| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 | 
							- /* dlatdf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static doublereal c_b23 = 1.;
 
- static doublereal c_b37 = -1.;
 
- /* Subroutine */ int _starpu_dlatdf_(integer *ijob, integer *n, doublereal *z__, 
 
- 	integer *ldz, doublereal *rhs, doublereal *rdsum, doublereal *rdscal, 
 
- 	integer *ipiv, integer *jpiv)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k;
 
-     doublereal bm, bp, xm[8], xp[8];
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     integer info;
 
-     doublereal temp, work[32];
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);
 
-     doublereal pmone;
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_daxpy_(integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     doublereal sminu;
 
-     integer iwork[8];
 
-     doublereal splus;
 
-     extern /* Subroutine */ int _starpu_dgesc2_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *, doublereal *), _starpu_dgecon_(char *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *, integer *), _starpu_dlassq_(integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *), _starpu_dlaswp_(
 
- 	    integer *, doublereal *, integer *, integer *, integer *, integer 
 
- 	    *, integer *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLATDF uses the LU factorization of the n-by-n matrix Z computed by */
 
- /*  DGETC2 and computes a contribution to the reciprocal Dif-estimate */
 
- /*  by solving Z * x = b for x, and choosing the r.h.s. b such that */
 
- /*  the norm of x is as large as possible. On entry RHS = b holds the */
 
- /*  contribution from earlier solved sub-systems, and on return RHS = x. */
 
- /*  The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q, */
 
- /*  where P and Q are permutation matrices. L is lower triangular with */
 
- /*  unit diagonal elements and U is upper triangular. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  IJOB    (input) INTEGER */
 
- /*          IJOB = 2: First compute an approximative null-vector e */
 
- /*              of Z using DGECON, e is normalized and solve for */
 
- /*              Zx = +-e - f with the sign giving the greater value */
 
- /*              of 2-norm(x). About 5 times as expensive as Default. */
 
- /*          IJOB .ne. 2: Local look ahead strategy where all entries of */
 
- /*              the r.h.s. b is choosen as either +1 or -1 (Default). */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix Z. */
 
- /*  Z       (input) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          On entry, the LU part of the factorization of the n-by-n */
 
- /*          matrix Z computed by DGETC2:  Z = P * L * U * Q */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDA >= max(1, N). */
 
- /*  RHS     (input/output) DOUBLE PRECISION array, dimension N. */
 
- /*          On entry, RHS contains contributions from other subsystems. */
 
- /*          On exit, RHS contains the solution of the subsystem with */
 
- /*          entries acoording to the value of IJOB (see above). */
 
- /*  RDSUM   (input/output) DOUBLE PRECISION */
 
- /*          On entry, the sum of squares of computed contributions to */
 
- /*          the Dif-estimate under computation by DTGSYL, where the */
 
- /*          scaling factor RDSCAL (see below) has been factored out. */
 
- /*          On exit, the corresponding sum of squares updated with the */
 
- /*          contributions from the current sub-system. */
 
- /*          If TRANS = 'T' RDSUM is not touched. */
 
- /*          NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL. */
 
- /*  RDSCAL  (input/output) DOUBLE PRECISION */
 
- /*          On entry, scaling factor used to prevent overflow in RDSUM. */
 
- /*          On exit, RDSCAL is updated w.r.t. the current contributions */
 
- /*          in RDSUM. */
 
- /*          If TRANS = 'T', RDSCAL is not touched. */
 
- /*          NOTE: RDSCAL only makes sense when DTGSY2 is called by */
 
- /*                DTGSYL. */
 
- /*  IPIV    (input) INTEGER array, dimension (N). */
 
- /*          The pivot indices; for 1 <= i <= N, row i of the */
 
- /*          matrix has been interchanged with row IPIV(i). */
 
- /*  JPIV    (input) INTEGER array, dimension (N). */
 
- /*          The pivot indices; for 1 <= j <= N, column j of the */
 
- /*          matrix has been interchanged with column JPIV(j). */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 
- /*     Umea University, S-901 87 Umea, Sweden. */
 
- /*  This routine is a further developed implementation of algorithm */
 
- /*  BSOLVE in [1] using complete pivoting in the LU factorization. */
 
- /*  [1] Bo Kagstrom and Lars Westin, */
 
- /*      Generalized Schur Methods with Condition Estimators for */
 
- /*      Solving the Generalized Sylvester Equation, IEEE Transactions */
 
- /*      on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
 
- /*  [2] Peter Poromaa, */
 
- /*      On Efficient and Robust Estimators for the Separation */
 
- /*      between two Regular Matrix Pairs with Applications in */
 
- /*      Condition Estimation. Report IMINF-95.05, Departement of */
 
- /*      Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --rhs;
 
-     --ipiv;
 
-     --jpiv;
 
-     /* Function Body */
 
-     if (*ijob != 2) {
 
- /*        Apply permutations IPIV to RHS */
 
- 	i__1 = *n - 1;
 
- 	_starpu_dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);
 
- /*        Solve for L-part choosing RHS either to +1 or -1. */
 
- 	pmone = -1.;
 
- 	i__1 = *n - 1;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    bp = rhs[j] + 1.;
 
- 	    bm = rhs[j] - 1.;
 
- 	    splus = 1.;
 
- /*           Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */
 
- /*           SMIN computed more efficiently than in BSOLVE [1]. */
 
- 	    i__2 = *n - j;
 
- 	    splus += _starpu_ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 
 
- 		    + j * z_dim1], &c__1);
 
- 	    i__2 = *n - j;
 
- 	    sminu = _starpu_ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], 
 
- 		     &c__1);
 
- 	    splus *= rhs[j];
 
- 	    if (splus > sminu) {
 
- 		rhs[j] = bp;
 
- 	    } else if (sminu > splus) {
 
- 		rhs[j] = bm;
 
- 	    } else {
 
- /*              In this case the updating sums are equal and we can */
 
- /*              choose RHS(J) +1 or -1. The first time this happens */
 
- /*              we choose -1, thereafter +1. This is a simple way to */
 
- /*              get good estimates of matrices like Byers well-known */
 
- /*              example (see [1]). (Not done in BSOLVE.) */
 
- 		rhs[j] += pmone;
 
- 		pmone = 1.;
 
- 	    }
 
- /*           Compute the remaining r.h.s. */
 
- 	    temp = -rhs[j];
 
- 	    i__2 = *n - j;
 
- 	    _starpu_daxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], 
 
- 		     &c__1);
 
- /* L10: */
 
- 	}
 
- /*        Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */
 
- /*        in BSOLVE and will hopefully give us a better estimate because */
 
- /*        any ill-conditioning of the original matrix is transfered to U */
 
- /*        and not to L. U(N, N) is an approximation to sigma_min(LU). */
 
- 	i__1 = *n - 1;
 
- 	_starpu_dcopy_(&i__1, &rhs[1], &c__1, xp, &c__1);
 
- 	xp[*n - 1] = rhs[*n] + 1.;
 
- 	rhs[*n] += -1.;
 
- 	splus = 0.;
 
- 	sminu = 0.;
 
- 	for (i__ = *n; i__ >= 1; --i__) {
 
- 	    temp = 1. / z__[i__ + i__ * z_dim1];
 
- 	    xp[i__ - 1] *= temp;
 
- 	    rhs[i__] *= temp;
 
- 	    i__1 = *n;
 
- 	    for (k = i__ + 1; k <= i__1; ++k) {
 
- 		xp[i__ - 1] -= xp[k - 1] * (z__[i__ + k * z_dim1] * temp);
 
- 		rhs[i__] -= rhs[k] * (z__[i__ + k * z_dim1] * temp);
 
- /* L20: */
 
- 	    }
 
- 	    splus += (d__1 = xp[i__ - 1], abs(d__1));
 
- 	    sminu += (d__1 = rhs[i__], abs(d__1));
 
- /* L30: */
 
- 	}
 
- 	if (splus > sminu) {
 
- 	    _starpu_dcopy_(n, xp, &c__1, &rhs[1], &c__1);
 
- 	}
 
- /*        Apply the permutations JPIV to the computed solution (RHS) */
 
- 	i__1 = *n - 1;
 
- 	_starpu_dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);
 
- /*        Compute the sum of squares */
 
- 	_starpu_dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
 
-     } else {
 
- /*        IJOB = 2, Compute approximate nullvector XM of Z */
 
- 	_starpu_dgecon_("I", n, &z__[z_offset], ldz, &c_b23, &temp, work, iwork, &
 
- 		info);
 
- 	_starpu_dcopy_(n, &work[*n], &c__1, xm, &c__1);
 
- /*        Compute RHS */
 
- 	i__1 = *n - 1;
 
- 	_starpu_dlaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
 
- 	temp = 1. / sqrt(_starpu_ddot_(n, xm, &c__1, xm, &c__1));
 
- 	_starpu_dscal_(n, &temp, xm, &c__1);
 
- 	_starpu_dcopy_(n, xm, &c__1, xp, &c__1);
 
- 	_starpu_daxpy_(n, &c_b23, &rhs[1], &c__1, xp, &c__1);
 
- 	_starpu_daxpy_(n, &c_b37, xm, &c__1, &rhs[1], &c__1);
 
- 	_starpu_dgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &temp);
 
- 	_starpu_dgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &temp);
 
- 	if (_starpu_dasum_(n, xp, &c__1) > _starpu_dasum_(n, &rhs[1], &c__1)) {
 
- 	    _starpu_dcopy_(n, xp, &c__1, &rhs[1], &c__1);
 
- 	}
 
- /*        Compute the sum of squares */
 
- 	_starpu_dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
 
-     }
 
-     return 0;
 
- /*     End of DLATDF */
 
- } /* _starpu_dlatdf_ */
 
 
  |