basic-api.texi 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_driver}
  34. @table @asis
  35. @item @code{enum starpu_archtype type}
  36. The type of the driver. Only STARPU_CUDA_DRIVER and STARPU_OPENCL_DRIVER are
  37. currently supported.
  38. @item @code{union id} Anonymous union
  39. @table @asis
  40. @item @code{unsigned cuda_id}
  41. Should only be used if type is STARPU_CUDA_WORKER.
  42. @item @code{cl_device_id opencl_id}
  43. Should only be used if type is STARPU_OPENCL_WORKER.
  44. @end table
  45. @end table
  46. @end deftp
  47. @deftp {Data Type} {struct starpu_conf}
  48. This structure is passed to the @code{starpu_init} function in order
  49. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  50. When the default value is used, StarPU automatically selects the number of
  51. processing units and takes the default scheduling policy. The environment
  52. variables overwrite the equivalent parameters.
  53. @table @asis
  54. @item @code{const char *sched_policy_name} (default = NULL)
  55. This is the name of the scheduling policy. This can also be specified
  56. with the @code{STARPU_SCHED} environment variable.
  57. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  58. This is the definition of the scheduling policy. This field is ignored
  59. if @code{sched_policy_name} is set.
  60. @item @code{int ncpus} (default = -1)
  61. This is the number of CPU cores that StarPU can use. This can also be
  62. specified with the @code{STARPU_NCPUS} environment variable.
  63. @item @code{int ncuda} (default = -1)
  64. This is the number of CUDA devices that StarPU can use. This can also
  65. be specified with the @code{STARPU_NCUDA} environment variable.
  66. @item @code{int nopencl} (default = -1)
  67. This is the number of OpenCL devices that StarPU can use. This can
  68. also be specified with the @code{STARPU_NOPENCL} environment variable.
  69. @item @code{int nspus} (default = -1)
  70. This is the number of Cell SPUs that StarPU can use. This can also be
  71. specified with the @code{STARPU_NGORDON} environment variable.
  72. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  73. If this flag is set, the @code{workers_bindid} array indicates where the
  74. different workers are bound, otherwise StarPU automatically selects where to
  75. bind the different workers. This can also be specified with the
  76. @code{STARPU_WORKERS_CPUID} environment variable.
  77. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  78. If the @code{use_explicit_workers_bindid} flag is set, this array
  79. indicates where to bind the different workers. The i-th entry of the
  80. @code{workers_bindid} indicates the logical identifier of the
  81. processor which should execute the i-th worker. Note that the logical
  82. ordering of the CPUs is either determined by the OS, or provided by
  83. the @code{hwloc} library in case it is available.
  84. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  85. If this flag is set, the CUDA workers will be attached to the CUDA devices
  86. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  87. CUDA devices in a round-robin fashion. This can also be specified with the
  88. @code{STARPU_WORKERS_CUDAID} environment variable.
  89. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  90. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  91. contains the logical identifiers of the CUDA devices (as used by
  92. @code{cudaGetDevice}).
  93. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  94. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  95. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  96. the OpenCL devices in a round-robin fashion. This can also be specified with
  97. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  98. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  99. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  100. contains the logical identifiers of the OpenCL devices to be used.
  101. @item @code{int calibrate} (default = 0)
  102. If this flag is set, StarPU will calibrate the performance models when
  103. executing tasks. If this value is equal to -1, the default value is used. This
  104. can also be specified with the @code{STARPU_CALIBRATE} environment variable.
  105. @item @code{int single_combined_worker} (default = 0)
  106. By default, StarPU parallel tasks concurrently.
  107. Some parallel libraries (e.g. most OpenMP implementations) however do
  108. not support concurrent calls to parallel code. In such case, setting this flag
  109. makes StarPU only start one parallel task at a time.
  110. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  111. @item @code{int disable_asynchronous_copy} (default = 0)
  112. This flag should be set to 1 to disable asynchronous copies between
  113. CPUs and accelerators. This can also be specified with the
  114. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  115. The AMD implementation of OpenCL is known to
  116. fail when copying data asynchronously. When using this implementation,
  117. it is therefore necessary to disable asynchronous data transfers.
  118. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  119. This can be set to an array of CUDA device identifiers for which
  120. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  121. size is specified by the @code{n_cuda_opengl_interoperability} field below
  122. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  123. This has to be set to the size of the array pointed to by the
  124. @code{cuda_opengl_interoperability} field.
  125. @item @code{struct starpu_driver *not_launched_drivers}
  126. The drivers that should not be launched by StarPU.
  127. @item @code{unsigned nnot_launched_drivers}
  128. The number of StarPU drivers that should not be launched by StarPU.
  129. @end table
  130. @end deftp
  131. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  132. This function initializes the @var{conf} structure passed as argument
  133. with the default values. In case some configuration parameters are already
  134. specified through environment variables, @code{starpu_conf_init} initializes
  135. the fields of the structure according to the environment variables. For
  136. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  137. @code{.ncuda} field of the structure passed as argument.
  138. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  139. indicates that the argument was NULL.
  140. @end deftypefun
  141. @deftypefun void starpu_shutdown (void)
  142. This is StarPU termination method. It must be called at the end of the
  143. application: statistics and other post-mortem debugging information are not
  144. guaranteed to be available until this method has been called.
  145. @end deftypefun
  146. @deftypefun int starpu_asynchronous_copy_disabled ()
  147. Return 1 if asynchronous data transfers between CPU and accelerators
  148. are disabled.
  149. @end deftypefun
  150. @node Workers' Properties
  151. @section Workers' Properties
  152. @deftp {Data Type} {enum starpu_archtype}
  153. The different values are:
  154. @table @asis
  155. @item @code{STARPU_CPU_WORKER}
  156. @item @code{STARPU_CUDA_WORKER}
  157. @item @code{STARPU_OPENCL_WORKER}
  158. @item @code{STARPU_GORDON_WORKER}
  159. @end table
  160. @end deftp
  161. @deftypefun unsigned starpu_worker_get_count (void)
  162. This function returns the number of workers (i.e. processing units executing
  163. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  164. @end deftypefun
  165. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  166. Returns the number of workers of the given type indicated by the argument. A positive
  167. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  168. the type is not valid otherwise.
  169. @end deftypefun
  170. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  171. This function returns the number of CPUs controlled by StarPU. The returned
  172. value should be at most @code{STARPU_MAXCPUS}.
  173. @end deftypefun
  174. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  175. This function returns the number of CUDA devices controlled by StarPU. The returned
  176. value should be at most @code{STARPU_MAXCUDADEVS}.
  177. @end deftypefun
  178. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  179. This function returns the number of OpenCL devices controlled by StarPU. The returned
  180. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  181. @end deftypefun
  182. @deftypefun unsigned starpu_spu_worker_get_count (void)
  183. This function returns the number of Cell SPUs controlled by StarPU.
  184. @end deftypefun
  185. @deftypefun int starpu_worker_get_id (void)
  186. This function returns the identifier of the current worker, i.e the one associated to the calling
  187. thread. The returned value is either -1 if the current context is not a StarPU
  188. worker (i.e. when called from the application outside a task or a callback), or
  189. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  190. @end deftypefun
  191. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  192. This function gets the list of identifiers of workers with the given
  193. type. It fills the workerids array with the identifiers of the workers that have the type
  194. indicated in the first argument. The maxsize argument indicates the size of the
  195. workids array. The returned value gives the number of identifiers that were put
  196. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  197. workers with the appropriate type: in that case, the array is filled with the
  198. maxsize first elements. To avoid such overflows, the value of maxsize can be
  199. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  200. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  201. @end deftypefun
  202. @deftypefun int starpu_worker_get_devid (int @var{id})
  203. This functions returns the device id of the given worker. The worker
  204. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  205. CUDA worker, this device identifier is the logical device identifier exposed by
  206. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  207. identifier of a CPU worker is the logical identifier of the core on which the
  208. worker was bound; this identifier is either provided by the OS or by the
  209. @code{hwloc} library in case it is available.
  210. @end deftypefun
  211. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  212. This function returns the type of processing unit associated to a
  213. worker. The worker identifier is a value returned by the
  214. @code{starpu_worker_get_id} function). The returned value
  215. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  216. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  217. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  218. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  219. identifier is unspecified.
  220. @end deftypefun
  221. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  222. This function allows to get the name of a given worker.
  223. StarPU associates a unique human readable string to each processing unit. This
  224. function copies at most the @var{maxlen} first bytes of the unique string
  225. associated to a worker identified by its identifier @var{id} into the
  226. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  227. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  228. function on an invalid identifier results in an unspecified behaviour.
  229. @end deftypefun
  230. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  231. This function returns the identifier of the memory node associated to the
  232. worker identified by @var{workerid}.
  233. @end deftypefun
  234. @deftp {Data Type} {enum starpu_node_kind}
  235. todo
  236. @table @asis
  237. @item @code{STARPU_UNUSED}
  238. @item @code{STARPU_CPU_RAM}
  239. @item @code{STARPU_CUDA_RAM}
  240. @item @code{STARPU_OPENCL_RAM}
  241. @item @code{STARPU_SPU_LS}
  242. @end table
  243. @end deftp
  244. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  245. Returns the type of the given node as defined by @code{enum
  246. starpu_node_kind}. For example, when defining a new data interface,
  247. this function should be used in the allocation function to determine
  248. on which device the memory needs to be allocated.
  249. @end deftypefun
  250. @node Data Library
  251. @section Data Library
  252. @menu
  253. * Introduction to Data Library::
  254. * Basic Data Library API::
  255. * Access registered data from the application::
  256. @end menu
  257. This section describes the data management facilities provided by StarPU.
  258. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  259. design their own data interfaces if required.
  260. @node Introduction to Data Library
  261. @subsection Introduction
  262. Data management is done at a high-level in StarPU: rather than accessing a mere
  263. list of contiguous buffers, the tasks may manipulate data that are described by
  264. a high-level construct which we call data interface.
  265. An example of data interface is the "vector" interface which describes a
  266. contiguous data array on a spefic memory node. This interface is a simple
  267. structure containing the number of elements in the array, the size of the
  268. elements, and the address of the array in the appropriate address space (this
  269. address may be invalid if there is no valid copy of the array in the memory
  270. node). More informations on the data interfaces provided by StarPU are
  271. given in @ref{Data Interfaces}.
  272. When a piece of data managed by StarPU is used by a task, the task
  273. implementation is given a pointer to an interface describing a valid copy of
  274. the data that is accessible from the current processing unit.
  275. Every worker is associated to a memory node which is a logical abstraction of
  276. the address space from which the processing unit gets its data. For instance,
  277. the memory node associated to the different CPU workers represents main memory
  278. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  279. Every memory node is identified by a logical index which is accessible from the
  280. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  281. to StarPU, the specified memory node indicates where the piece of data
  282. initially resides (we also call this memory node the home node of a piece of
  283. data).
  284. @node Basic Data Library API
  285. @subsection Basic Data Library API
  286. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  287. This function allocates data of the given size in main memory. It will also try to pin it in
  288. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  289. thus permit data transfer and computation overlapping. The allocated buffer must
  290. be freed thanks to the @code{starpu_free} function.
  291. @end deftypefun
  292. @deftypefun int starpu_free (void *@var{A})
  293. This function frees memory which has previously allocated with
  294. @code{starpu_malloc}.
  295. @end deftypefun
  296. @deftp {Data Type} {enum starpu_access_mode}
  297. This datatype describes a data access mode. The different available modes are:
  298. @table @asis
  299. @item @code{STARPU_R}: read-only mode.
  300. @item @code{STARPU_W}: write-only mode.
  301. @item @code{STARPU_RW}: read-write mode.
  302. This is equivalent to @code{STARPU_R|STARPU_W}.
  303. @item @code{STARPU_SCRATCH}: scratch memory.
  304. A temporary buffer is allocated for the task, but StarPU does not
  305. enforce data consistency---i.e. each device has its own buffer,
  306. independently from each other (even for CPUs), and no data transfer is
  307. ever performed. This is useful for temporary variables to avoid
  308. allocating/freeing buffers inside each task.
  309. Currently, no behavior is defined concerning the relation with the
  310. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  311. registration---i.e., the value of the scratch buffer is undefined at
  312. entry of the codelet function. It is being considered for future
  313. extensions at least to define the initial value. For now, data to be
  314. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  315. a @code{NULL} pointer, since the value of the provided buffer is simply
  316. ignored for now.
  317. @item @code{STARPU_REDUX} reduction mode.
  318. @end table
  319. @end deftp
  320. @deftp {Data Type} {starpu_data_handle_t}
  321. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  322. data. Once a piece of data has been registered to StarPU, it is associated to a
  323. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  324. over the entire machine, so that we can maintain data consistency and locate
  325. data replicates for instance.
  326. @end deftp
  327. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  328. Register a piece of data into the handle located at the @var{handleptr}
  329. address. The @var{data_interface} buffer contains the initial description of the
  330. data in the home node. The @var{ops} argument is a pointer to a structure
  331. describing the different methods used to manipulate this type of interface. See
  332. @ref{struct starpu_data_interface_ops} for more details on this structure.
  333. If @code{home_node} is -1, StarPU will automatically
  334. allocate the memory when it is used for the
  335. first time in write-only mode. Once such data handle has been automatically
  336. allocated, it is possible to access it using any access mode.
  337. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  338. matrix) which can be registered by the means of helper functions (e.g.
  339. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  340. @end deftypefun
  341. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  342. Register a new piece of data into the handle @var{handledst} with the
  343. same interface as the handle @var{handlesrc}.
  344. @end deftypefun
  345. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  346. This function unregisters a data handle from StarPU. If the data was
  347. automatically allocated by StarPU because the home node was -1, all
  348. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  349. is put back into the home node in the buffer that was initially registered.
  350. Using a data handle that has been unregistered from StarPU results in an
  351. undefined behaviour.
  352. @end deftypefun
  353. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  354. This is the same as starpu_data_unregister, except that StarPU does not put back
  355. a valid copy into the home node, in the buffer that was initially registered.
  356. @end deftypefun
  357. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  358. Destroy all replicates of the data handle. After data invalidation, the first
  359. access to the handle must be performed in write-only mode. Accessing an
  360. invalidated data in read-mode results in undefined behaviour.
  361. @end deftypefun
  362. @c TODO create a specific sections about user interaction with the DSM ?
  363. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  364. This function sets the write-through mask of a given data, i.e. a bitmask of
  365. nodes where the data should be always replicated after modification. It also
  366. prevents the data from being evicted from these nodes when memory gets scarse.
  367. @end deftypefun
  368. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  369. Issue a prefetch request for a given data to a given node, i.e.
  370. requests that the data be replicated to the given node, so that it is available
  371. there for tasks. If the @var{async} parameter is 0, the call will block until
  372. the transfer is achieved, else the call will return as soon as the request is
  373. scheduled (which may however have to wait for a task completion).
  374. @end deftypefun
  375. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  376. Return the handle corresponding to the data pointed to by the @var{ptr}
  377. host pointer.
  378. @end deftypefun
  379. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  380. Explicitly ask StarPU to allocate room for a piece of data on the specified
  381. memory node.
  382. @end deftypefun
  383. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  384. Query the status of the handle on the specified memory node.
  385. @end deftypefun
  386. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  387. This function allows to specify that a piece of data can be discarded
  388. without impacting the application.
  389. @end deftypefun
  390. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  391. This sets the codelets to be used for the @var{handle} when it is accessed in
  392. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  393. codelet, and reduction between per-worker buffers will be done with the
  394. @var{redux_cl} codelet.
  395. @end deftypefun
  396. @node Access registered data from the application
  397. @subsection Access registered data from the application
  398. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  399. The application must call this function prior to accessing registered data from
  400. main memory outside tasks. StarPU ensures that the application will get an
  401. up-to-date copy of the data in main memory located where the data was
  402. originally registered, and that all concurrent accesses (e.g. from tasks) will
  403. be consistent with the access mode specified in the @var{mode} argument.
  404. @code{starpu_data_release} must be called once the application does not need to
  405. access the piece of data anymore. Note that implicit data
  406. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  407. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  408. the data, unless that they have not been disabled explictly by calling
  409. @code{starpu_data_set_default_sequential_consistency_flag} or
  410. @code{starpu_data_set_sequential_consistency_flag}.
  411. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  412. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  413. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  414. @end deftypefun
  415. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  416. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  417. @code{starpu_data_release}. When the data specified in the first argument is
  418. available in the appropriate access mode, the callback function is executed.
  419. The application may access the requested data during the execution of this
  420. callback. The callback function must call @code{starpu_data_release} once the
  421. application does not need to access the piece of data anymore.
  422. Note that implicit data dependencies are also enforced by
  423. @code{starpu_data_acquire_cb} in case they are enabled.
  424. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  425. be called from task callbacks. Upon successful completion, this function
  426. returns 0.
  427. @end deftypefun
  428. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  429. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  430. except that the code to be executed in a callback is directly provided as a
  431. macro parameter, and the data handle is automatically released after it. This
  432. permits to easily execute code which depends on the value of some registered
  433. data. This is non-blocking too and may be called from task callbacks.
  434. @end defmac
  435. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  436. This function releases the piece of data acquired by the application either by
  437. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  438. @end deftypefun
  439. @node Data Interfaces
  440. @section Data Interfaces
  441. @menu
  442. * Registering Data::
  443. * Accessing Data Interfaces::
  444. @end menu
  445. @node Registering Data
  446. @subsection Registering Data
  447. There are several ways to register a memory region so that it can be managed by
  448. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  449. matrices as well as BCSR and CSR sparse matrices.
  450. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  451. Register a void interface. There is no data really associated to that
  452. interface, but it may be used as a synchronization mechanism. It also
  453. permits to express an abstract piece of data that is managed by the
  454. application internally: this makes it possible to forbid the
  455. concurrent execution of different tasks accessing the same "void" data
  456. in read-write concurrently.
  457. @end deftypefun
  458. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  459. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  460. typically a scalar, and initialize @var{handle} to represent this data
  461. item.
  462. @cartouche
  463. @smallexample
  464. float var;
  465. starpu_data_handle_t var_handle;
  466. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  467. @end smallexample
  468. @end cartouche
  469. @end deftypefun
  470. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  471. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  472. @var{ptr} and initialize @var{handle} to represent it.
  473. @cartouche
  474. @smallexample
  475. float vector[NX];
  476. starpu_data_handle_t vector_handle;
  477. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  478. sizeof(vector[0]));
  479. @end smallexample
  480. @end cartouche
  481. @end deftypefun
  482. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  483. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  484. pointed by @var{ptr} and initialize @var{handle} to represent it.
  485. @var{ld} specifies the number of elements between rows.
  486. a value greater than @var{nx} adds padding, which can be useful for
  487. alignment purposes.
  488. @cartouche
  489. @smallexample
  490. float *matrix;
  491. starpu_data_handle_t matrix_handle;
  492. matrix = (float*)malloc(width * height * sizeof(float));
  493. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  494. width, width, height, sizeof(float));
  495. @end smallexample
  496. @end cartouche
  497. @end deftypefun
  498. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  499. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  500. elements pointed by @var{ptr} and initialize @var{handle} to represent
  501. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  502. between rows and between z planes.
  503. @cartouche
  504. @smallexample
  505. float *block;
  506. starpu_data_handle_t block_handle;
  507. block = (float*)malloc(nx*ny*nz*sizeof(float));
  508. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  509. nx, nx*ny, nx, ny, nz, sizeof(float));
  510. @end smallexample
  511. @end cartouche
  512. @end deftypefun
  513. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  514. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  515. Compressed Sparse Row Representation) sparse matrix interface.
  516. Register the sparse matrix made of @var{nnz} non-zero values of size
  517. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  518. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  519. terms of blocks), @var{colind} is the list of positions of the non-zero entries
  520. on the row, @var{rowptr} is the index (in nzval) of the first entry of the row.
  521. @var{fristentry} is the index of the first entry of the given arrays (usually 0
  522. or 1).
  523. @end deftypefun
  524. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  525. This variant of @code{starpu_data_register} uses the CSR (Compressed
  526. Sparse Row Representation) sparse matrix interface.
  527. TODO
  528. @end deftypefun
  529. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  530. Return the interface associated with @var{handle} on @var{memory_node}.
  531. @end deftypefun
  532. @node Accessing Data Interfaces
  533. @subsection Accessing Data Interfaces
  534. Each data interface is provided with a set of field access functions.
  535. The ones using a @code{void *} parameter aimed to be used in codelet
  536. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  537. @deftp {Data Type} {enum starpu_data_interface_id}
  538. The different values are:
  539. @table @asis
  540. @item @code{STARPU_MATRIX_INTERFACE_ID}
  541. @item @code{STARPU_BLOCK_INTERFACE_ID}
  542. @item @code{STARPU_VECTOR_INTERFACE_ID}
  543. @item @code{STARPU_CSR_INTERFACE_ID}
  544. @item @code{STARPU_BCSR_INTERFACE_ID}
  545. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  546. @item @code{STARPU_VOID_INTERFACE_ID}
  547. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  548. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  549. @end table
  550. @end deftp
  551. @menu
  552. * Accessing Handle::
  553. * Accessing Variable Data Interfaces::
  554. * Accessing Vector Data Interfaces::
  555. * Accessing Matrix Data Interfaces::
  556. * Accessing Block Data Interfaces::
  557. * Accessing BCSR Data Interfaces::
  558. * Accessing CSR Data Interfaces::
  559. @end menu
  560. @node Accessing Handle
  561. @subsubsection Handle
  562. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  563. Return the pointer associated with @var{handle} on node @var{node} or
  564. @code{NULL} if @var{handle}'s interface does not support this
  565. operation or data for this handle is not allocated on that node.
  566. @end deftypefun
  567. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  568. Return the local pointer associated with @var{handle} or @code{NULL}
  569. if @var{handle}'s interface does not have data allocated locally
  570. @end deftypefun
  571. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  572. Return the unique identifier of the interface associated with the given @var{handle}.
  573. @end deftypefun
  574. @node Accessing Variable Data Interfaces
  575. @subsubsection Variable Data Interfaces
  576. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  577. Return the size of the variable designated by @var{handle}.
  578. @end deftypefun
  579. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  580. Return a pointer to the variable designated by @var{handle}.
  581. @end deftypefun
  582. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  583. Return a pointer to the variable designated by @var{interface}.
  584. @end defmac
  585. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  586. Return the size of the variable designated by @var{interface}.
  587. @end defmac
  588. @node Accessing Vector Data Interfaces
  589. @subsubsection Vector Data Interfaces
  590. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  591. Return the number of elements registered into the array designated by @var{handle}.
  592. @end deftypefun
  593. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  594. Return the size of each element of the array designated by @var{handle}.
  595. @end deftypefun
  596. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  597. Return the local pointer associated with @var{handle}.
  598. @end deftypefun
  599. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  600. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  601. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  602. @end defmac
  603. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  604. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  605. documented below has to be used in addition to this.
  606. @end defmac
  607. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  608. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  609. @end defmac
  610. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  611. Return the number of elements registered into the array designated by @var{interface}.
  612. @end defmac
  613. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  614. Return the size of each element of the array designated by @var{interface}.
  615. @end defmac
  616. @node Accessing Matrix Data Interfaces
  617. @subsubsection Matrix Data Interfaces
  618. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  619. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  620. @end deftypefun
  621. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  622. Return the number of elements on the y-axis of the matrix designated by
  623. @var{handle}.
  624. @end deftypefun
  625. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  626. Return the number of elements between each row of the matrix designated by
  627. @var{handle}. Maybe be equal to nx when there is no padding.
  628. @end deftypefun
  629. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  630. Return the local pointer associated with @var{handle}.
  631. @end deftypefun
  632. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  633. Return the size of the elements registered into the matrix designated by
  634. @var{handle}.
  635. @end deftypefun
  636. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  637. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  638. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  639. used instead.
  640. @end defmac
  641. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  642. Return a device handle for the matrix designated by @var{interface}, to be used
  643. on OpenCL. The offset documented below has to be used in addition to this.
  644. @end defmac
  645. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  646. Return the offset in the matrix designated by @var{interface}, to be used with
  647. the device handle.
  648. @end defmac
  649. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  650. Return the number of elements on the x-axis of the matrix designated by
  651. @var{interface}.
  652. @end defmac
  653. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  654. Return the number of elements on the y-axis of the matrix designated by
  655. @var{interface}.
  656. @end defmac
  657. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  658. Return the number of elements between each row of the matrix designated by
  659. @var{interface}. May be equal to nx when there is no padding.
  660. @end defmac
  661. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  662. Return the size of the elements registered into the matrix designated by
  663. @var{interface}.
  664. @end defmac
  665. @node Accessing Block Data Interfaces
  666. @subsubsection Block Data Interfaces
  667. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  668. Return the number of elements on the x-axis of the block designated by @var{handle}.
  669. @end deftypefun
  670. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  671. Return the number of elements on the y-axis of the block designated by @var{handle}.
  672. @end deftypefun
  673. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  674. Return the number of elements on the z-axis of the block designated by @var{handle}.
  675. @end deftypefun
  676. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  677. Return the number of elements between each row of the block designated by
  678. @var{handle}, in the format of the current memory node.
  679. @end deftypefun
  680. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  681. Return the number of elements between each z plane of the block designated by
  682. @var{handle}, in the format of the current memory node.
  683. @end deftypefun
  684. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  685. Return the local pointer associated with @var{handle}.
  686. @end deftypefun
  687. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  688. Return the size of the elements of the block designated by @var{handle}.
  689. @end deftypefun
  690. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  691. Return a pointer to the block designated by @var{interface}.
  692. @end defmac
  693. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  694. Return a device handle for the block designated by @var{interface}, to be used
  695. on OpenCL. The offset document below has to be used in addition to this.
  696. @end defmac
  697. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  698. Return the offset in the block designated by @var{interface}, to be used with
  699. the device handle.
  700. @end defmac
  701. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  702. Return the number of elements on the x-axis of the block designated by @var{handle}.
  703. @end defmac
  704. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  705. Return the number of elements on the y-axis of the block designated by @var{handle}.
  706. @end defmac
  707. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  708. Return the number of elements on the z-axis of the block designated by @var{handle}.
  709. @end defmac
  710. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  711. Return the number of elements between each row of the block designated by
  712. @var{interface}. May be equal to nx when there is no padding.
  713. @end defmac
  714. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  715. Return the number of elements between each z plane of the block designated by
  716. @var{interface}. May be equal to nx*ny when there is no padding.
  717. @end defmac
  718. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  719. Return the size of the elements of the matrix designated by @var{interface}.
  720. @end defmac
  721. @node Accessing BCSR Data Interfaces
  722. @subsubsection BCSR Data Interfaces
  723. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  724. Return the number of non-zero elements in the matrix designated by @var{handle}.
  725. @end deftypefun
  726. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  727. Return the number of rows (in terms of blocks of size r*c) in the matrix
  728. designated by @var{handle}.
  729. @end deftypefun
  730. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  731. Return the index at which all arrays (the column indexes, the row pointers...)
  732. of the matrix desginated by @var{handle} start.
  733. @end deftypefun
  734. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  735. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  736. @end deftypefun
  737. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  738. Return a pointer to the column index, which holds the positions of the non-zero
  739. entries in the matrix designated by @var{handle}.
  740. @end deftypefun
  741. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  742. Return the row pointer array of the matrix designated by @var{handle}.
  743. @end deftypefun
  744. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  745. Return the number of rows in a block.
  746. @end deftypefun
  747. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  748. Return the numberof columns in a block.
  749. @end deftypefun
  750. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  751. Return the size of the elements in the matrix designated by @var{handle}.
  752. @end deftypefun
  753. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  754. Return the number of non-zero values in the matrix designated by @var{interface}.
  755. @end defmac
  756. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  757. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  758. @end defmac
  759. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  760. Return a pointer to the column index of the matrix designated by @var{interface}.
  761. @end defmac
  762. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  763. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  764. @end defmac
  765. @node Accessing CSR Data Interfaces
  766. @subsubsection CSR Data Interfaces
  767. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  768. Return the number of non-zero values in the matrix designated by @var{handle}.
  769. @end deftypefun
  770. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  771. Return the size of the row pointer array of the matrix designated by @var{handle}.
  772. @end deftypefun
  773. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  774. Return the index at which all arrays (the column indexes, the row pointers...)
  775. of the matrix designated by @var{handle} start.
  776. @end deftypefun
  777. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  778. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  779. @end deftypefun
  780. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  781. Return a local pointer to the column index of the matrix designated by @var{handle}.
  782. @end deftypefun
  783. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  784. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  785. @end deftypefun
  786. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  787. Return the size of the elements registered into the matrix designated by @var{handle}.
  788. @end deftypefun
  789. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  790. Return the number of non-zero values in the matrix designated by @var{interface}.
  791. @end defmac
  792. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  793. Return the size of the row pointer array of the matrix designated by @var{interface}.
  794. @end defmac
  795. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  796. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  797. @end defmac
  798. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  799. Return a pointer to the column index of the matrix designated by @var{interface}.
  800. @end defmac
  801. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  802. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  803. @end defmac
  804. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  805. Return the index at which all arrays (the column indexes, the row pointers...)
  806. of the @var{interface} start.
  807. @end defmac
  808. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  809. Return the size of the elements registered into the matrix designated by @var{interface}.
  810. @end defmac
  811. @node Data Partition
  812. @section Data Partition
  813. @menu
  814. * Basic API::
  815. * Predefined filter functions::
  816. @end menu
  817. @node Basic API
  818. @subsection Basic API
  819. @deftp {Data Type} {struct starpu_data_filter}
  820. The filter structure describes a data partitioning operation, to be given to the
  821. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  822. for an example. The different fields are:
  823. @table @asis
  824. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  825. This function fills the @code{child_interface} structure with interface
  826. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  827. @item @code{unsigned nchildren}
  828. This is the number of parts to partition the data into.
  829. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  830. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  831. children depends on the actual data (e.g. the number of blocks in a sparse
  832. matrix).
  833. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  834. In case the resulting children use a different data interface, this function
  835. returns which interface is used by child number @code{id}.
  836. @item @code{unsigned filter_arg}
  837. Allow to define an additional parameter for the filter function.
  838. @item @code{void *filter_arg_ptr}
  839. Allow to define an additional pointer parameter for the filter
  840. function, such as the sizes of the different parts.
  841. @end table
  842. @end deftp
  843. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  844. @anchor{starpu_data_partition}
  845. This requests partitioning one StarPU data @var{initial_handle} into several
  846. subdata according to the filter @var{f}, as shown in the following example:
  847. @cartouche
  848. @smallexample
  849. struct starpu_data_filter f = @{
  850. .filter_func = starpu_vertical_block_filter_func,
  851. .nchildren = nslicesx,
  852. .get_nchildren = NULL,
  853. .get_child_ops = NULL
  854. @};
  855. starpu_data_partition(A_handle, &f);
  856. @end smallexample
  857. @end cartouche
  858. @end deftypefun
  859. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  860. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  861. collected back into one big piece in the @var{gathering_node} (usually 0).
  862. @cartouche
  863. @smallexample
  864. starpu_data_unpartition(A_handle, 0);
  865. @end smallexample
  866. @end cartouche
  867. @end deftypefun
  868. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  869. This function returns the number of children.
  870. @end deftypefun
  871. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  872. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  873. @end deftypefun
  874. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  875. After partitioning a StarPU data by applying a filter,
  876. @code{starpu_data_get_sub_data} can be used to get handles for each of
  877. the data portions. @var{root_data} is the parent data that was
  878. partitioned. @var{depth} is the number of filters to traverse (in
  879. case several filters have been applied, to e.g. partition in row
  880. blocks, and then in column blocks), and the subsequent
  881. parameters are the indexes. The function returns a handle to the
  882. subdata.
  883. @cartouche
  884. @smallexample
  885. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  886. @end smallexample
  887. @end cartouche
  888. @end deftypefun
  889. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  890. This function is similar to @code{starpu_data_get_sub_data} but uses a
  891. va_list for the parameter list.
  892. @end deftypefun
  893. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  894. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  895. recursively. @var{nfilters} pointers to variables of the type
  896. starpu_data_filter should be given.
  897. @end deftypefun
  898. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  899. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  900. recursively. It uses a va_list of pointers to variables of the typer
  901. starpu_data_filter.
  902. @end deftypefun
  903. @node Predefined filter functions
  904. @subsection Predefined filter functions
  905. @menu
  906. * Partitioning BCSR Data::
  907. * Partitioning BLAS interface::
  908. * Partitioning Vector Data::
  909. * Partitioning Block Data::
  910. @end menu
  911. This section gives a partial list of the predefined partitioning functions.
  912. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  913. list can be found in @code{starpu_data_filters.h} .
  914. @node Partitioning BCSR Data
  915. @subsubsection Partitioning BCSR Data
  916. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  917. This partitions a block-sparse matrix into dense matrices.
  918. @end deftypefun
  919. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  920. This partitions a block-sparse matrix into vertical block-sparse matrices.
  921. @end deftypefun
  922. @node Partitioning BLAS interface
  923. @subsubsection Partitioning BLAS interface
  924. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  925. This partitions a dense Matrix into horizontal blocks.
  926. @end deftypefun
  927. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  928. This partitions a dense Matrix into vertical blocks.
  929. @end deftypefun
  930. @node Partitioning Vector Data
  931. @subsubsection Partitioning Vector Data
  932. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  933. Return in @code{*@var{child_interface}} the @var{id}th element of the
  934. vector represented by @var{father_interface} once partitioned in
  935. @var{nparts} chunks of equal size.
  936. @end deftypefun
  937. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  938. Return in @code{*@var{child_interface}} the @var{id}th element of the
  939. vector represented by @var{father_interface} once partitioned into
  940. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  941. @code{*@var{f}}.
  942. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  943. @code{uint32_t} elements, each of which specifies the number of elements
  944. in each chunk of the partition.
  945. @end deftypefun
  946. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  947. Return in @code{*@var{child_interface}} the @var{id}th element of the
  948. vector represented by @var{father_interface} once partitioned in two
  949. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  950. @code{0} or @code{1}.
  951. @end deftypefun
  952. @node Partitioning Block Data
  953. @subsubsection Partitioning Block Data
  954. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  955. This partitions a 3D matrix along the X axis.
  956. @end deftypefun
  957. @node Codelets and Tasks
  958. @section Codelets and Tasks
  959. This section describes the interface to manipulate codelets and tasks.
  960. @deftp {Data Type} {enum starpu_codelet_type}
  961. Describes the type of parallel task. The different values are:
  962. @table @asis
  963. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  964. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  965. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  966. @code{starpu_combined_worker_get_rank} to distribute the work
  967. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  968. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  969. determine how many threads should be started.
  970. @end table
  971. See @ref{Parallel Tasks} for details.
  972. @end deftp
  973. @defmac STARPU_CPU
  974. This macro is used when setting the field @code{where} of a @code{struct
  975. starpu_codelet} to specify the codelet may be executed on a CPU
  976. processing unit.
  977. @end defmac
  978. @defmac STARPU_CUDA
  979. This macro is used when setting the field @code{where} of a @code{struct
  980. starpu_codelet} to specify the codelet may be executed on a CUDA
  981. processing unit.
  982. @end defmac
  983. @defmac STARPU_SPU
  984. This macro is used when setting the field @code{where} of a @code{struct
  985. starpu_codelet} to specify the codelet may be executed on a SPU
  986. processing unit.
  987. @end defmac
  988. @defmac STARPU_GORDON
  989. This macro is used when setting the field @code{where} of a @code{struct
  990. starpu_codelet} to specify the codelet may be executed on a Cell
  991. processing unit.
  992. @end defmac
  993. @defmac STARPU_OPENCL
  994. This macro is used when setting the field @code{where} of a @code{struct
  995. starpu_codelet} to specify the codelet may be executed on a OpenCL
  996. processing unit.
  997. @end defmac
  998. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  999. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1000. with this macro indicates the codelet will have several
  1001. implementations. The use of this macro is deprecated. One should
  1002. always only define the field @code{cpu_funcs}.
  1003. @end defmac
  1004. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1005. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1006. with this macro indicates the codelet will have several
  1007. implementations. The use of this macro is deprecated. One should
  1008. always only define the field @code{cuda_funcs}.
  1009. @end defmac
  1010. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1011. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1012. with this macro indicates the codelet will have several
  1013. implementations. The use of this macro is deprecated. One should
  1014. always only define the field @code{opencl_funcs}.
  1015. @end defmac
  1016. @deftp {Data Type} {struct starpu_codelet}
  1017. The codelet structure describes a kernel that is possibly implemented on various
  1018. targets. For compatibility, make sure to initialize the whole structure to zero.
  1019. @table @asis
  1020. @item @code{uint32_t where} (optional)
  1021. Indicates which types of processing units are able to execute the
  1022. codelet. The different values
  1023. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  1024. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  1025. on which types of processing units the codelet can be executed.
  1026. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1027. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  1028. indicates that it is only available on Cell SPUs. If the field is
  1029. unset, its value will be automatically set based on the availability
  1030. of the @code{XXX_funcs} fields defined below.
  1031. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1032. Defines a function which should return 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  1033. @item @code{enum starpu_codelet_type type} (optional)
  1034. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1035. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1036. implementation is also available. See @ref{Parallel Tasks} for details.
  1037. @item @code{int max_parallelism} (optional)
  1038. If a parallel implementation is available, this denotes the maximum combined
  1039. worker size that StarPU will use to execute parallel tasks for this codelet.
  1040. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1041. This field has been made deprecated. One should use instead the
  1042. @code{cpu_funcs} field.
  1043. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1044. Is an array of function pointers to the CPU implementations of the codelet.
  1045. It must be terminated by a NULL value.
  1046. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1047. argument being the array of data managed by the data management library, and
  1048. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1049. field of the @code{starpu_task} structure.
  1050. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1051. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1052. field, it must be non-null otherwise.
  1053. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1054. This field has been made deprecated. One should use instead the
  1055. @code{cuda_funcs} field.
  1056. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1057. Is an array of function pointers to the CUDA implementations of the codelet.
  1058. It must be terminated by a NULL value.
  1059. @emph{The functions must be host-functions written in the CUDA runtime
  1060. API}. Their prototype must
  1061. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1062. If the @code{where} field is set, then the @code{cuda_funcs}
  1063. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1064. field, it must be non-null otherwise.
  1065. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1066. This field has been made deprecated. One should use instead the
  1067. @code{opencl_funcs} field.
  1068. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1069. Is an array of function pointers to the OpenCL implementations of the codelet.
  1070. It must be terminated by a NULL value.
  1071. The functions prototype must be:
  1072. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1073. If the @code{where} field is set, then the @code{opencl_funcs} field
  1074. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1075. field, it must be non-null otherwise.
  1076. @item @code{uint8_t gordon_func} (optional)
  1077. This field has been made deprecated. One should use instead the
  1078. @code{gordon_funcs} field.
  1079. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1080. Is an array of index of the Cell SPU implementations of the codelet within the
  1081. Gordon library.
  1082. It must be terminated by a NULL value.
  1083. See Gordon documentation for more details on how to register a kernel and
  1084. retrieve its index.
  1085. @item @code{unsigned nbuffers}
  1086. Specifies the number of arguments taken by the codelet. These arguments are
  1087. managed by the DSM and are accessed from the @code{void *buffers[]}
  1088. array. The constant argument passed with the @code{cl_arg} field of the
  1089. @code{starpu_task} structure is not counted in this number. This value should
  1090. not be above @code{STARPU_NMAXBUFS}.
  1091. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1092. Is an array of @code{enum starpu_access_mode}. It describes the
  1093. required access modes to the data neeeded by the codelet (e.g.
  1094. @code{STARPU_RW}). The number of entries in this array must be
  1095. specified in the @code{nbuffers} field (defined above), and should not
  1096. exceed @code{STARPU_NMAXBUFS}.
  1097. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1098. option when configuring StarPU.
  1099. @item @code{struct starpu_perfmodel *model} (optional)
  1100. This is a pointer to the task duration performance model associated to this
  1101. codelet. This optional field is ignored when set to @code{NULL} or
  1102. when its @code{symbol} field is not set.
  1103. @item @code{struct starpu_perfmodel *power_model} (optional)
  1104. This is a pointer to the task power consumption performance model associated
  1105. to this codelet. This optional field is ignored when set to
  1106. @code{NULL} or when its @code{symbol} field is not set.
  1107. In the case of parallel codelets, this has to account for all processing units
  1108. involved in the parallel execution.
  1109. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1110. Statistics collected at runtime: this is filled by StarPU and should not be
  1111. accessed directly, but for example by calling the
  1112. @code{starpu_display_codelet_stats} function (See
  1113. @ref{starpu_display_codelet_stats} for details).
  1114. @item @code{const char *name} (optional)
  1115. Define the name of the codelet. This can be useful for debugging purposes.
  1116. @end table
  1117. @end deftp
  1118. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1119. Initialize @var{cl} with default values. Codelets should preferably be
  1120. initialized statically as shown in @ref{Defining a Codelet}. However
  1121. such a initialisation is not always possible, e.g. when using C++.
  1122. @end deftypefun
  1123. @deftp {Data Type} {enum starpu_task_status}
  1124. State of a task, can be either of
  1125. @table @asis
  1126. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1127. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1128. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1129. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1130. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1131. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1132. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1133. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1134. @end table
  1135. @end deftp
  1136. @deftp {Data Type} {struct starpu_buffer_descr}
  1137. This type is used to describe a data handle along with an
  1138. access mode.
  1139. @table @asis
  1140. @item @code{starpu_data_handle_t handle} describes a data,
  1141. @item @code{enum starpu_access_mode mode} describes its access mode
  1142. @end table
  1143. @end deftp
  1144. @deftp {Data Type} {struct starpu_task}
  1145. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1146. processing units managed by StarPU. It instantiates a codelet. It can either be
  1147. allocated dynamically with the @code{starpu_task_create} method, or declared
  1148. statically. In the latter case, the programmer has to zero the
  1149. @code{starpu_task} structure and to fill the different fields properly. The
  1150. indicated default values correspond to the configuration of a task allocated
  1151. with @code{starpu_task_create}.
  1152. @table @asis
  1153. @item @code{struct starpu_codelet *cl}
  1154. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1155. describes where the kernel should be executed, and supplies the appropriate
  1156. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1157. such empty tasks can be useful for synchronization purposes.
  1158. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1159. This field has been made deprecated. One should use instead the
  1160. @code{handles} field to specify the handles to the data accessed by
  1161. the task. The access modes are now defined in the @code{mode} field of
  1162. the @code{struct starpu_codelet cl} field defined above.
  1163. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1164. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1165. to the different pieces of data accessed by the task. The number
  1166. of entries in this array must be specified in the @code{nbuffers} field of the
  1167. @code{struct starpu_codelet} structure, and should not exceed
  1168. @code{STARPU_NMAXBUFS}.
  1169. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1170. option when configuring StarPU.
  1171. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1172. The actual data pointers to the memory node where execution will happen, managed
  1173. by the DSM.
  1174. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1175. This pointer is passed to the codelet through the second argument
  1176. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1177. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1178. argument.
  1179. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1180. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1181. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1182. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1183. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1184. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1185. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1186. codelets, where the @code{cl_arg} pointer is given as such.
  1187. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1188. This is a function pointer of prototype @code{void (*f)(void *)} which
  1189. specifies a possible callback. If this pointer is non-null, the callback
  1190. function is executed @emph{on the host} after the execution of the task. Tasks
  1191. which depend on it might already be executing. The callback is passed the
  1192. value contained in the @code{callback_arg} field. No callback is executed if the
  1193. field is set to @code{NULL}.
  1194. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1195. This is the pointer passed to the callback function. This field is ignored if
  1196. the @code{callback_func} is set to @code{NULL}.
  1197. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1198. If set, this flag indicates that the task should be associated with the tag
  1199. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1200. with the task and to express task dependencies easily.
  1201. @item @code{starpu_tag_t tag_id}
  1202. This fields contains the tag associated to the task if the @code{use_tag} field
  1203. was set, it is ignored otherwise.
  1204. @item @code{unsigned synchronous}
  1205. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1206. returns only when the task has been executed (or if no worker is able to
  1207. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1208. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1209. This field indicates a level of priority for the task. This is an integer value
  1210. that must be set between the return values of the
  1211. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1212. and that of the @code{starpu_sched_get_max_priority} for the most important
  1213. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1214. are provided for convenience and respectively returns value of
  1215. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1216. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1217. order to allow static task initialization. Scheduling strategies that take
  1218. priorities into account can use this parameter to take better scheduling
  1219. decisions, but the scheduling policy may also ignore it.
  1220. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1221. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1222. task to the worker specified by the @code{workerid} field.
  1223. @item @code{unsigned workerid} (optional)
  1224. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1225. which is the identifier of the worker that should process this task (as
  1226. returned by @code{starpu_worker_get_id}). This field is ignored if
  1227. @code{execute_on_a_specific_worker} field is set to 0.
  1228. @item @code{starpu_task_bundle_t bundle} (optional)
  1229. The bundle that includes this task. If no bundle is used, this should be NULL.
  1230. @item @code{int detach} (optional) (default: @code{1})
  1231. If this flag is set, it is not possible to synchronize with the task
  1232. by the means of @code{starpu_task_wait} later on. Internal data structures
  1233. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1234. flag is not set.
  1235. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1236. If this flag is set, the task structure will automatically be freed, either
  1237. after the execution of the callback if the task is detached, or during
  1238. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1239. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1240. called explicitly. Setting this flag for a statically allocated task structure
  1241. will result in undefined behaviour. The flag is set to 1 when the task is
  1242. created by calling @code{starpu_task_create()}. Note that
  1243. @code{starpu_task_wait_for_all} will not free any task.
  1244. @item @code{int regenerate} (optional)
  1245. If this flag is set, the task will be re-submitted to StarPU once it has been
  1246. executed. This flag must not be set if the destroy flag is set too.
  1247. @item @code{enum starpu_task_status status} (optional)
  1248. Current state of the task.
  1249. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1250. Profiling information for the task.
  1251. @item @code{double predicted} (output field)
  1252. Predicted duration of the task. This field is only set if the scheduling
  1253. strategy used performance models.
  1254. @item @code{double predicted_transfer} (optional)
  1255. Predicted data transfer duration for the task in microseconds. This field is
  1256. only valid if the scheduling strategy uses performance models.
  1257. @item @code{struct starpu_task *prev}
  1258. A pointer to the previous task. This should only be used by StarPU.
  1259. @item @code{struct starpu_task *next}
  1260. A pointer to the next task. This should only be used by StarPU.
  1261. @item @code{unsigned int mf_skip}
  1262. This is only used for tasks that use multiformat handle. This should only be
  1263. used by StarPU.
  1264. @item @code{void *starpu_private}
  1265. This is private to StarPU, do not modify. If the task is allocated by hand
  1266. (without starpu_task_create), this field should be set to NULL.
  1267. @item @code{int magic}
  1268. This field is set when initializing a task. It prevents a task from being
  1269. submitted if it has not been properly initialized.
  1270. @end table
  1271. @end deftp
  1272. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1273. Initialize @var{task} with default values. This function is implicitly
  1274. called by @code{starpu_task_create}. By default, tasks initialized with
  1275. @code{starpu_task_init} must be deinitialized explicitly with
  1276. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1277. using @code{STARPU_TASK_INITIALIZER} defined below.
  1278. @end deftypefun
  1279. @defmac STARPU_TASK_INITIALIZER
  1280. It is possible to initialize statically allocated tasks with this
  1281. value. This is equivalent to initializing a starpu_task structure with
  1282. the @code{starpu_task_init} function defined above.
  1283. @end defmac
  1284. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1285. Allocate a task structure and initialize it with default values. Tasks
  1286. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1287. task is terminated. This means that the task pointer can not be used any more
  1288. once the task is submitted, since it can be executed at any time (unless
  1289. dependencies make it wait) and thus freed at any time.
  1290. If the destroy flag is explicitly unset, the resources used
  1291. by the task have to be freed by calling
  1292. @code{starpu_task_destroy}.
  1293. @end deftypefun
  1294. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1295. Release all the structures automatically allocated to execute @var{task}, but
  1296. not the task structure itself. It is thus useful for statically allocated tasks
  1297. for instance. It is called automatically by @code{starpu_task_destroy}. It
  1298. has to be called only after explicitly waiting for the task or after
  1299. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1300. still manipulates the task after calling the callback).
  1301. @end deftypefun
  1302. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1303. Free the resource allocated during @code{starpu_task_create} and
  1304. associated with @var{task}. This function is already called automatically
  1305. after the execution of a task when the @code{destroy} flag of the
  1306. @code{starpu_task} structure is set, which is the default for tasks created by
  1307. @code{starpu_task_create}. Calling this function on a statically allocated task
  1308. results in an undefined behaviour.
  1309. @end deftypefun
  1310. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1311. This function blocks until @var{task} has been executed. It is not possible to
  1312. synchronize with a task more than once. It is not possible to wait for
  1313. synchronous or detached tasks.
  1314. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1315. indicates that the specified task was either synchronous or detached.
  1316. @end deftypefun
  1317. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1318. This function submits @var{task} to StarPU. Calling this function does
  1319. not mean that the task will be executed immediately as there can be data or task
  1320. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1321. scheduling this task with respect to such dependencies.
  1322. This function returns immediately if the @code{synchronous} field of the
  1323. @code{starpu_task} structure was set to 0, and block until the termination of
  1324. the task otherwise. It is also possible to synchronize the application with
  1325. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1326. function for instance.
  1327. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1328. means that there is no worker able to process this task (e.g. there is no GPU
  1329. available and this task is only implemented for CUDA devices).
  1330. starpu_task_submit() can be called from anywhere, including codelet
  1331. functions and callbacks, provided that the @code{synchronous} field of the
  1332. @code{starpu_task} structure is left to 0.
  1333. @end deftypefun
  1334. @deftypefun int starpu_task_wait_for_all (void)
  1335. This function blocks until all the tasks that were submitted are terminated. It
  1336. does not destroy these tasks.
  1337. @end deftypefun
  1338. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1339. This function returns the task currently executed by the worker, or
  1340. NULL if it is called either from a thread that is not a task or simply
  1341. because there is no task being executed at the moment.
  1342. @end deftypefun
  1343. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1344. @anchor{starpu_display_codelet_stats}
  1345. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1346. @end deftypefun
  1347. @deftypefun int starpu_task_wait_for_no_ready (void)
  1348. This function waits until there is no more ready task.
  1349. @end deftypefun
  1350. @c Callbacks: what can we put in callbacks ?
  1351. @node Explicit Dependencies
  1352. @section Explicit Dependencies
  1353. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1354. Declare task dependencies between a @var{task} and an array of tasks of length
  1355. @var{ndeps}. This function must be called prior to the submission of the task,
  1356. but it may called after the submission or the execution of the tasks in the
  1357. array, provided the tasks are still valid (ie. they were not automatically
  1358. destroyed). Calling this function on a task that was already submitted or with
  1359. an entry of @var{task_array} that is not a valid task anymore results in an
  1360. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1361. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1362. same task, in this case, the dependencies are added. It is possible to have
  1363. redundancy in the task dependencies.
  1364. @end deftypefun
  1365. @deftp {Data Type} {starpu_tag_t}
  1366. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1367. dependencies between tasks by the means of those tags. To do so, fill the
  1368. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1369. be arbitrary) and set the @code{use_tag} field to 1.
  1370. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1371. not be started until the tasks which holds the declared dependency tags are
  1372. completed.
  1373. @end deftp
  1374. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1375. Specify the dependencies of the task identified by tag @var{id}. The first
  1376. argument specifies the tag which is configured, the second argument gives the
  1377. number of tag(s) on which @var{id} depends. The following arguments are the
  1378. tags which have to be terminated to unlock the task.
  1379. This function must be called before the associated task is submitted to StarPU
  1380. with @code{starpu_task_submit}.
  1381. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1382. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1383. typically need to be explicitly casted. Using the
  1384. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1385. @cartouche
  1386. @smallexample
  1387. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1388. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1389. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1390. @end smallexample
  1391. @end cartouche
  1392. @end deftypefun
  1393. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1394. This function is similar to @code{starpu_tag_declare_deps}, except
  1395. that its does not take a variable number of arguments but an array of
  1396. tags of size @var{ndeps}.
  1397. @cartouche
  1398. @smallexample
  1399. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1400. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1401. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1402. @end smallexample
  1403. @end cartouche
  1404. @end deftypefun
  1405. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1406. This function blocks until the task associated to tag @var{id} has been
  1407. executed. This is a blocking call which must therefore not be called within
  1408. tasks or callbacks, but only from the application directly. It is possible to
  1409. synchronize with the same tag multiple times, as long as the
  1410. @code{starpu_tag_remove} function is not called. Note that it is still
  1411. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1412. data structure was freed (e.g. if the @code{destroy} flag of the
  1413. @code{starpu_task} was enabled).
  1414. @end deftypefun
  1415. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1416. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1417. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1418. terminated.
  1419. @end deftypefun
  1420. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1421. This function can be used to clear the "already notified" status
  1422. of a tag which is not associated with a task. Before that, calling
  1423. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1424. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1425. successors.
  1426. @end deftypefun
  1427. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1428. This function releases the resources associated to tag @var{id}. It can be
  1429. called once the corresponding task has been executed and when there is
  1430. no other tag that depend on this tag anymore.
  1431. @end deftypefun
  1432. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1433. This function explicitly unlocks tag @var{id}. It may be useful in the
  1434. case of applications which execute part of their computation outside StarPU
  1435. tasks (e.g. third-party libraries). It is also provided as a
  1436. convenient tool for the programmer, for instance to entirely construct the task
  1437. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1438. called several times on the same tag, notification will be done only on first
  1439. call, thus implementing "OR" dependencies, until the tag is restarted using
  1440. @code{starpu_tag_restart}.
  1441. @end deftypefun
  1442. @node Implicit Data Dependencies
  1443. @section Implicit Data Dependencies
  1444. In this section, we describe how StarPU makes it possible to insert implicit
  1445. task dependencies in order to enforce sequential data consistency. When this
  1446. data consistency is enabled on a specific data handle, any data access will
  1447. appear as sequentially consistent from the application. For instance, if the
  1448. application submits two tasks that access the same piece of data in read-only
  1449. mode, and then a third task that access it in write mode, dependencies will be
  1450. added between the two first tasks and the third one. Implicit data dependencies
  1451. are also inserted in the case of data accesses from the application.
  1452. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1453. Set the default sequential consistency flag. If a non-zero value is passed, a
  1454. sequential data consistency will be enforced for all handles registered after
  1455. this function call, otherwise it is disabled. By default, StarPU enables
  1456. sequential data consistency. It is also possible to select the data consistency
  1457. mode of a specific data handle with the
  1458. @code{starpu_data_set_sequential_consistency_flag} function.
  1459. @end deftypefun
  1460. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1461. Return the default sequential consistency flag
  1462. @end deftypefun
  1463. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1464. Sets the data consistency mode associated to a data handle. The consistency
  1465. mode set using this function has the priority over the default mode which can
  1466. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1467. @end deftypefun
  1468. @node Performance Model API
  1469. @section Performance Model API
  1470. @deftp {Data Type} {enum starpu_perf_archtype}
  1471. Enumerates the various types of architectures.
  1472. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1473. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1474. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1475. @table @asis
  1476. @item @code{STARPU_CPU_DEFAULT}
  1477. @item @code{STARPU_CUDA_DEFAULT}
  1478. @item @code{STARPU_OPENCL_DEFAULT}
  1479. @item @code{STARPU_GORDON_DEFAULT}
  1480. @end table
  1481. @end deftp
  1482. @deftp {Data Type} {enum starpu_perfmodel_type}
  1483. The possible values are:
  1484. @table @asis
  1485. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1486. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1487. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1488. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1489. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1490. @end table
  1491. @end deftp
  1492. @deftp {Data Type} {struct starpu_perfmodel}
  1493. @anchor{struct starpu_perfmodel}
  1494. contains all information about a performance model. At least the
  1495. @code{type} and @code{symbol} fields have to be filled when defining a
  1496. performance model for a codelet. If not provided, other fields have to be zero.
  1497. @table @asis
  1498. @item @code{type}
  1499. is the type of performance model @code{enum starpu_perfmodel_type}:
  1500. @code{STARPU_HISTORY_BASED},
  1501. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1502. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1503. @code{per_arch} has to be filled with functions which return the cost in
  1504. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1505. a function that returns the cost in micro-seconds on a CPU, timing on other
  1506. archs will be determined by multiplying by an arch-specific factor.
  1507. @item @code{const char *symbol}
  1508. is the symbol name for the performance model, which will be used as
  1509. file name to store the model. It must be set otherwise the model will
  1510. be ignored.
  1511. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1512. This field is deprecated. Use instead the @code{cost_function} field.
  1513. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1514. Used by @code{STARPU_COMMON}: takes a task and
  1515. implementation number, and must return a task duration estimation in micro-seconds.
  1516. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1517. Used by @code{STARPU_HISTORY_BASED} and
  1518. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1519. implementation number, and returns the size to be used as index for
  1520. history and regression.
  1521. @item @code{struct starpu_per_arch_perfmodel per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1522. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1523. starpu_per_arch_perfmodel} structures.
  1524. @item @code{unsigned is_loaded}
  1525. Whether the performance model is already loaded from the disk.
  1526. @item @code{unsigned benchmarking}
  1527. Whether the performance model is still being calibrated.
  1528. @item @code{pthread_rwlock_t model_rwlock}
  1529. Lock to protect concurrency between loading from disk (W), updating the values
  1530. (W), and making a performance estimation (R).
  1531. @end table
  1532. @end deftp
  1533. @deftp {Data Type} {struct starpu_regression_model}
  1534. @table @asis
  1535. @item @code{double sumlny} sum of ln(measured)
  1536. @item @code{double sumlnx} sum of ln(size)
  1537. @item @code{double sumlnx2} sum of ln(size)^2
  1538. @item @code{unsigned long minx} minimum size
  1539. @item @code{unsigned long maxx} maximum size
  1540. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1541. @item @code{double alpha} estimated = alpha * size ^ beta
  1542. @item @code{double beta}
  1543. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1544. @item @code{double a, b, c} estimaed = a size ^b + c
  1545. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1546. @item @code{unsigned nsample} number of sample values for non-linear regression
  1547. @end table
  1548. @end deftp
  1549. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1550. contains information about the performance model of a given arch.
  1551. @table @asis
  1552. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1553. This field is deprecated. Use instead the @code{cost_function} field.
  1554. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1555. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1556. target arch and implementation number (as mere conveniency, since the array
  1557. is already indexed by these), and must return a task duration estimation in
  1558. micro-seconds.
  1559. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1560. starpu_perf_archtype arch, unsigned nimpl)}
  1561. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1562. case it depends on the architecture-specific implementation.
  1563. @item @code{struct starpu_htbl32_node *history}
  1564. The history of performance measurements.
  1565. @item @code{struct starpu_history_list *list}
  1566. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1567. records all execution history measures.
  1568. @item @code{struct starpu_regression_model regression}
  1569. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1570. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1571. regression.
  1572. @end table
  1573. @end deftp
  1574. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1575. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1576. @end deftypefun
  1577. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1578. returns the path to the debugging information for the performance model.
  1579. @end deftypefun
  1580. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1581. returns the architecture name for @var{arch}.
  1582. @end deftypefun
  1583. @deftypefun void starpu_force_bus_sampling (void)
  1584. forces sampling the bus performance model again.
  1585. @end deftypefun
  1586. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1587. returns the architecture type of a given worker.
  1588. @end deftypefun
  1589. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1590. prints a list of all performance models on @var{output}.
  1591. @end deftypefun
  1592. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1593. prints a matrix of bus bandwidths on @var{f}.
  1594. @end deftypefun
  1595. @node Profiling API
  1596. @section Profiling API
  1597. @deftypefun int starpu_profiling_status_set (int @var{status})
  1598. Thie function sets the profiling status. Profiling is activated by passing
  1599. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1600. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1601. resets all profiling measurements. When profiling is enabled, the
  1602. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1603. to a valid @code{struct starpu_task_profiling_info} structure containing
  1604. information about the execution of the task.
  1605. Negative return values indicate an error, otherwise the previous status is
  1606. returned.
  1607. @end deftypefun
  1608. @deftypefun int starpu_profiling_status_get (void)
  1609. Return the current profiling status or a negative value in case there was an error.
  1610. @end deftypefun
  1611. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1612. This function sets the ID used for profiling trace filename
  1613. @end deftypefun
  1614. @deftp {Data Type} {struct starpu_task_profiling_info}
  1615. This structure contains information about the execution of a task. It is
  1616. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1617. structure if profiling was enabled. The different fields are:
  1618. @table @asis
  1619. @item @code{struct timespec submit_time}
  1620. Date of task submission (relative to the initialization of StarPU).
  1621. @item @code{struct timespec push_start_time}
  1622. Time when the task was submitted to the scheduler.
  1623. @item @code{struct timespec push_end_time}
  1624. Time when the scheduler finished with the task submission.
  1625. @item @code{struct timespec pop_start_time}
  1626. Time when the scheduler started to be requested for a task, and eventually gave
  1627. that task.
  1628. @item @code{struct timespec pop_end_time}
  1629. Time when the scheduler finished providing the task for execution.
  1630. @item @code{struct timespec acquire_data_start_time}
  1631. Time when the worker started fetching input data.
  1632. @item @code{struct timespec acquire_data_end_time}
  1633. Time when the worker finished fetching input data.
  1634. @item @code{struct timespec start_time}
  1635. Date of task execution beginning (relative to the initialization of StarPU).
  1636. @item @code{struct timespec end_time}
  1637. Date of task execution termination (relative to the initialization of StarPU).
  1638. @item @code{struct timespec release_data_start_time}
  1639. Time when the worker started releasing data.
  1640. @item @code{struct timespec release_data_end_time}
  1641. Time when the worker finished releasing data.
  1642. @item @code{struct timespec callback_start_time}
  1643. Time when the worker started the application callback for the task.
  1644. @item @code{struct timespec callback_end_time}
  1645. Time when the worker finished the application callback for the task.
  1646. @item @code{workerid}
  1647. Identifier of the worker which has executed the task.
  1648. @item @code{uint64_t used_cycles}
  1649. Number of cycles used by the task, only available in the MoviSim
  1650. @item @code{uint64_t stall_cycles}
  1651. Number of cycles stalled within the task, only available in the MoviSim
  1652. @item @code{double power_consumed}
  1653. Power consumed by the task, only available in the MoviSim
  1654. @end table
  1655. @end deftp
  1656. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1657. This structure contains the profiling information associated to a
  1658. worker. The different fields are:
  1659. @table @asis
  1660. @item @code{struct timespec start_time}
  1661. Starting date for the reported profiling measurements.
  1662. @item @code{struct timespec total_time}
  1663. Duration of the profiling measurement interval.
  1664. @item @code{struct timespec executing_time}
  1665. Time spent by the worker to execute tasks during the profiling measurement interval.
  1666. @item @code{struct timespec sleeping_time}
  1667. Time spent idling by the worker during the profiling measurement interval.
  1668. @item @code{int executed_tasks}
  1669. Number of tasks executed by the worker during the profiling measurement interval.
  1670. @item @code{uint64_t used_cycles}
  1671. Number of cycles used by the worker, only available in the MoviSim
  1672. @item @code{uint64_t stall_cycles}
  1673. Number of cycles stalled within the worker, only available in the MoviSim
  1674. @item @code{double power_consumed}
  1675. Power consumed by the worker, only available in the MoviSim
  1676. @end table
  1677. @end deftp
  1678. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1679. Get the profiling info associated to the worker identified by @var{workerid},
  1680. and reset the profiling measurements. If the @var{worker_info} argument is
  1681. NULL, only reset the counters associated to worker @var{workerid}.
  1682. Upon successful completion, this function returns 0. Otherwise, a negative
  1683. value is returned.
  1684. @end deftypefun
  1685. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1686. The different fields are:
  1687. @table @asis
  1688. @item @code{struct timespec start_time}
  1689. Time of bus profiling startup.
  1690. @item @code{struct timespec total_time}
  1691. Total time of bus profiling.
  1692. @item @code{int long long transferred_bytes}
  1693. Number of bytes transferred during profiling.
  1694. @item @code{int transfer_count}
  1695. Number of transfers during profiling.
  1696. @end table
  1697. @end deftp
  1698. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1699. Get the profiling info associated to the worker designated by @var{workerid},
  1700. and reset the profiling measurements. If worker_info is NULL, only reset the
  1701. counters.
  1702. @end deftypefun
  1703. @deftypefun int starpu_bus_get_count (void)
  1704. Return the number of buses in the machine.
  1705. @end deftypefun
  1706. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1707. Return the identifier of the bus between @var{src} and @var{dst}
  1708. @end deftypefun
  1709. @deftypefun int starpu_bus_get_src (int @var{busid})
  1710. Return the source point of bus @var{busid}
  1711. @end deftypefun
  1712. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1713. Return the destination point of bus @var{busid}
  1714. @end deftypefun
  1715. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1716. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1717. @end deftypefun
  1718. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1719. Converts the given timespec @var{ts} into microseconds.
  1720. @end deftypefun
  1721. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1722. Displays statistics about the bus on stderr.
  1723. @end deftypefun
  1724. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1725. Displays statistics about the workers on stderr.
  1726. @end deftypefun
  1727. @node CUDA extensions
  1728. @section CUDA extensions
  1729. @defmac STARPU_USE_CUDA
  1730. This macro is defined when StarPU has been installed with CUDA
  1731. support. It should be used in your code to detect the availability of
  1732. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1733. @end defmac
  1734. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1735. This function gets the current worker's CUDA stream.
  1736. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1737. function is only provided for convenience so that programmers can easily use
  1738. asynchronous operations within codelets without having to create a stream by
  1739. hand. Note that the application is not forced to use the stream provided by
  1740. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1741. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1742. the likelihood of having all transfers overlapped.
  1743. @end deftypefun
  1744. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1745. This function returns a pointer to device properties for worker @var{workerid}
  1746. (assumed to be a CUDA worker).
  1747. @end deftypefun
  1748. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1749. Return the size of the global memory of CUDA device @var{devid}.
  1750. @end deftypefun
  1751. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1752. Report a CUDA error.
  1753. @end deftypefun
  1754. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1755. Calls starpu_cuda_report_error, passing the current function, file and line
  1756. position.
  1757. @end defmac
  1758. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  1759. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  1760. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  1761. The function first tries to copy the data asynchronous (unless
  1762. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  1763. @var{stream} is @code{NULL}, it copies the data synchronously.
  1764. The function returns @code{-EAGAIN} if the asynchronous copy was
  1765. successfull. It returns 0 if the synchronous copy was successful, or
  1766. fails otherwise.
  1767. @end deftypefun
  1768. @deftypefun void starpu_cuda_set_device (int @var{devid})
  1769. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  1770. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  1771. the @code{starpu_conf} structure.
  1772. @end deftypefun
  1773. @deftypefun void starpu_helper_cublas_init (void)
  1774. This function initializes CUBLAS on every CUDA device.
  1775. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1776. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1777. controlled by StarPU. This call blocks until CUBLAS has been properly
  1778. initialized on every device.
  1779. @end deftypefun
  1780. @deftypefun void starpu_helper_cublas_shutdown (void)
  1781. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1782. @end deftypefun
  1783. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1784. Report a cublas error.
  1785. @end deftypefun
  1786. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1787. Calls starpu_cublas_report_error, passing the current function, file and line
  1788. position.
  1789. @end defmac
  1790. @node OpenCL extensions
  1791. @section OpenCL extensions
  1792. @menu
  1793. * Writing OpenCL kernels:: Writing OpenCL kernels
  1794. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1795. * Loading OpenCL kernels:: Loading OpenCL kernels
  1796. * OpenCL statistics:: Collecting statistics from OpenCL
  1797. * OpenCL utilities:: Utilities for OpenCL
  1798. @end menu
  1799. @defmac STARPU_USE_OPENCL
  1800. This macro is defined when StarPU has been installed with OpenCL
  1801. support. It should be used in your code to detect the availability of
  1802. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1803. @end defmac
  1804. @node Writing OpenCL kernels
  1805. @subsection Writing OpenCL kernels
  1806. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1807. Return the size of global device memory in bytes.
  1808. @end deftypefun
  1809. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1810. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1811. @end deftypefun
  1812. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1813. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1814. @end deftypefun
  1815. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1816. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1817. @end deftypefun
  1818. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1819. Return the context of the current worker.
  1820. @end deftypefun
  1821. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1822. Return the computation kernel command queue of the current worker.
  1823. @end deftypefun
  1824. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1825. Sets the arguments of a given kernel. The list of arguments must be given as
  1826. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1827. The last argument must be 0. Returns the number of arguments that were
  1828. successfully set. In case of failure, @var{err} is set to the error returned by
  1829. OpenCL.
  1830. @end deftypefun
  1831. @node Compiling OpenCL kernels
  1832. @subsection Compiling OpenCL kernels
  1833. Source codes for OpenCL kernels can be stored in a file or in a
  1834. string. StarPU provides functions to build the program executable for
  1835. each available OpenCL device as a @code{cl_program} object. This
  1836. program executable can then be loaded within a specific queue as
  1837. explained in the next section. These are only helpers, Applications
  1838. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1839. use (e.g. different programs on the different OpenCL devices, for
  1840. relocation purpose for instance).
  1841. @deftp {Data Type} {struct starpu_opencl_program}
  1842. Stores the OpenCL programs as compiled for the different OpenCL devices.
  1843. @table @asis
  1844. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  1845. Stores each program for each OpenCL device.
  1846. @end table
  1847. @end deftp
  1848. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1849. @anchor{starpu_opencl_load_opencl_from_file}
  1850. This function compiles an OpenCL source code stored in a file.
  1851. @end deftypefun
  1852. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1853. This function compiles an OpenCL source code stored in a string.
  1854. @end deftypefun
  1855. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1856. This function unloads an OpenCL compiled code.
  1857. @end deftypefun
  1858. @node Loading OpenCL kernels
  1859. @subsection Loading OpenCL kernels
  1860. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1861. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  1862. queue returned in @var{queue}, using program @var{opencl_programs} and name
  1863. @var{kernel_name}
  1864. @end deftypefun
  1865. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1866. Release the given @var{kernel}, to be called after kernel execution.
  1867. @end deftypefun
  1868. @node OpenCL statistics
  1869. @subsection OpenCL statistics
  1870. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1871. This function allows to collect statistics on a kernel execution.
  1872. After termination of the kernels, the OpenCL codelet should call this function
  1873. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1874. collect statistics about the kernel execution (used cycles, consumed power).
  1875. @end deftypefun
  1876. @node OpenCL utilities
  1877. @subsection OpenCL utilities
  1878. @deftypefun {const char *}starpu_opencl_error_string (cl_int @var{status})
  1879. Return the error message in English corresponding to @var{status}, an
  1880. OpenCL error code.
  1881. @end deftypefun
  1882. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1883. Given a valid error @var{status}, prints the corresponding error message on
  1884. stdout, along with the given function name @var{func}, the given filename
  1885. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1886. @end deftypefun
  1887. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1888. Call the function @code{starpu_opencl_display_error} with the given
  1889. error @var{status}, the current function name, current file and line
  1890. number, and a empty message.
  1891. @end defmac
  1892. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1893. Call the function @code{starpu_opencl_display_error} and abort.
  1894. @end deftypefun
  1895. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1896. Call the function @code{starpu_opencl_report_error} with the given
  1897. error @var{status}, with the current function name, current file and
  1898. line number, and a empty message.
  1899. @end defmac
  1900. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1901. Call the function @code{starpu_opencl_report_error} with the given
  1902. message and the given error @var{status}, with the current function
  1903. name, current file and line number.
  1904. @end defmac
  1905. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1906. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1907. valid combination of cl_mem_flags values.
  1908. @end deftypefun
  1909. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1910. Copy @var{size} bytes from the given @var{ptr} on
  1911. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1912. @var{offset} is the offset, in bytes, in @var{buffer}.
  1913. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  1914. synchronised before returning. If non NULL, @var{event} can be used
  1915. after the call to wait for this particular copy to complete.
  1916. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1917. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1918. was successful, or to 0 if event was NULL.
  1919. @end deftypefun
  1920. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1921. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1922. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1923. @var{offset} is the offset, in bytes, in @var{buffer}.
  1924. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  1925. synchronised before returning. If non NULL, @var{event} can be used
  1926. after the call to wait for this particular copy to complete.
  1927. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1928. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1929. was successful, or to 0 if event was NULL.
  1930. @end deftypefun
  1931. @node Cell extensions
  1932. @section Cell extensions
  1933. nothing yet.
  1934. @node Miscellaneous helpers
  1935. @section Miscellaneous helpers
  1936. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1937. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1938. The @var{asynchronous} parameter indicates whether the function should
  1939. block or not. In the case of an asynchronous call, it is possible to
  1940. synchronize with the termination of this operation either by the means of
  1941. implicit dependencies (if enabled) or by calling
  1942. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1943. this callback function is executed after the handle has been copied, and it is
  1944. given the @var{callback_arg} pointer as argument.
  1945. @end deftypefun
  1946. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1947. This function executes the given function on a subset of workers.
  1948. When calling this method, the offloaded function specified by the first argument is
  1949. executed by every StarPU worker that may execute the function.
  1950. The second argument is passed to the offloaded function.
  1951. The last argument specifies on which types of processing units the function
  1952. should be executed. Similarly to the @var{where} field of the
  1953. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1954. should be executed on every CUDA device and every CPU by passing
  1955. @code{STARPU_CPU|STARPU_CUDA}.
  1956. This function blocks until the function has been executed on every appropriate
  1957. processing units, so that it may not be called from a callback function for
  1958. instance.
  1959. @end deftypefun