| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 | 
							- /* dlags2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlags2_(logical *upper, doublereal *a1, doublereal *a2, 
 
- 	doublereal *a3, doublereal *b1, doublereal *b2, doublereal *b3, 
 
- 	doublereal *csu, doublereal *snu, doublereal *csv, doublereal *snv, 
 
- 	doublereal *csq, doublereal *snq)
 
- {
 
-     /* System generated locals */
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     doublereal a, b, c__, d__, r__, s1, s2, ua11, ua12, ua21, ua22, vb11, 
 
- 	    vb12, vb21, vb22, csl, csr, snl, snr, aua11, aua12, aua21, aua22, 
 
- 	    avb11, avb12, avb21, avb22, ua11r, ua22r, vb11r, vb22r;
 
-     extern /* Subroutine */ int _starpu_dlasv2_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *), _starpu_dlartg_(doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such */
 
- /*  that if ( UPPER ) then */
 
- /*            U'*A*Q = U'*( A1 A2 )*Q = ( x  0  ) */
 
- /*                        ( 0  A3 )     ( x  x  ) */
 
- /*  and */
 
- /*            V'*B*Q = V'*( B1 B2 )*Q = ( x  0  ) */
 
- /*                        ( 0  B3 )     ( x  x  ) */
 
- /*  or if ( .NOT.UPPER ) then */
 
- /*            U'*A*Q = U'*( A1 0  )*Q = ( x  x  ) */
 
- /*                        ( A2 A3 )     ( 0  x  ) */
 
- /*  and */
 
- /*            V'*B*Q = V'*( B1 0  )*Q = ( x  x  ) */
 
- /*                        ( B2 B3 )     ( 0  x  ) */
 
- /*  The rows of the transformed A and B are parallel, where */
 
- /*    U = (  CSU  SNU ), V = (  CSV SNV ), Q = (  CSQ   SNQ ) */
 
- /*        ( -SNU  CSU )      ( -SNV CSV )      ( -SNQ   CSQ ) */
 
- /*  Z' denotes the transpose of Z. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPPER   (input) LOGICAL */
 
- /*          = .TRUE.: the input matrices A and B are upper triangular. */
 
- /*          = .FALSE.: the input matrices A and B are lower triangular. */
 
- /*  A1      (input) DOUBLE PRECISION */
 
- /*  A2      (input) DOUBLE PRECISION */
 
- /*  A3      (input) DOUBLE PRECISION */
 
- /*          On entry, A1, A2 and A3 are elements of the input 2-by-2 */
 
- /*          upper (lower) triangular matrix A. */
 
- /*  B1      (input) DOUBLE PRECISION */
 
- /*  B2      (input) DOUBLE PRECISION */
 
- /*  B3      (input) DOUBLE PRECISION */
 
- /*          On entry, B1, B2 and B3 are elements of the input 2-by-2 */
 
- /*          upper (lower) triangular matrix B. */
 
- /*  CSU     (output) DOUBLE PRECISION */
 
- /*  SNU     (output) DOUBLE PRECISION */
 
- /*          The desired orthogonal matrix U. */
 
- /*  CSV     (output) DOUBLE PRECISION */
 
- /*  SNV     (output) DOUBLE PRECISION */
 
- /*          The desired orthogonal matrix V. */
 
- /*  CSQ     (output) DOUBLE PRECISION */
 
- /*  SNQ     (output) DOUBLE PRECISION */
 
- /*          The desired orthogonal matrix Q. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     if (*upper) {
 
- /*        Input matrices A and B are upper triangular matrices */
 
- /*        Form matrix C = A*adj(B) = ( a b ) */
 
- /*                                   ( 0 d ) */
 
- 	a = *a1 * *b3;
 
- 	d__ = *a3 * *b1;
 
- 	b = *a2 * *b1 - *a1 * *b2;
 
- /*        The SVD of real 2-by-2 triangular C */
 
- /*         ( CSL -SNL )*( A B )*(  CSR  SNR ) = ( R 0 ) */
 
- /*         ( SNL  CSL ) ( 0 D ) ( -SNR  CSR )   ( 0 T ) */
 
- 	_starpu_dlasv2_(&a, &b, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
 
- 	if (abs(csl) >= abs(snl) || abs(csr) >= abs(snr)) {
 
- /*           Compute the (1,1) and (1,2) elements of U'*A and V'*B, */
 
- /*           and (1,2) element of |U|'*|A| and |V|'*|B|. */
 
- 	    ua11r = csl * *a1;
 
- 	    ua12 = csl * *a2 + snl * *a3;
 
- 	    vb11r = csr * *b1;
 
- 	    vb12 = csr * *b2 + snr * *b3;
 
- 	    aua12 = abs(csl) * abs(*a2) + abs(snl) * abs(*a3);
 
- 	    avb12 = abs(csr) * abs(*b2) + abs(snr) * abs(*b3);
 
- /*           zero (1,2) elements of U'*A and V'*B */
 
- 	    if (abs(ua11r) + abs(ua12) != 0.) {
 
- 		if (aua12 / (abs(ua11r) + abs(ua12)) <= avb12 / (abs(vb11r) + 
 
- 			abs(vb12))) {
 
- 		    d__1 = -ua11r;
 
- 		    _starpu_dlartg_(&d__1, &ua12, csq, snq, &r__);
 
- 		} else {
 
- 		    d__1 = -vb11r;
 
- 		    _starpu_dlartg_(&d__1, &vb12, csq, snq, &r__);
 
- 		}
 
- 	    } else {
 
- 		d__1 = -vb11r;
 
- 		_starpu_dlartg_(&d__1, &vb12, csq, snq, &r__);
 
- 	    }
 
- 	    *csu = csl;
 
- 	    *snu = -snl;
 
- 	    *csv = csr;
 
- 	    *snv = -snr;
 
- 	} else {
 
- /*           Compute the (2,1) and (2,2) elements of U'*A and V'*B, */
 
- /*           and (2,2) element of |U|'*|A| and |V|'*|B|. */
 
- 	    ua21 = -snl * *a1;
 
- 	    ua22 = -snl * *a2 + csl * *a3;
 
- 	    vb21 = -snr * *b1;
 
- 	    vb22 = -snr * *b2 + csr * *b3;
 
- 	    aua22 = abs(snl) * abs(*a2) + abs(csl) * abs(*a3);
 
- 	    avb22 = abs(snr) * abs(*b2) + abs(csr) * abs(*b3);
 
- /*           zero (2,2) elements of U'*A and V'*B, and then swap. */
 
- 	    if (abs(ua21) + abs(ua22) != 0.) {
 
- 		if (aua22 / (abs(ua21) + abs(ua22)) <= avb22 / (abs(vb21) + 
 
- 			abs(vb22))) {
 
- 		    d__1 = -ua21;
 
- 		    _starpu_dlartg_(&d__1, &ua22, csq, snq, &r__);
 
- 		} else {
 
- 		    d__1 = -vb21;
 
- 		    _starpu_dlartg_(&d__1, &vb22, csq, snq, &r__);
 
- 		}
 
- 	    } else {
 
- 		d__1 = -vb21;
 
- 		_starpu_dlartg_(&d__1, &vb22, csq, snq, &r__);
 
- 	    }
 
- 	    *csu = snl;
 
- 	    *snu = csl;
 
- 	    *csv = snr;
 
- 	    *snv = csr;
 
- 	}
 
-     } else {
 
- /*        Input matrices A and B are lower triangular matrices */
 
- /*        Form matrix C = A*adj(B) = ( a 0 ) */
 
- /*                                   ( c d ) */
 
- 	a = *a1 * *b3;
 
- 	d__ = *a3 * *b1;
 
- 	c__ = *a2 * *b3 - *a3 * *b2;
 
- /*        The SVD of real 2-by-2 triangular C */
 
- /*         ( CSL -SNL )*( A 0 )*(  CSR  SNR ) = ( R 0 ) */
 
- /*         ( SNL  CSL ) ( C D ) ( -SNR  CSR )   ( 0 T ) */
 
- 	_starpu_dlasv2_(&a, &c__, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
 
- 	if (abs(csr) >= abs(snr) || abs(csl) >= abs(snl)) {
 
- /*           Compute the (2,1) and (2,2) elements of U'*A and V'*B, */
 
- /*           and (2,1) element of |U|'*|A| and |V|'*|B|. */
 
- 	    ua21 = -snr * *a1 + csr * *a2;
 
- 	    ua22r = csr * *a3;
 
- 	    vb21 = -snl * *b1 + csl * *b2;
 
- 	    vb22r = csl * *b3;
 
- 	    aua21 = abs(snr) * abs(*a1) + abs(csr) * abs(*a2);
 
- 	    avb21 = abs(snl) * abs(*b1) + abs(csl) * abs(*b2);
 
- /*           zero (2,1) elements of U'*A and V'*B. */
 
- 	    if (abs(ua21) + abs(ua22r) != 0.) {
 
- 		if (aua21 / (abs(ua21) + abs(ua22r)) <= avb21 / (abs(vb21) + 
 
- 			abs(vb22r))) {
 
- 		    _starpu_dlartg_(&ua22r, &ua21, csq, snq, &r__);
 
- 		} else {
 
- 		    _starpu_dlartg_(&vb22r, &vb21, csq, snq, &r__);
 
- 		}
 
- 	    } else {
 
- 		_starpu_dlartg_(&vb22r, &vb21, csq, snq, &r__);
 
- 	    }
 
- 	    *csu = csr;
 
- 	    *snu = -snr;
 
- 	    *csv = csl;
 
- 	    *snv = -snl;
 
- 	} else {
 
- /*           Compute the (1,1) and (1,2) elements of U'*A and V'*B, */
 
- /*           and (1,1) element of |U|'*|A| and |V|'*|B|. */
 
- 	    ua11 = csr * *a1 + snr * *a2;
 
- 	    ua12 = snr * *a3;
 
- 	    vb11 = csl * *b1 + snl * *b2;
 
- 	    vb12 = snl * *b3;
 
- 	    aua11 = abs(csr) * abs(*a1) + abs(snr) * abs(*a2);
 
- 	    avb11 = abs(csl) * abs(*b1) + abs(snl) * abs(*b2);
 
- /*           zero (1,1) elements of U'*A and V'*B, and then swap. */
 
- 	    if (abs(ua11) + abs(ua12) != 0.) {
 
- 		if (aua11 / (abs(ua11) + abs(ua12)) <= avb11 / (abs(vb11) + 
 
- 			abs(vb12))) {
 
- 		    _starpu_dlartg_(&ua12, &ua11, csq, snq, &r__);
 
- 		} else {
 
- 		    _starpu_dlartg_(&vb12, &vb11, csq, snq, &r__);
 
- 		}
 
- 	    } else {
 
- 		_starpu_dlartg_(&vb12, &vb11, csq, snq, &r__);
 
- 	    }
 
- 	    *csu = snr;
 
- 	    *snu = csr;
 
- 	    *csv = snl;
 
- 	    *snv = csl;
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLAGS2 */
 
- } /* _starpu_dlags2_ */
 
 
  |