| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603 | 
							- /* dlasq2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__2 = 2;
 
- static integer c__10 = 10;
 
- static integer c__3 = 3;
 
- static integer c__4 = 4;
 
- static integer c__11 = 11;
 
- /* Subroutine */ int _starpu_dlasq2_(integer *n, doublereal *z__, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2, i__3;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal d__, e, g;
 
-     integer k;
 
-     doublereal s, t;
 
-     integer i0, i4, n0;
 
-     doublereal dn;
 
-     integer pp;
 
-     doublereal dn1, dn2, dee, eps, tau, tol;
 
-     integer ipn4;
 
-     doublereal tol2;
 
-     logical ieee;
 
-     integer nbig;
 
-     doublereal dmin__, emin, emax;
 
-     integer kmin, ndiv, iter;
 
-     doublereal qmin, temp, qmax, zmax;
 
-     integer splt;
 
-     doublereal dmin1, dmin2;
 
-     integer nfail;
 
-     doublereal desig, trace, sigma;
 
-     integer iinfo, ttype;
 
-     extern /* Subroutine */ int _starpu_dlasq3_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *, integer *, logical *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal deemin;
 
-     integer iwhila, iwhilb;
 
-     doublereal oldemn, safmin;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *, 
 
- 	    integer *);
 
- /*  -- LAPACK routine (version 3.2)                                    -- */
 
- /*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- */
 
- /*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- */
 
- /*  -- Berkeley                                                        -- */
 
- /*  -- November 2008                                                   -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASQ2 computes all the eigenvalues of the symmetric positive */
 
- /*  definite tridiagonal matrix associated with the qd array Z to high */
 
- /*  relative accuracy are computed to high relative accuracy, in the */
 
- /*  absence of denormalization, underflow and overflow. */
 
- /*  To see the relation of Z to the tridiagonal matrix, let L be a */
 
- /*  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
 
- /*  let U be an upper bidiagonal matrix with 1's above and diagonal */
 
- /*  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
 
- /*  symmetric tridiagonal to which it is similar. */
 
- /*  Note : DLASQ2 defines a logical variable, IEEE, which is true */
 
- /*  on machines which follow ieee-754 floating-point standard in their */
 
- /*  handling of infinities and NaNs, and false otherwise. This variable */
 
- /*  is passed to DLASQ3. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N     (input) INTEGER */
 
- /*        The number of rows and columns in the matrix. N >= 0. */
 
- /*  Z     (input/output) DOUBLE PRECISION array, dimension ( 4*N ) */
 
- /*        On entry Z holds the qd array. On exit, entries 1 to N hold */
 
- /*        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
 
- /*        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
 
- /*        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
 
- /*        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
 
- /*        shifts that failed. */
 
- /*  INFO  (output) INTEGER */
 
- /*        = 0: successful exit */
 
- /*        < 0: if the i-th argument is a scalar and had an illegal */
 
- /*             value, then INFO = -i, if the i-th argument is an */
 
- /*             array and the j-entry had an illegal value, then */
 
- /*             INFO = -(i*100+j) */
 
- /*        > 0: the algorithm failed */
 
- /*              = 1, a split was marked by a positive value in E */
 
- /*              = 2, current block of Z not diagonalized after 30*N */
 
- /*                   iterations (in inner while loop) */
 
- /*              = 3, termination criterion of outer while loop not met */
 
- /*                   (program created more than N unreduced blocks) */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Local Variables: I0:N0 defines a current unreduced segment of Z. */
 
- /*  The shifts are accumulated in SIGMA. Iteration count is in ITER. */
 
- /*  Ping-pong is controlled by PP (alternates between 0 and 1). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments. */
 
- /*     (in case DLASQ2 is not called by DLASQ1) */
 
-     /* Parameter adjustments */
 
-     --z__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     eps = _starpu_dlamch_("Precision");
 
-     safmin = _starpu_dlamch_("Safe minimum");
 
-     tol = eps * 100.;
 
- /* Computing 2nd power */
 
-     d__1 = tol;
 
-     tol2 = d__1 * d__1;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
- 	_starpu_xerbla_("DLASQ2", &c__1);
 
- 	return 0;
 
-     } else if (*n == 0) {
 
- 	return 0;
 
-     } else if (*n == 1) {
 
- /*        1-by-1 case. */
 
- 	if (z__[1] < 0.) {
 
- 	    *info = -201;
 
- 	    _starpu_xerbla_("DLASQ2", &c__2);
 
- 	}
 
- 	return 0;
 
-     } else if (*n == 2) {
 
- /*        2-by-2 case. */
 
- 	if (z__[2] < 0. || z__[3] < 0.) {
 
- 	    *info = -2;
 
- 	    _starpu_xerbla_("DLASQ2", &c__2);
 
- 	    return 0;
 
- 	} else if (z__[3] > z__[1]) {
 
- 	    d__ = z__[3];
 
- 	    z__[3] = z__[1];
 
- 	    z__[1] = d__;
 
- 	}
 
- 	z__[5] = z__[1] + z__[2] + z__[3];
 
- 	if (z__[2] > z__[3] * tol2) {
 
- 	    t = (z__[1] - z__[3] + z__[2]) * .5;
 
- 	    s = z__[3] * (z__[2] / t);
 
- 	    if (s <= t) {
 
- 		s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.)));
 
- 	    } else {
 
- 		s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
 
- 	    }
 
- 	    t = z__[1] + (s + z__[2]);
 
- 	    z__[3] *= z__[1] / t;
 
- 	    z__[1] = t;
 
- 	}
 
- 	z__[2] = z__[3];
 
- 	z__[6] = z__[2] + z__[1];
 
- 	return 0;
 
-     }
 
- /*     Check for negative data and compute sums of q's and e's. */
 
-     z__[*n * 2] = 0.;
 
-     emin = z__[2];
 
-     qmax = 0.;
 
-     zmax = 0.;
 
-     d__ = 0.;
 
-     e = 0.;
 
-     i__1 = *n - 1 << 1;
 
-     for (k = 1; k <= i__1; k += 2) {
 
- 	if (z__[k] < 0.) {
 
- 	    *info = -(k + 200);
 
- 	    _starpu_xerbla_("DLASQ2", &c__2);
 
- 	    return 0;
 
- 	} else if (z__[k + 1] < 0.) {
 
- 	    *info = -(k + 201);
 
- 	    _starpu_xerbla_("DLASQ2", &c__2);
 
- 	    return 0;
 
- 	}
 
- 	d__ += z__[k];
 
- 	e += z__[k + 1];
 
- /* Computing MAX */
 
- 	d__1 = qmax, d__2 = z__[k];
 
- 	qmax = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	d__1 = emin, d__2 = z__[k + 1];
 
- 	emin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	d__1 = max(qmax,zmax), d__2 = z__[k + 1];
 
- 	zmax = max(d__1,d__2);
 
- /* L10: */
 
-     }
 
-     if (z__[(*n << 1) - 1] < 0.) {
 
- 	*info = -((*n << 1) + 199);
 
- 	_starpu_xerbla_("DLASQ2", &c__2);
 
- 	return 0;
 
-     }
 
-     d__ += z__[(*n << 1) - 1];
 
- /* Computing MAX */
 
-     d__1 = qmax, d__2 = z__[(*n << 1) - 1];
 
-     qmax = max(d__1,d__2);
 
-     zmax = max(qmax,zmax);
 
- /*     Check for diagonality. */
 
-     if (e == 0.) {
 
- 	i__1 = *n;
 
- 	for (k = 2; k <= i__1; ++k) {
 
- 	    z__[k] = z__[(k << 1) - 1];
 
- /* L20: */
 
- 	}
 
- 	_starpu_dlasrt_("D", n, &z__[1], &iinfo);
 
- 	z__[(*n << 1) - 1] = d__;
 
- 	return 0;
 
-     }
 
-     trace = d__ + e;
 
- /*     Check for zero data. */
 
-     if (trace == 0.) {
 
- 	z__[(*n << 1) - 1] = 0.;
 
- 	return 0;
 
-     }
 
- /*     Check whether the machine is IEEE conformable. */
 
-     ieee = _starpu_ilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4) == 1 && _starpu_ilaenv_(&c__11, "DLASQ2", "N", &c__1, &c__2, 
 
- 	     &c__3, &c__4) == 1;
 
- /*     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */
 
-     for (k = *n << 1; k >= 2; k += -2) {
 
- 	z__[k * 2] = 0.;
 
- 	z__[(k << 1) - 1] = z__[k];
 
- 	z__[(k << 1) - 2] = 0.;
 
- 	z__[(k << 1) - 3] = z__[k - 1];
 
- /* L30: */
 
-     }
 
-     i0 = 1;
 
-     n0 = *n;
 
- /*     Reverse the qd-array, if warranted. */
 
-     if (z__[(i0 << 2) - 3] * 1.5 < z__[(n0 << 2) - 3]) {
 
- 	ipn4 = i0 + n0 << 2;
 
- 	i__1 = i0 + n0 - 1 << 1;
 
- 	for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
 
- 	    temp = z__[i4 - 3];
 
- 	    z__[i4 - 3] = z__[ipn4 - i4 - 3];
 
- 	    z__[ipn4 - i4 - 3] = temp;
 
- 	    temp = z__[i4 - 1];
 
- 	    z__[i4 - 1] = z__[ipn4 - i4 - 5];
 
- 	    z__[ipn4 - i4 - 5] = temp;
 
- /* L40: */
 
- 	}
 
-     }
 
- /*     Initial split checking via dqd and Li's test. */
 
-     pp = 0;
 
-     for (k = 1; k <= 2; ++k) {
 
- 	d__ = z__[(n0 << 2) + pp - 3];
 
- 	i__1 = (i0 << 2) + pp;
 
- 	for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
 
- 	    if (z__[i4 - 1] <= tol2 * d__) {
 
- 		z__[i4 - 1] = -0.;
 
- 		d__ = z__[i4 - 3];
 
- 	    } else {
 
- 		d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
 
- 	    }
 
- /* L50: */
 
- 	}
 
- /*        dqd maps Z to ZZ plus Li's test. */
 
- 	emin = z__[(i0 << 2) + pp + 1];
 
- 	d__ = z__[(i0 << 2) + pp - 3];
 
- 	i__1 = (n0 - 1 << 2) + pp;
 
- 	for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
 
- 	    z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
 
- 	    if (z__[i4 - 1] <= tol2 * d__) {
 
- 		z__[i4 - 1] = -0.;
 
- 		z__[i4 - (pp << 1) - 2] = d__;
 
- 		z__[i4 - (pp << 1)] = 0.;
 
- 		d__ = z__[i4 + 1];
 
- 	    } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && 
 
- 		    safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
 
- 		temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
 
- 		z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
 
- 		d__ *= temp;
 
- 	    } else {
 
- 		z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
 
- 			pp << 1) - 2]);
 
- 		d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
 
- 	    }
 
- /* Computing MIN */
 
- 	    d__1 = emin, d__2 = z__[i4 - (pp << 1)];
 
- 	    emin = min(d__1,d__2);
 
- /* L60: */
 
- 	}
 
- 	z__[(n0 << 2) - pp - 2] = d__;
 
- /*        Now find qmax. */
 
- 	qmax = z__[(i0 << 2) - pp - 2];
 
- 	i__1 = (n0 << 2) - pp - 2;
 
- 	for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
 
- /* Computing MAX */
 
- 	    d__1 = qmax, d__2 = z__[i4];
 
- 	    qmax = max(d__1,d__2);
 
- /* L70: */
 
- 	}
 
- /*        Prepare for the next iteration on K. */
 
- 	pp = 1 - pp;
 
- /* L80: */
 
-     }
 
- /*     Initialise variables to pass to DLASQ3. */
 
-     ttype = 0;
 
-     dmin1 = 0.;
 
-     dmin2 = 0.;
 
-     dn = 0.;
 
-     dn1 = 0.;
 
-     dn2 = 0.;
 
-     g = 0.;
 
-     tau = 0.;
 
-     iter = 2;
 
-     nfail = 0;
 
-     ndiv = n0 - i0 << 1;
 
-     i__1 = *n + 1;
 
-     for (iwhila = 1; iwhila <= i__1; ++iwhila) {
 
- 	if (n0 < 1) {
 
- 	    goto L170;
 
- 	}
 
- /*        While array unfinished do */
 
- /*        E(N0) holds the value of SIGMA when submatrix in I0:N0 */
 
- /*        splits from the rest of the array, but is negated. */
 
- 	desig = 0.;
 
- 	if (n0 == *n) {
 
- 	    sigma = 0.;
 
- 	} else {
 
- 	    sigma = -z__[(n0 << 2) - 1];
 
- 	}
 
- 	if (sigma < 0.) {
 
- 	    *info = 1;
 
- 	    return 0;
 
- 	}
 
- /*        Find last unreduced submatrix's top index I0, find QMAX and */
 
- /*        EMIN. Find Gershgorin-type bound if Q's much greater than E's. */
 
- 	emax = 0.;
 
- 	if (n0 > i0) {
 
- 	    emin = (d__1 = z__[(n0 << 2) - 5], abs(d__1));
 
- 	} else {
 
- 	    emin = 0.;
 
- 	}
 
- 	qmin = z__[(n0 << 2) - 3];
 
- 	qmax = qmin;
 
- 	for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
 
- 	    if (z__[i4 - 5] <= 0.) {
 
- 		goto L100;
 
- 	    }
 
- 	    if (qmin >= emax * 4.) {
 
- /* Computing MIN */
 
- 		d__1 = qmin, d__2 = z__[i4 - 3];
 
- 		qmin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 		d__1 = emax, d__2 = z__[i4 - 5];
 
- 		emax = max(d__1,d__2);
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5];
 
- 	    qmax = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	    d__1 = emin, d__2 = z__[i4 - 5];
 
- 	    emin = min(d__1,d__2);
 
- /* L90: */
 
- 	}
 
- 	i4 = 4;
 
- L100:
 
- 	i0 = i4 / 4;
 
- 	pp = 0;
 
- 	if (n0 - i0 > 1) {
 
- 	    dee = z__[(i0 << 2) - 3];
 
- 	    deemin = dee;
 
- 	    kmin = i0;
 
- 	    i__2 = (n0 << 2) - 3;
 
- 	    for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
 
- 		dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
 
- 		if (dee <= deemin) {
 
- 		    deemin = dee;
 
- 		    kmin = (i4 + 3) / 4;
 
- 		}
 
- /* L110: */
 
- 	    }
 
- 	    if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * 
 
- 		    .5) {
 
- 		ipn4 = i0 + n0 << 2;
 
- 		pp = 2;
 
- 		i__2 = i0 + n0 - 1 << 1;
 
- 		for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
 
- 		    temp = z__[i4 - 3];
 
- 		    z__[i4 - 3] = z__[ipn4 - i4 - 3];
 
- 		    z__[ipn4 - i4 - 3] = temp;
 
- 		    temp = z__[i4 - 2];
 
- 		    z__[i4 - 2] = z__[ipn4 - i4 - 2];
 
- 		    z__[ipn4 - i4 - 2] = temp;
 
- 		    temp = z__[i4 - 1];
 
- 		    z__[i4 - 1] = z__[ipn4 - i4 - 5];
 
- 		    z__[ipn4 - i4 - 5] = temp;
 
- 		    temp = z__[i4];
 
- 		    z__[i4] = z__[ipn4 - i4 - 4];
 
- 		    z__[ipn4 - i4 - 4] = temp;
 
- /* L120: */
 
- 		}
 
- 	    }
 
- 	}
 
- /*        Put -(initial shift) into DMIN. */
 
- /* Computing MAX */
 
- 	d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax);
 
- 	dmin__ = -max(d__1,d__2);
 
- /*        Now I0:N0 is unreduced. */
 
- /*        PP = 0 for ping, PP = 1 for pong. */
 
- /*        PP = 2 indicates that flipping was applied to the Z array and */
 
- /*               and that the tests for deflation upon entry in DLASQ3 */
 
- /*               should not be performed. */
 
- 	nbig = (n0 - i0 + 1) * 30;
 
- 	i__2 = nbig;
 
- 	for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
 
- 	    if (i0 > n0) {
 
- 		goto L150;
 
- 	    }
 
- /*           While submatrix unfinished take a good dqds step. */
 
- 	    _starpu_dlasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
 
- 		    nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
 
- 		    dn1, &dn2, &g, &tau);
 
- 	    pp = 1 - pp;
 
- /*           When EMIN is very small check for splits. */
 
- 	    if (pp == 0 && n0 - i0 >= 3) {
 
- 		if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
 
- 			 sigma) {
 
- 		    splt = i0 - 1;
 
- 		    qmax = z__[(i0 << 2) - 3];
 
- 		    emin = z__[(i0 << 2) - 1];
 
- 		    oldemn = z__[i0 * 4];
 
- 		    i__3 = n0 - 3 << 2;
 
- 		    for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
 
- 			if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= 
 
- 				tol2 * sigma) {
 
- 			    z__[i4 - 1] = -sigma;
 
- 			    splt = i4 / 4;
 
- 			    qmax = 0.;
 
- 			    emin = z__[i4 + 3];
 
- 			    oldemn = z__[i4 + 4];
 
- 			} else {
 
- /* Computing MAX */
 
- 			    d__1 = qmax, d__2 = z__[i4 + 1];
 
- 			    qmax = max(d__1,d__2);
 
- /* Computing MIN */
 
- 			    d__1 = emin, d__2 = z__[i4 - 1];
 
- 			    emin = min(d__1,d__2);
 
- /* Computing MIN */
 
- 			    d__1 = oldemn, d__2 = z__[i4];
 
- 			    oldemn = min(d__1,d__2);
 
- 			}
 
- /* L130: */
 
- 		    }
 
- 		    z__[(n0 << 2) - 1] = emin;
 
- 		    z__[n0 * 4] = oldemn;
 
- 		    i0 = splt + 1;
 
- 		}
 
- 	    }
 
- /* L140: */
 
- 	}
 
- 	*info = 2;
 
- 	return 0;
 
- /*        end IWHILB */
 
- L150:
 
- /* L160: */
 
- 	;
 
-     }
 
-     *info = 3;
 
-     return 0;
 
- /*     end IWHILA */
 
- L170:
 
- /*     Move q's to the front. */
 
-     i__1 = *n;
 
-     for (k = 2; k <= i__1; ++k) {
 
- 	z__[k] = z__[(k << 2) - 3];
 
- /* L180: */
 
-     }
 
- /*     Sort and compute sum of eigenvalues. */
 
-     _starpu_dlasrt_("D", n, &z__[1], &iinfo);
 
-     e = 0.;
 
-     for (k = *n; k >= 1; --k) {
 
- 	e += z__[k];
 
- /* L190: */
 
-     }
 
- /*     Store trace, sum(eigenvalues) and information on performance. */
 
-     z__[(*n << 1) + 1] = trace;
 
-     z__[(*n << 1) + 2] = e;
 
-     z__[(*n << 1) + 3] = (doublereal) iter;
 
- /* Computing 2nd power */
 
-     i__1 = *n;
 
-     z__[(*n << 1) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1);
 
-     z__[(*n << 1) + 5] = nfail * 100. / (doublereal) iter;
 
-     return 0;
 
- /*     End of DLASQ2 */
 
- } /* _starpu_dlasq2_ */
 
 
  |