. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3474. @table @asis
  3475. @item @emph{Description}:
  3476. TODO
  3477. @item @emph{Prototype}:
  3478. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3479. @end table
  3480. @node OpenCL statistics
  3481. @subsection OpenCL statistics
  3482. @menu
  3483. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3484. @end menu
  3485. @node starpu_opencl_collect_stats
  3486. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3487. @table @asis
  3488. @item @emph{Description}:
  3489. After termination of the kernels, the OpenCL codelet should call this function
  3490. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3491. collect statistics about the kernel execution (used cycles, consumed power).
  3492. @item @emph{Prototype}:
  3493. @code{int starpu_opencl_collect_stats(cl_event event);}
  3494. @end table
  3495. @node Cell extensions
  3496. @section Cell extensions
  3497. nothing yet.
  3498. @node Miscellaneous helpers
  3499. @section Miscellaneous helpers
  3500. @menu
  3501. * starpu_data_cpy:: Copy a data handle into another data handle
  3502. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3503. @end menu
  3504. @node starpu_data_cpy
  3505. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3506. @table @asis
  3507. @item @emph{Description}:
  3508. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3509. The @code{asynchronous} parameter indicates whether the function should
  3510. block or not. In the case of an asynchronous call, it is possible to
  3511. synchronize with the termination of this operation either by the means of
  3512. implicit dependencies (if enabled) or by calling
  3513. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3514. this callback function is executed after the handle has been copied, and it is
  3515. given the @code{callback_arg} pointer as argument.
  3516. @item @emph{Prototype}:
  3517. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3518. @end table
  3519. @node starpu_execute_on_each_worker
  3520. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3521. @table @asis
  3522. @item @emph{Description}:
  3523. When calling this method, the offloaded function specified by the first argument is
  3524. executed by every StarPU worker that may execute the function.
  3525. The second argument is passed to the offloaded function.
  3526. The last argument specifies on which types of processing units the function
  3527. should be executed. Similarly to the @code{where} field of the
  3528. @code{starpu_codelet} structure, it is possible to specify that the function
  3529. should be executed on every CUDA device and every CPU by passing
  3530. @code{STARPU_CPU|STARPU_CUDA}.
  3531. This function blocks until the function has been executed on every appropriate
  3532. processing units, so that it may not be called from a callback function for
  3533. instance.
  3534. @item @emph{Prototype}:
  3535. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3536. @end table
  3537. @c ---------------------------------------------------------------------
  3538. @c Advanced Topics
  3539. @c ---------------------------------------------------------------------
  3540. @node Advanced Topics
  3541. @chapter Advanced Topics
  3542. @menu
  3543. * Defining a new data interface::
  3544. * Defining a new scheduling policy::
  3545. @end menu
  3546. @node Defining a new data interface
  3547. @section Defining a new data interface
  3548. @menu
  3549. * struct starpu_data_interface_ops_t:: Per-interface methods
  3550. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3551. * An example of data interface:: An example of data interface
  3552. @end menu
  3553. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3554. @node struct starpu_data_interface_ops_t
  3555. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3556. @table @asis
  3557. @item @emph{Description}:
  3558. TODO describe all the different fields
  3559. @end table
  3560. @node struct starpu_data_copy_methods
  3561. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3562. @table @asis
  3563. @item @emph{Description}:
  3564. TODO describe all the different fields
  3565. @end table
  3566. @node An example of data interface
  3567. @subsection An example of data interface
  3568. @table @asis
  3569. TODO
  3570. @end table
  3571. @node Defining a new scheduling policy
  3572. @section Defining a new scheduling policy
  3573. TODO
  3574. A full example showing how to define a new scheduling policy is available in
  3575. the StarPU sources in the directory @code{examples/scheduler/}.
  3576. @menu
  3577. * struct starpu_sched_policy_s::
  3578. * starpu_worker_set_sched_condition::
  3579. * starpu_sched_set_min_priority:: Set the minimum priority level
  3580. * starpu_sched_set_max_priority:: Set the maximum priority level
  3581. * starpu_push_local_task:: Assign a task to a worker
  3582. * Source code::
  3583. @end menu
  3584. @node struct starpu_sched_policy_s
  3585. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3586. @table @asis
  3587. @item @emph{Description}:
  3588. This structure contains all the methods that implement a scheduling policy. An
  3589. application may specify which scheduling strategy in the @code{sched_policy}
  3590. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3591. function.
  3592. @item @emph{Fields}:
  3593. @table @asis
  3594. @item @code{init_sched}:
  3595. Initialize the scheduling policy.
  3596. @item @code{deinit_sched}:
  3597. Cleanup the scheduling policy.
  3598. @item @code{push_task}:
  3599. Insert a task into the scheduler.
  3600. @item @code{push_prio_task}:
  3601. Insert a priority task into the scheduler.
  3602. @item @code{push_prio_notify}:
  3603. Notify the scheduler that a task was pushed on the worker. This method is
  3604. called when a task that was explicitely assigned to a worker is scheduled. This
  3605. method therefore permits to keep the state of of the scheduler coherent even
  3606. when StarPU bypasses the scheduling strategy.
  3607. @item @code{pop_task}:
  3608. Get a task from the scheduler. The mutex associated to the worker is already
  3609. taken when this method is called. If this method is defined as @code{NULL}, the
  3610. worker will only execute tasks from its local queue. In this case, the
  3611. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3612. assign tasks to the different workers.
  3613. @item @code{pop_every_task}:
  3614. Remove all available tasks from the scheduler (tasks are chained by the means
  3615. of the prev and next fields of the starpu_task structure). The mutex associated
  3616. to the worker is already taken when this method is called.
  3617. @item @code{post_exec_hook} (optionnal):
  3618. This method is called every time a task has been executed.
  3619. @item @code{policy_name}:
  3620. Name of the policy (optionnal).
  3621. @item @code{policy_description}:
  3622. Description of the policy (optionnal).
  3623. @end table
  3624. @end table
  3625. @node starpu_worker_set_sched_condition
  3626. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3627. @table @asis
  3628. @item @emph{Description}:
  3629. When there is no available task for a worker, StarPU blocks this worker on a
  3630. condition variable. This function specifies which condition variable (and the
  3631. associated mutex) should be used to block (and to wake up) a worker. Note that
  3632. multiple workers may use the same condition variable. For instance, in the case
  3633. of a scheduling strategy with a single task queue, the same condition variable
  3634. would be used to block and wake up all workers.
  3635. The initialization method of a scheduling strategy (@code{init_sched}) must
  3636. call this function once per worker.
  3637. @item @emph{Prototype}:
  3638. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3639. @end table
  3640. @node starpu_sched_set_min_priority
  3641. @subsection @code{starpu_sched_set_min_priority}
  3642. @table @asis
  3643. @item @emph{Description}:
  3644. Defines the minimum priority level supported by the scheduling policy. The
  3645. default minimum priority level is the same as the default priority level which
  3646. is 0 by convention. The application may access that value by calling the
  3647. @code{starpu_sched_get_min_priority} function. This function should only be
  3648. called from the initialization method of the scheduling policy, and should not
  3649. be used directly from the application.
  3650. @item @emph{Prototype}:
  3651. @code{void starpu_sched_set_min_priority(int min_prio);}
  3652. @end table
  3653. @node starpu_sched_set_max_priority
  3654. @subsection @code{starpu_sched_set_max_priority}
  3655. @table @asis
  3656. @item @emph{Description}:
  3657. Defines the maximum priority level supported by the scheduling policy. The
  3658. default maximum priority level is 1. The application may access that value by
  3659. calling the @code{starpu_sched_get_max_priority} function. This function should
  3660. only be called from the initialization method of the scheduling policy, and
  3661. should not be used directly from the application.
  3662. @item @emph{Prototype}:
  3663. @code{void starpu_sched_set_min_priority(int max_prio);}
  3664. @end table
  3665. @node starpu_push_local_task
  3666. @subsection @code{starpu_push_local_task}
  3667. @table @asis
  3668. @item @emph{Description}:
  3669. The scheduling policy may put tasks directly into a worker's local queue so
  3670. that it is not always necessary to create its own queue when the local queue
  3671. is sufficient. If "back" not null, the task is put at the back of the queue
  3672. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3673. a FIFO ordering.
  3674. @item @emph{Prototype}:
  3675. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3676. @end table
  3677. @node Source code
  3678. @subsection Source code
  3679. @cartouche
  3680. @smallexample
  3681. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3682. .init_sched = init_dummy_sched,
  3683. .deinit_sched = deinit_dummy_sched,
  3684. .push_task = push_task_dummy,
  3685. .push_prio_task = NULL,
  3686. .pop_task = pop_task_dummy,
  3687. .post_exec_hook = NULL,
  3688. .pop_every_task = NULL,
  3689. .policy_name = "dummy",
  3690. .policy_description = "dummy scheduling strategy"
  3691. @};
  3692. @end smallexample
  3693. @end cartouche
  3694. @c ---------------------------------------------------------------------
  3695. @c Appendices
  3696. @c ---------------------------------------------------------------------
  3697. @c ---------------------------------------------------------------------
  3698. @c Full source code for the 'Scaling a Vector' example
  3699. @c ---------------------------------------------------------------------
  3700. @node Full source code for the 'Scaling a Vector' example
  3701. @appendix Full source code for the 'Scaling a Vector' example
  3702. @menu
  3703. * Main application::
  3704. * CPU Kernel::
  3705. * CUDA Kernel::
  3706. * OpenCL Kernel::
  3707. @end menu
  3708. @node Main application
  3709. @section Main application
  3710. @smallexample
  3711. @include vector_scal_c.texi
  3712. @end smallexample
  3713. @node CPU Kernel
  3714. @section CPU Kernel
  3715. @smallexample
  3716. @include vector_scal_cpu.texi
  3717. @end smallexample
  3718. @node CUDA Kernel
  3719. @section CUDA Kernel
  3720. @smallexample
  3721. @include vector_scal_cuda.texi
  3722. @end smallexample
  3723. @node OpenCL Kernel
  3724. @section OpenCL Kernel
  3725. @menu
  3726. * Invoking the kernel::
  3727. * Source of the kernel::
  3728. @end menu
  3729. @node Invoking the kernel
  3730. @subsection Invoking the kernel
  3731. @smallexample
  3732. @include vector_scal_opencl.texi
  3733. @end smallexample
  3734. @node Source of the kernel
  3735. @subsection Source of the kernel
  3736. @smallexample
  3737. @include vector_scal_opencl_codelet.texi
  3738. @end smallexample
  3739. @bye