| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 | 
							- /* _starpu_dla_gbrpvgrw.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- doublereal _starpu_dla_gbrpvgrw__(integer *n, integer *kl, integer *ku, integer *
 
- 	ncols, doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;
 
-     doublereal ret_val, d__1, d__2;
 
-     /* Local variables */
 
-     integer i__, j, kd;
 
-     doublereal amax, umax, rpvgrw;
 
- /*     -- LAPACK routine (version 3.2.1)                                 -- */
 
- /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
 
- /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
 
- /*     -- April 2009                                                   -- */
 
- /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
 
- /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
 
- /*     .. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLA_GBRPVGRW computes the reciprocal pivot growth factor */
 
- /*  norm(A)/norm(U). The "max absolute element" norm is used. If this is */
 
- /*  much less than 1, the stability of the LU factorization of the */
 
- /*  (equilibrated) matrix A could be poor. This also means that the */
 
- /*  solution X, estimated condition numbers, and error bounds could be */
 
- /*  unreliable. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*     N       (input) INTEGER */
 
- /*     The number of linear equations, i.e., the order of the */
 
- /*     matrix A.  N >= 0. */
 
- /*     KL      (input) INTEGER */
 
- /*     The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*     KU      (input) INTEGER */
 
- /*     The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*     NCOLS   (input) INTEGER */
 
- /*     The number of columns of the matrix A.  NCOLS >= 0. */
 
- /*     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
 
- /*     The j-th column of A is stored in the j-th column of the */
 
- /*     array AB as follows: */
 
- /*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
 
- /*     LDAB    (input) INTEGER */
 
- /*     The leading dimension of the array AB.  LDAB >= KL+KU+1. */
 
- /*     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N) */
 
- /*     Details of the LU factorization of the band matrix A, as */
 
- /*     computed by DGBTRF.  U is stored as an upper triangular */
 
- /*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
 
- /*     and the multipliers used during the factorization are stored */
 
- /*     in rows KL+KU+2 to 2*KL+KU+1. */
 
- /*     LDAFB   (input) INTEGER */
 
- /*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1. */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     afb_dim1 = *ldafb;
 
-     afb_offset = 1 + afb_dim1;
 
-     afb -= afb_offset;
 
-     /* Function Body */
 
-     rpvgrw = 1.;
 
-     kd = *ku + 1;
 
-     i__1 = *ncols;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	amax = 0.;
 
- 	umax = 0.;
 
- /* Computing MAX */
 
- 	i__2 = j - *ku;
 
- /* Computing MIN */
 
- 	i__4 = j + *kl;
 
- 	i__3 = min(i__4,*n);
 
- 	for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(d__1));
 
- 	    amax = max(d__2,amax);
 
- 	}
 
- /* Computing MAX */
 
- 	i__3 = j - *ku;
 
- 	i__2 = j;
 
- 	for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = (d__1 = afb[kd + i__ - j + j * afb_dim1], abs(d__1));
 
- 	    umax = max(d__2,umax);
 
- 	}
 
- 	if (umax != 0.) {
 
- /* Computing MIN */
 
- 	    d__1 = amax / umax;
 
- 	    rpvgrw = min(d__1,rpvgrw);
 
- 	}
 
-     }
 
-     ret_val = rpvgrw;
 
-     return ret_val;
 
- } /* _starpu_dla_gbrpvgrw__ */
 
 
  |